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Abstract 

Background:  Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymopathy in humans, 
is prevalent in tropical and subtropical areas where malaria is endemic. Anti-malarial drugs, such as primaquine and 
tafenoquine, can cause haemolysis in G6PD-deficient individuals. Hence, G6PD testing is recommended before radi-
cal treatment against vivax malaria. Phenotypic assays have been widely used for screening G6PD deficiency, but in 
heterozygous females, the random lyonization causes difficulty in interpreting the results. Over 200 G6PD variants 
have been identified, which form genotypes associated with differences in the degree of G6PD deficiency and vulner-
ability to haemolysis. This study aimed to assess the frequency of G6PD mutations using a newly developed molecular 
genotyping test.

Methods:  A multiplexed high-resolution melting (HRM) assay was developed to detect eight G6PD mutations, in 
which four mutations can be tested simultaneously. Validation of the method was performed using 70 G6PD-deficient 
samples. The test was then applied to screen 725 blood samples from people living along the Thai–Myanmar border. 
The enzyme activity of these samples was also determined using water-soluble tetrazolium salts (WST-8) assay. Then, 
the correlation between genotype and enzyme activity was analysed.

Results:  The sensitivity of the multiplexed HRM assay for detecting G6PD mutations was 100 % [95 % confidence 
interval (CI): 94.87–100 %] with specificity of 100 % (95 % CI: 87.66–100 %). The overall prevalence of G6PD deficiency in 
the studied population as revealed by phenotypic WST-8 assay was 20.55 % (149/725). In contrast, by the multiplexed 
HRM assay, 27.17 % (197/725) of subjects were shown to have G6PD mutations. The mutations detected in this study 
included four single variants, G6PD Mahidol (187/197), G6PD Canton (4/197), G6PD Viangchan (3/197) and G6PD Chi-
nese-5 (1/197), and two double mutations, G6PD Mahidol + Canton (1/197) and G6PD Chinese-4 + Viangchan (1/197). 
A broad range of G6PD enzyme activities were observed in individuals carrying G6PD Mahidol, especially in females.

Conclusions:  The multiplexed HRM-based assay is sensitive and reliable for detecting G6PD mutations. This geno-
typing assay can facilitate the detection of heterozygotes, which could be useful as a supplementary approach for 
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Background
Glucose-6-phosphate dehydrogenase (G6PD) deficiency 
is an inherited genetic defect and the most common 
enzymopathy, affecting approximately 500  million peo-
ple worldwide with more than 200 variants have been 
identified [1]. G6PD deficiency is prevalent in tropical 
and subtropical areas where malaria is endemic, includ-
ing Africa and Southeast Asia [2]. Evidence has suggested 
that G6PD deficiency confers protection against malaria 
infection [3–5]. However, this is still controversial 
because several studies have yielded contradictory results 
with some claiming that the protective effects of G6PD 
deficiency were observed in male hemizygotes only, in 
female heterozygotes only, or in both [6–9]. The major 
clinical concern associated with G6PD deficiency is hae-
molysis upon exposure to oxidant drugs, including anti-
malarials such as 8-aminoquinolines (primaquine and 
tafenoquine) [10–13]. Primaquine and tafenoquine are 
the only medications capable of killing Plasmodium vivax 
and Plasmodium ovale at the dormant liver stage (hyp-
nozoite). The World Health Organization (WHO) recom-
mends that G6PD activity be measured before efforts to 
perform radical treatment of malaria [14].

G6PD deficiency can be diagnosed by either pheno-
typic or genotypic assay. Phenotypic tests are based on 
the assessment of G6PD activity, measuring the produc-
tion of reduced nicotinamide adenine dinucleotide phos-
phate (NADPH), which can be done quantitatively. The 
standard quantitative method is spectrophotometry, in 
which NADPH production is monitored at 340 nm [15]. 
This method is accurate and reliable, but is laborious, 
time-consuming, and requires complicated sample prep-
aration and technical skills; as such, it is not commonly 
used for field-based screening. A colorimetric G6PD 
assay, based on water-soluble tetrazolium salts (WST-
8), was developed as an alternative to the gold standard 
of spectrophotometry [16]. In this approach, no sample 
preparation is required and whole blood or dried blood 
spots can be used to test G6PD activity [17]. The WST-
8-based assay can be used as a quantitative method or 
a qualitative one by the naked eye, offering the possibil-
ity of performing mass screening of G6PD deficiency in 
the context of malaria elimination using primaquine and 
tafenoquine [16, 18]. Although not the standard method 
for measuring G6PD activity, the sensitivity of WST-8 
for detecting NAD(P)H was found to be five-fold greater 

than that of the spectrophotometric assay. Moreover, 
results obtained by measuring dehydrogenase activities 
in biological samples using WST-8 assay were in paral-
lel with the standard method [19]. For G6PD testing, 
WST-8 was applied, in 96-well format, to the screening 
of G6PD deficiency in different populations [20–22]. The 
sensitivity and specificity of WST-8 for detecting G6PD 
activity < 30 % were 55 % and 98 %, respectively, compared 
with the spectrophotometric method [20]. In addition, 
sensitivity of 72 % and specificity of 98 % were reported 
for WST-8, in comparison with the standard quantita-
tive G6PD assay (R&D Diagnostics) [21]. This suggests 
that WST-8 could be a key tool for G6PD testing, but it 
requires further development before deployment in the 
field.

G6PD diagnostic tests are currently available, includ-
ing qualitative tests such as fluorescent spot test (FST) 
and CareStart™ G6PD rapid diagnostic test, as well as 
quantitative point-of-care tests such as CareStart™ G6PD 
biosensor and STANDARD™ G6PD test. Unfortunately, 
these tests are not widely used for G6PD testing because 
they are too expensive and can be difficult to interpret 
[23–25]. Qualitative tests are reliable for identifying 
G6PD deficiency in hemizygous males and homozygous 
females, but are unable to identify heterozygous females 
[26–28]. This is because, in heterozygous females, a wide 
range of G6PD activities are observed as a result of the 
random X-chromosome inactivation or lyonization [29]. 
To date, over 200 G6PD variants have been identified, 
which form genotypes associated with differences in the 
degree of deficiency and vulnerability to haemolysis [30]. 
Moreover, G6PD activities vary among G6PD-deficient 
individuals carrying the same genotype [31, 32].

G6PD genotyping can be performed using restriction 
fragment length polymorphism [33, 34], amplification 
refractory mutation system [35, 36], gold nanoparticles-
based assay [37], high resolution melting (HRM) curve 
analysis [38, 39] and DNA sequencing [40, 41]. Addition-
ally, multiplex genotyping systems are currently avail-
able. DiaPlexC™ G6PD Genotyping Kit (Asian type) can 
detect eight mutations, namely, G6PD Vanua Lava, G6PD 
Mahidol, G6PD Mediterranean, G6PD Coimbra, G6PD 
Viangchan, G6PD Union, G6PD Canton, and G6PD Kaip-
ing. Thus, this assay offers high-throughput screening of 
G6PD mutations by one-step PCR [42]. However, after 
PCR amplification, an additional gel electrophoresis step 

high-throughput screening of G6PD deficiency in malaria endemic areas before the administration of primaquine and 
tafenoquine.
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is required to check the size of the amplified PCR prod-
ucts, which is impractical for large population screen-
ing. The HRM assay is a powerful and reliable tool that 
has been widely used in the detection of gene mutations 
[43–45]. Previously, HRM assays were applied to detect 
G6PD mutations in different population groups [38, 46–
48]. However, previous HRM assays could detect only 
one or two mutations at a time. Although a multiplexed 
system to detect six mutations in four reactions was later 
described, the assay system and interpretation of results 
were complex [49].

The prevalence of G6PD deficiency in Thailand ranges 
between 5 and 18 %, depending on the geographical area 
[50–54]. More than 20 G6PD variants have been identi-
fied in the country, among which the most common is 
G6PD Viangchan, followed by G6PD Mahidol, G6PD 
Canton, G6PD Union, G6PD Kaiping, G6PD Gaohe, 
G6PD Chinese-4, G6PD Chinese-5, G6PD Valladolid, 
G6PD Coimbra and G6PD Aures. Along the Thai–Myan-
mar border, a malaria endemic area, prevalence of G6PD 
deficiency of 9–18 % was reported in males [26]. Moreo-
ver, a rate of G6PD deficiency of 7.4 % was reported from 
the screening of 1,340 newborns [27]. G6PD Mahidol was 
shown to be the most common variant in this population, 
accounting for 88 % of all variants, followed by G6PD 
Chinese-4, G6PD Viangchan, and G6PD Mediterranean. 
Generally, to avoid the risk of haemolysis upon malaria 
treatment, G6PD testing is recommended before the 
administration of primaquine and tafenoquine. The aim 
of this study was to develop a molecular diagnostic test 
to enable an accurate, reliable and high-throughput plat-
form for detecting G6PD mutations, which can be used as 
a supplement to the screening of G6PD deficiency, espe-
cially in heterozygous females. To validate the method, 70 
G6PD-deficient and 28 non-deficient samples were tested 
and the results were compared with the findings obtained 
by direct DNA sequencing. The potential utility of the 
developed HRM test for the detection of G6PD variants 
in a study area in Thailand was then examined. The cor-
relation between genotype and the phenotype of enzyme 
activity (as determined using WST-8) was also analysed.

Methods
Blood samples
Blood samples were collected in ethylenediamine-
tetraacetic acid (EDTA) tubes and transported to the 
laboratory under storage at 4  °C. Thereafter, samples 
were stored at −20  °C until use, for approximately 1−3 
months. Under these conditions, the integrity of samples 
for phenotypic analysis was maintained as it was recently 
reported that blood samples were stable for up to 7–12 
months when stored in EDTA tubes at − 20 °C [55].

For the validation of HRM assays, 70 G6PD-deficient 
and 28 non-deficient blood samples were collected 
from healthy Thai volunteers at the Faculty of Medicine 
Ramathibodi Hospital. All samples were spectrophoto-
metrically tested for G6PD activity and genotyped by 
DNA sequencing. Ethical approval for the study was 
provided by the Committee on Human Rights Related 
to Research Involving Human Subjects, Faculty of Med-
icine Ramathibodi Hospital, Mahidol University, Bang-
kok, Thailand (approval number MURA 2018/252).

For the screening of G6PD deficiency, 725 blood sam-
ples (from 368 males and 357 females) were collected 
in EDTA tubes from residents living along the Thai–
Myanmar border, a malaria endemic area, namely, in 
Tha Song Yang District, Tak Province, Thailand. Ethical 
approval for the study was provided by the Human Eth-
ics Committee, Faculty of Tropical Medicine, Mahidol 
University (approval number MUTM 2019-016-01).

Phenotypic screening of G6PD deficiency using WST‑8 
assay
WST-8 is not a standard method for measuring G6PD 
activity. However, this assay was used for phenotypic 
screening in this study because its performance was 
found to be indistinguishable from that of the spec-
trophotometric method involving measurement of the 
absorbance of NAD(P)H at 340 nm [19]. The method 
showed high accuracy with % relative error of 0.7–0.25. 
For precision, % coefficient of variation for within-
run and between-run of the WST-8 method ranged 
between 0.6 and 4.5. WST-8 also exhibited excellent 
reproducibility with Z′ values of 0.90–0.99. Although 
WST-8 provides advantages regarding the diagnosis 
of G6PD deficiency, this method will require further 
development before being deployed in a clinical context 
[20].

Reaction mixtures of 100  µl, consisting of 20 mM 
Tris-HCl pH 8.0, 10 mM MgCl2, 500 µM glucose-
6-phosphate (G6P), 100 µM NADP+, and 100 µM 
WST-8 (Sigma-Aldrich, Darmstadt, Germany), were 
mixed with a blood sample of 2  µl in a 96-well plate. 
The absorbance was measured at 450 nm with a ref-
erence at 650 nm using a microplate reader (Sunrise; 
Tecan, Männedorf, Switzerland). The absorbance at 450 
nm of a reaction mixture set up in the absence of G6P 
substrate was used for background subtraction. The 
G6PD activity was calculated using an NADPH calibra-
tion curve. Haemoglobin concentration was measured 
using Drabkin’s reagent (Sigma-Aldrich). G6PD activ-
ity was reported as units (U) per gram of haemoglobin 
(gHb). Experiments were performed in triplicate.
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DNA extraction
DNA extraction was performed using the QIAsymphony 
DNA Mini Kit (QIAGEN, Hilden, Germany), in accord-
ance with the manufacturer’s instructions. Blood samples 
of 100  µl were extracted and eluted into a final volume 
of 50 µl. DNA concentration was measured using a Nan-
oDrop 2000 spectrophotometer (Thermo Fisher Scien-
tific, Waltham, MA, USA).

Primer design
Primers were designed to detect eight common G6PD 
mutations in the Thai population: G6PD Gaohe (A95G), 
G6PD Chinese-4 (G392T), G6PD Mahidol (G487A), 
G6PD Viangchan (G871A), G6PD Chinese-5 (C1024T), 
G6PD Union (C1360T), G6PD Canton (G1376T) and 
G6PD Kaiping (G1388A; Table  1). The primers were 
designed to detect the mutations by generating PCR 
products with distinctive melting temperatures (Tm; 
Fig. 1).

PCR amplification and melting curve analysis
Assay conditions, including primer concentrations, assay 
protocol, and detection conditions, were optimized to 
maximize the sensitivity and specificity of the assay and 
to minimize the cross-reactivity. Multiplexed HRM assay 
was performed in a total volume of 12.5  µl, containing 
6.25 µl of 2× HRM Type-It mix (QIAGEN), various con-
centrations of each primer (Table  1), molecular-grade 
water and 2.5 µl of the gDNA template (3–10 ng/µl). PCR 
amplification and melting curve analysis were performed 
using the Rotor-Gene Q (QIAGEN) with the following 

conditions: 1 cycle of 95 °C for 5 min, and then 30 cycles 
of 95 °C for 10 s, 63 °C for 30 s, and 72 °C for 10 s. Subse-
quently, HRM analysis was performed by melting from 75 
to 90 °C, reading at every 0.1 °C step with 2 s of stabiliza-
tion. Positive (gDNA with known mutations, confirmed 
by DNA sequencing) and negative controls (gDNA of 
G6PD wild-type (WT), confirmed by DNA sequencing) 
were included in every run. Data analysis was carried out 
using the Rotor-Gene Q software. Experiments were per-
formed in triplicate.

PCR amplification and DNA sequencing
To validate the HRM results, PCR and sequencing 
primers were designed, as shown in Table  2. For DNA 
amplification, extracted gDNA was used as a template. 
The g6pd gene was amplified using four primer sets 
(Exon2F−Exon2R, Exon3F−Exon5R, Exon6F−Exon8R, 
and Exon9F−Exon13R), which cover all 13 exons. The 
PCR reaction was set up in a final volume of 50 µl, con-
taining 1⋅ Taq Buffer with (NH4)2SO4, 2.5 mM MgCl2, 
200 µM of each dNTP, 0.25 µM of each primer, 50 ng 
gDNA and 1.25 U of Taq DNA polymerase (Thermo 
Fisher Scientific). The thermal cycling profile was as fol-
lows: initial denaturation at 95  °C for 3  min; 35 cycles 
of denaturation at 95 °C for 30 s, annealing for 30 s, and 
extension at 72 °C for 1 min; followed by final extension 
at 72 °C for 10 min. The annealing temperature was 60 °C 
for the primers Exon2F−Exon2R, Exon3F−Exon5R, 
and Exon6F−Exon8R, and 65  °C for Exon9F−Exon13R. 
PCR products were subjected to gel purification and 
sequenced (Bio Basic, Ontario, Canada).

Table 1  HRM primers used in this study

Reaction system Primer name G6PD variant Primer sequence (from 5’ to 3’) Primer 
concentration (nM)

Amplicon size 
(bp)

Tm of PCR
product (°C)

1 A95G_F Gaohe TTC​CAT​CAG​TCG​GAT​ACA​CG 600 100 81.05

A95G_R (His32Arg) AGG​CAT​GGA​GCA​GGC​ACT​TC 600

G487A_F Mahidol TCC​GGG​CTC​CCA​GCAGA​A 400 87 84.80

G487A_R (Gly163Ser) GGT​TGG​ACA​GCC​GGTCA​ 400

G871A_F Viangchan GGC​TTT​CTC​TCA​GGT​CAA​GA 400 66 78.32

G871A_R (Val291Met) CCC​AGG​ACC​ACA​TTG​TTG​GC 400

G1376T_F Canton CCT​CAG​CGA​CGA​GCTCC​T 600 99 83.65

G1376T_R (Arg459Leu) CTG​CCA​TAA​ATA​TAG​GGG​ATGG​ 600

2 G392T_F Chinese-4 CAT​GAA​TGC​CCT​CCA​CCT​GGT 200 87 85.05

G392T_R (Gly131Val) TTC​TTG​GTG​ACG​GCC​TCG​TA 200

C1024T_F Chinese-5 CAC​TTT​TGC​AGC​CGT​CGT​CT 400 99 83.10

C1024T_R (Leu342Phe) CAC​ACA​GGG​CAT​GCC​CAG​TT 400

C1360T_F Union GAG​CCA​GAT​GCA​CTT​CGT​GT 200 127 87.67

C1360T_R (Arg454Cys) GAG​GGG​ACA​TAG​TAT​GGC​TT 200

G1388A_F Kaiping GCT​CCG​TGA​GGC​CTGGC​A 400 57 78.97

G1388A_R (Arg463His) TTC​TCC​AGC​TCA​ATC​TGG​TGC​ 400
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Statistical analysis
Data are presented as mean ± SD. Statistical analyses 
and plotting of graphs were performed using Graph-
Pad Prism (GraphPad Software, La Jolla, CA, USA). 
To assess the performance of multiplexed HRM in the 
detection of G6PD mutations, the numbers of true pos-
itives, true negatives, false positives, and false negatives 
were determined. The following parameters were calcu-
lated: sensitivity = [true positives/(true positives + false 
negatives)] ⋅100; specificity = [true negatives/(true neg-
atives + false positives)] ⋅100; positive predictive value 
= [true positives/(true positives + false positives)] ⋅100; 
and negative predictive value = [true negatives/(true 
positives + false negatives)] ⋅100.

Fig. 1  Identification of G6PD mutations by the multiplexed HRM assay. The assay is based on base complementarity between primers and the DNA 
template. Mutant samples produce a peak at the corresponding Tm, while WT samples do not produce PCR products, giving a flat line

Table 2  Sequencing primers used in this study

Primer name Primer sequence (from 5’ to 3’)

Exon2F GGG​CAA​TCA​GGT​GTC​ACC​

Exon2R GGC​TTT​TAA​GAT​TGG​GGC​CT

Exon3F AGA​CAT​GCT​TGT​GGC​CCA​GTA​

Exon5F GGA​CAC​TGA​CTT​CTG​AGG​GCA​

Exon5R AAG​GGA​GGG​CAA​CGG​CAA​

Exon6F CAC​GGG​GGC​GAG​GAG​GTT​

Exon8F CGG​TTT​TAT​GAT​TCA​GTG​ATA​

Exon8R AGG​GCA​TGC​TCC​TGG​GGA​

Exon9F GTG​AGC​AGA​GCC​AAG​CAG​

Exon11F CAG​ATA​CAA​GGT​GCC​CTA​CAG​

Exon13R TGG​CGG​GGG​TGG​AGG​TGG​
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Results
Development and validation of 4‑plex HRM assay
A multiplexed HRM assay was developed to detect 
eight G6PD variants that are common in Thailand in 
two reactions (Fig.  1). By using a specific primer pair 
for each mutation, reaction 1 simultaneously detects 
four mutations [G6PD Gaohe (A95G), G6PD Mahidol 
(G487A), G6PD Viangchan (G871A), and G6PD Canton 
(G1376T)]. Reaction 2 concurrently detects another four 
mutations [G6PD Chinese-4 (G392T), G6PD Chinese-5 
(C1024T), G6PD Union (C1360T), and G6PD Kaiping 
(G1388A)]. The assay is based on a single fluorescent 
dye, EvaGreen, without the need for a quenching probe. 
The primers were designed to detect the mutations by 
generating PCR products with distinctive melting tem-
peratures, Tm. In contrast, no amplification occurred in 
WT samples. A peak at the corresponding Tm reveals 
the genotype of each sample. The gDNA of known G6PD 
mutations was used as positive controls. Overall, 70 
G6PD-deficient samples and 28 non-deficient samples 
were used to evaluate the performance of the developed 
4-plex HRM assay, while direct DNA sequencing was 
used as a reference test (Table 3).

In comparison to direct DNA sequencing, the 4-plex 
HRM assay was 100 % sensitive [95 % confidence interval 
(CI): 94.87–100 %] and 100 % specific (95 % CI: 87.66–
100 %), with no cross-reactivity for the detection of 
G6PD mutations (Table 4). Additionally, the multiplexed 
HRM assay could correctly identify the double mutations 
(G6PD Mahidol + Canton and G6PD Gaohe + Kaiping). 
This indicates that the developed method is reliable for 
detecting G6PD mutations.

Phenotypic screening of G6PD deficiency by WST‑8 assay
The prevalence of G6PD deficiency in people living in a 
malaria endemic area in Thailand, namely, Tha Song Yang 
District, Tak Province, was determined by G6PD activity 

assay (WST-8). Figure  2 indicates the G6PD enzyme 
activity of 725 samples measured by WST-8. The aver-
age G6PD activity in males and females was 9.99 ± 4.14 
and 10.35 ± 3.81 U/gHb, respectively. The adjusted male 
median (AMM) value was determined (10.31 ± 3.81 U/
gHb) and defined as 100 % G6PD activity [56]. The WHO 
defined G6PD activity of less than 30 % as deficient and 
G6PD activity ranging between 30 and 80 % as intermedi-
ate [57].

Nonetheless, G6PD activity of 70 % was used as a 
threshold for tafenoquine prescription [58, 59]. In 
this study, G6PD activity levels of less than 30 % and 
30–70 % of the AMM were thus considered as defi-
cient and intermediate, respectively. Subjects with 
G6PD activity over 70 % of the AMM were defined as 
normal. Based on the WST-8 assay, the prevalence of 
G6PD deficiency in the studied population was 20.55 % 
(149/725; Table 5). Prevalence rates of G6PD deficiency 
of 20.11 % (74/368) and 21.01 % (75/357) were observed 
in males and females, respectively. In addition, aver-
age G6PD activity of deficient males and females was 

Table 3  G6PD mutations of 70-deficient samples detected by 
4-plex HRM and direct DNA sequencing

Mutation HRM assay DNA sequencing

Gaohe (A95G) 4/70 4/70

Chinese-4 (G392T) 3/70 3/70

Mahidol (G487A) 5/70 5/70

Viangchan (G871A) 28/70 28/70

Chinese-5 (C1024T) 1/70 1/70

Canton (G1376T) 14/70 14/70

Kaiping (G1388A) 13/70 13/70

Mahidol + Canton (G487A + G1376T) 1/70 1/70

Gaohe + Kaiping (A95G + G1388A) 1/70 1/70

Table 4  Performance of the HRM assay for the identification of 
G6PD mutations

Parameter HRM assay

True positive 70/70

True negative 28/28

False positive 0/28

False negative 0/70

Sensitivity 100 %

Specificity 100 %

Positive predictive value 100 %

Negative predictive value 100 %

Fig. 2  G6PD activity of 725 individuals (368 males and 357 females) 
measured by the WST-8 method. The adjusted male median (AMM) 
value was determined to be 10.31 ± 3.81 U/gHb and defined as 100 % 
G6PD activity. Dotted horizontal lines indicate G6PD activity at 30 and 
70 % of the AMM
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1.59 ± 0.89 and 1.69 ± 0.77 U/gHb, respectively. Inter-
mediate G6PD activity (30–70 %) was found in 7.34 % 
(27/368) of males and 16.25 % (58/357) of females. 
Average G6PD activity of non-deficient (> 70 %) cases 
was 11.78 ± 2.11 U/gHb in males and 11.89 ± 2.49 U/
gHb in females. The frequency distribution of G6PD 
activity of the 725 individuals measured by WST-8 is 
shown in Fig.  3a. The majority of the enzyme activi-
ties were distributed between 7 and 16 U/gHb. The 
frequency distribution of G6PD activity by sex is illus-
trated in Fig.  3b, c. A broader distribution of G6PD 
activities was seen in females than in males.

Genotypic screening of G6PD deficiency using the 
multiplexed HRM assay
The developed 4-plex HRM assay was applied to screen 
for G6PD mutations in 725 blood samples. This assay 
identified 197 of the 725 (27.17 %) individuals as possess-
ing at least one mutation with an adverse effect on func-
tion (Table 6). The prevalence of subjects carrying at least 
one G6PD mutation was 20.11 % (74/368) in males and 
34.45 % (123/357) in females. The most common G6PD 
mutation detected in the studied population was G6PD 
Mahidol, accounting for 94.92 % of the total (n = 187; 
72 in males and 115 in females). Other single mutations 
observed in the study included G6PD Canton (2.03 %; 4 
in females), G6PD Viangchan (1.52 %; 1 in a male and 2 
in females), and G6PD Chinese-5 (0.51 %; 1 in a male). 
The HRM assay could also detect the double mutant 
variants, which were G6PD Mahidol + Canton (0.51 %; 1 
in a female) and G6PD Chinese-4 + Viangchan (0.51 %; 
1 in a female). Figure 4 shows the G6PD activity of defi-
cient and normal samples identified by HRM for males 
and females. G6PD enzyme activity of deficient subjects, 
especially in females, spanned from the deficient region 
(< 30 %) to the normal region (> 70 %). A large distribution 

Table 5  Prevalence of G6PD deficiency determined by WST-8 
enzyme activity assay

G6PD status Male, N (%) Female, N (%) Total, N (%)

Deficient (< 30 %) 47 (12.77 %) 17 (4.76 %) 64 (8.83 %)

Intermediate (30–70 %) 27 (7.34 %) 58 (16.25 %) 85 (11.72 %)

Normal (> 70 %) 294 (79.89 %) 282 (78.99 %) 576 (79.45 %)

Total 368 (100 %) 357 (100 %) 725 (100 %)

Fig. 3  Frequency distribution of G6PD activity. a G6PD activity for all 725 samples, showing the majority of samples in the range between 7 and 
16 U/gHb. The average G6PD activity of the 725 samples was 10.19 ± 3.96 U/gHb. G6PD activity for (b) 368 males and (c) 357 females. The average 
G6PD activity in males and females was 9.99 ± 4.14 and 10.35 ± 3.81 U/gHb, respectively

Table 6  Observed ranges of enzyme activity and G6PD genotypes identified by HRM assay

Gender Variant N G6PD activity (U/gHb) Nucleotide change Amino acid change WHO Classification

Male Mahidol 72 0.10-10.73 G487A Gly163Ser III

(n = 368) Chinese-5
Viangchan

1
1

2.10
0.89

C1024T
G871A

Leu342Phe
Val291Met

II
II

Non-variant 294 7.16–18.05 - - Normal

Female Mahidol 115 0.10-17.72 G487A Gly163Ser III

(n = 357) Canton 4 6.50-10.48 G1376T Arg249Leu II

Viangchan 2 6.07–6.25 G871A Val291Met II

Mahidol + Canton 1 4.12 G487A + G1376T Gly163Ser + Arg249Leu II/III

Chinese-4 + Viangchan 1 0.69 G392T + G871A Gly131Val + Val291Met II

Non-variant 234 4.96–18.67 - - Normal
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of G6PD enzyme activities in females is caused by genetic 
mosaicism as a result of X-inactivation. The distribu-
tion of G6PD activity by mutation type is illustrated in 
Fig.  5. Non-variant individuals are also included in this 
plot. Variation of G6PD activities among the different 
mutations was observed. Moreover, compared with the 
G6PD enzyme activity in males with the same muta-
tion, that in females was greater. Enzyme activity of 0.89 

and 6.16 U/gHb was observed for G6PD Viangchan in 
males and females, respectively. Interestingly, G6PD 
Mahidol, a Class III variant with mild deficiency, which 
was the most prevalent variant in the studied population, 
exhibited a wide range of G6PD activities, in both males 
(range: 0.10–10.73 U/gHb, mean: 3.20 ± 2.46 U/gHb) and 
females (range: 0.10–17.72 U/gHb, mean: 7.72 ± 4.24 
U/gHb). Notably, G6PD enzyme activity in the double 
mutant variants (G6PD Mahidol + Canton and G6PD 
Chinese-4 + Viangchan) was significantly decreased 
compared with that of the single mutants.

Discussion
HRM assays have been widely used to detect gene muta-
tions [43–45]. However, for G6PD genotyping, most 
of the developed HRM assays are singleplex or duplex, 
which can only detect one or two mutations simulta-
neously [38, 46, 47]. To enable the detection of multi-
ple mutations, more than one fluorescent dye must be 
included in the reaction mixture, which usually makes 
the reaction more expensive [39, 60, 61].

As reported in this paper, a 4-plex HRM assay for the 
detection of G6PD mutations common in Thailand and 
elsewhere in Asia was developed, using a single dye with 
a run time of 80  min. Evaluation of the 4-plex HRM 
assay using 70 G6PD-deficient samples indicated that it 
was accurate and reliable for detecting G6PD mutations 
(with specificity and sensitivity of 100 %) compared with 
DNA sequencing. Among the 70 deficient assay valida-
tion samples, G6PD Viangchan was the most prevalent 
variant, followed by G6PD Canton and G6PD Kaiping. 
This is in accordance with previous reports showing that 
G6PD Viangchan was the most common variant in Thais 
[28, 51]. Two double mutations, G6PD Mahidol + Canton 
and G6PD Gaohe + Kaiping, were also identified in the 

Fig. 4  G6PD activity of deficient and normal samples identified by HRM assay. G6PD activity in a male and b female subjects. The average G6PD 
activity of deficient males and females was 3.16 ± 2.45 and 7.66 ± 4.19 U/gHb, respectively. The average G6PD activity of normal males and females 
was 11.77 ± 2.13 and 11.76 ± 2.68 U/gHb, respectively

Fig. 5  Distribution of G6PD activity by mutation type. Males carrying 
G6PD Mahidol showed G6PD enzyme activity ranging from 0.10 to 
10.73 U/gHb. Females carrying G6PD Mahidol showed a wider range 
of G6PD enzyme activities (0.10–17.72 U/gHb). Females with G6PD 
Canton exhibited G6PD activity between 6.50 and 10.48 U/gHb. 
Females with G6PD Viangchan showed G6PD activity of 6.07–6.25 U/
gHb. Normal males showed G6PD activity ranging from 7.16 to 18.05 
U/gHb and normal females showed that between 4.96 and 18.67 U/
gHb
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studied population. G6PD Mahidol + Canton was first 
identified in people living along the Thai–Myanmar bor-
der where Karen and Burman are the major population 
groups [62].

After validation, the multiplexed HRM assay was 
applied to screen G6PD mutations of 725 people living 
in a malaria endemic area along the Thai–Myanmar bor-
der. The prevalence of G6PD deficiency in this popula-
tion was also determined by phenotypic enzyme activity 
assay using WST-8. Considering a 30 % activity cut-off, 
the overall prevalence of G6PD deficiency was 8.83 % 
by WST-8 assay. If the upper limit of a 70 % cut-off was 
considered, the overall prevalence increased to 20.55 %. 
By sex, at the 70 % cut-off, the prevalence of G6PD defi-
ciency was 20.11 % in males and 21.01 % in females. In 
contrast, by the multiplexed HRM assay, the frequency 
of G6PD mutations was 20.11 and 34.45 % in males and 
females, respectively. Thus, the prevalence of G6PD defi-
ciency in males is equivalent between these two assays, 
but in females, genetic analysis using HRM indicated a 
high frequency of g6pd gene mutations (34.45 %), that 
is notably greater than the prevalence of G6PD defi-
ciency measured by WST-8 (21.01 %). The multiplexed 
HRM assay identified four single mutants (95.11 % G6PD 
Mahidol, 2.03 % G6PD Canton, 1.52 % G6PD Viangchan, 
and 0.51 % G6PD Chinese-5) and two double mutants 
(0.51 % G6PD Mahidol + Canton and 0.51 % G6PD Chi-
nese-4 + Viangchan) in the studied population. In good 
agreement with previous reports, G6PD Mahidol was the 
most common variant in the Karen population [26, 62]. 
The double mutant G6PD Chinese-4 + Viangchan was 
identified here for the first time.

A broad range of G6PD activities were observed among 
the different genotypes. G6PD Mahidol showed ranges 
of enzyme activity of 0.10–10.73 and 0.10–17.72 U/
gHb in males and females, respectively. For G6PD Can-
ton, the range of enzyme activity was 6.50–10.48 U/gHb 
in females. A wider distribution of enzyme activities 
was observed in females carrying G6PD Mahidol than 
in males. Additionally, 5 males and 58 females carrying 
G6PD Mahidol and 3 females carrying G6PD Canton 
showed G6PD activity even greater than the 70 % activ-
ity cut-off (7 U/gHb). Similar findings were previously 
described in genotype–phenotype association stud-
ies [31, 32]. This is mainly attributable to the fact that 
the degree of deficiency and vulnerability to haemoly-
sis vary substantially among the different genotypes. 
Furthermore, because G6PD deficiency is an X-linked 
genetic defect, males exhibit hemizygous deficiency while 
females can exhibit either homozygous or heterozygous 
deficiency. In heterozygous females, a wide range of 
G6PD activities can be observed, in which the activity of 
the normal erythrocyte population may compensate for 

the lost activity of the deficient erythrocyte population. 
In addition, abnormally high G6PD activity observed in 
persons carrying G6PD mutations could also be attrib-
utable to the following factors. The first is the limited 
performance quality of the WST-8 used in this study. 
The second is elevated reticulocyte count in blood sam-
ples. Young red blood cells usually exhibit greater G6PD 
enzyme activity than aged red blood cells. The last is the 
presence of leukocytes in tested samples (in this study, 
G6PD activity was measured from whole blood samples). 
This is because leukocytes retain their nucleus and there-
fore can continuously synthesize the G6PD enzyme.

G6PD-deficient individuals have increased suscepti-
bility to haemolysis upon exposure to oxidative agents, 
including primaquine and tafenoquine which are the 
only medications effective for the radical treatment of 
infection by P. vivax and P. ovale. To ensure successful 
and safe treatment, a single dose of 300  mg of tafeno-
quine or 0.5  mg/kg/day primaquine for 14 days should 
be prescribed only in patients with at least 70 % G6PD 
activity [63]. The effect of the primaquine dose on hae-
molysis was reported to differ between G6PD normal 
and G6PD Mahidol heterozygous individuals [64]. These 
heterozygous females were identified as normal by FST 
assay while the quantitative assay revealed G6PD activity 
of 62 and 99 %. Tafenoquine was also reported to cause 
dose-dependent haemolysis in G6PD Mahidol heterozy-
gous individuals with enzyme activity of 61–80 % [13]. 
As such, drug-induced haemolysis associated with G6PD 
deficiency depends on two major factors: the first is the 
level of G6PD activity, which is determined by G6PD 
genotype, and the second is the exposure to oxidative 
stress, namely, metabolites of antimalarial drugs (8-ami-
noquinolines). Therefore, the drug dose and the ability to 
metabolize the parent compounds also contribute to the 
severity of haemolysis in malaria treatment.

Currently, the cut-off of 70 % AMM is widely accepted 
as an appropriate threshold to determine whether or 
not to administer tafenoquine [58, 59, 63]. However, the 
cut-off value should be carefully defined and tested in 
each population group. Based on the obtained results, 
to enable accurate determination of the prevalence of 
G6PD deficiency using WST-8, different cut-off values 
are required in males and females. The upper limit of 
70 % of AMM is recommended for males. However, in 
heterozygous females, neither the lower (30 %) nor the 
upper (70 %) limit is reliable for screening G6PD defi-
ciency. It should be noted that the results reported here 
are based on the WST-8 assay, which is an alternative 
to the standard method for measuring G6PD activity. 
Upon using other G6PD tests, the results might be dif-
ferent. For male populations, phenotype tests are use-
ful for G6PD deficiency screening and to enable safe 
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treatment. In contrast, in heterozygous females in whom 
a wide range of G6PD activities are observed, pheno-
typic enzyme assay alone might be insufficient to identify 
G6PD deficiency. Hence, alternative approaches such as 
genetic analysis could be useful for determining whether 
drugs should be administered in populations suspected 
of having G6PD deficiency. The multiplexed HRM assay 
developed here could be useful for identifying G6PD 
variants in Thai populations. Although other multiplex 
systems for genetic analysis are currently available, they 
might be unsuitable for large population screening. The 
G6PD gene chip kit can detect 13–14 mutations common 
in Chinese populations, but must be combined with a 
hybridization kit, which is time-consuming [32, 65]. The 
DiaPlexC™ (Asian type) can simultaneously detect eight 
mutations, but requires an additional gel electrophoresis 
step to check the amplified products [42]. Additionally, 
the kit might not be applicable for deployment in regions 
where populations carry other G6PD mutations (e.g., 
G6PD Gaohe, G6PD Chinese-4, and G6PD Chinese-5), 
for which the kit cannot test.

It should be mentioned that, in this study, no muta-
tion was detected in 12 females who were considered 
likely to be G6PD-deficient because the observed G6PD 
activity was lower than 7 U/gHb. This might have been 
because of the limited performance quality (sensitiv-
ity of 55–72 %) of the WST-8 assay used in this study 
[20, 21]. Alternatively, these subjects might carry G6PD 
mutations for which the multiplexed HRM assay cannot 
test. DNA sequencing of the whole g6pd gene might be 
required to detect mutations in such individuals. Addi-
tionally, to enable mutational screening in more diverse 
population groups, the assay should be expanded to 
include other mutations, such as G6PD Mediterranean, 
G6PD Valladolid, G6PD Coimbra, and G6PD Aures [26]. 
It should also be noted that the multiplexed HRM assays 
developed here are not able to identify zygosity of the 
samples and, thus, require further development before 
being deployed. Nevertheless, the HRM assays could be 
of great use for analysing G6PD mutations in supplement 
to phenotypic G6PD screening in heterozygous females 
as well as in populations suspected of having G6PD defi-
ciency. Primarily, G6PD genotyping is being done in 
G6PD-deficient individuals. However, more data on the 
genotype–phenotype association of G6PD deficiency 
in diverse population groups should be obtained, which 
requires a high-throughput screening platform.

Conclusions
A multiplexed HRM assay for the detection of eight 
common G6PD mutations in Thailand was developed. 
The performance of the assay was excellent, with 100 % 
specificity and 100 % sensitivity. The prevalence of G6PD 

mutations in 725 people living in a malaria endemic area 
along the Thai–Myanmar border was determined to be 
27.17 % by HRM, which is greater than the prevalence of 
G6PD deficiency determined by the WST-8 phenotypic 
assay (20.55 %). Performing a phenotypic assay alone 
might thus be inadequate and the result might not be an 
accurate predictor of G6PD deficiency, especially in het-
erozygous females. As an option to overcome this prob-
lem, the multiplexed HRM assay is rapid, accurate and 
reliable for detecting G6PD mutations, enabling high-
throughput screening. This assay could be useful as a 
supplementary approach for high-throughput screening 
of G6PD deficiency before the administration of 8-ami-
noquinolones in malaria endemic areas.
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