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Abstract 

Galega officinalis L. is an herbaceous legume used to treat symptoms associated with hyperglycemia or diabetes 
mellitus because of its dominant alkaloid, galegine. In this study, we induced hairy roots in this plant using Rhizo-
bium rhizogenes strain A4, and investigated the effect of type, concentration, and duration of elicitor application on 
galegine content and some phytochemical characteristics in the hairy roots. Hence, the best growing hairy root line 
in terms of growth rate was selected and subcultured for treatment with elicitors. Then, at the end of the log phase of 
growth, chitosan (100, 200, and 400 mg/L), salicylic acid (100, 200, and 300 mM), and ultrasound (1, 2, and 4 min) were 
applied to hairy roots culture medium. High-performance liquid chromatography (HPLC) showed that the content of 
galegine was significantly increased after elicitation compared with the control. Thus, the highest content of galegine 
(14.55 mg/g FW) was obtained 2 days after elicitation when ultrasonic waves were applied to the hairy root culture 
medium for 4 min. Also, elicitation resulted in a significant increase in the content of total phenol, flavonoid, H2O2 and 
MDA compared with the control. So that the highest total flavonoid content was obtained in hairy roots that were 
treated with ultrasonic waves for 4 min and harvested 2 days after elicitation; while, application of 400 mg/L chitosan 
for 4 days resulted in the highest total phenol (16.84 mg/g FW).

Key points 

•	 This is the first report on hairy root induction and elicitation in G. officinalis.
•	 Hairy root cultures can be a potential source for galegine production.
•	 Ultrasonic wave was more effective in increasing galegine content.
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Introduction
Galega officinalis L. is an herbaceous legume (Luka and 
Omoniva 2012) that contains medicarpin, sativan (Le Bail 
et al. 2000), flavonol triglycosides, kaempferol, quercetin 
(Champavier et al. 1999; Peiretti and Gai 2006), fatty acids 
(Peiretti and Gai 2006), glycosides, phenols, resins, ter-
penes, steroids (Okhale et al. 2010), and alkaloids (Yang 
2011). Containing these compounds, G. officinalis has 
various medicinal properties such as diuretic, antibacte-
rial, and antidiabetic (Karakaş et  al. 2012), anti-inflam-
matory (Chevallier 1998), weight-reducing (Mooney 
et  al. 2008), anticancer, mutation-inhibiting, antiviral, 
and lactate-forming effects (Le Bail et al. 2000; González-
Andrés et al. 2004). The plant has been traditionally used 
primarily to treat symptoms now associated with type 2 
diabetes (Bailey and Day 2004). The antidiabetic potential 
of this plant is related to a guanidine alkaloid known as 
galegine. Indeed metformin, a well-known, safe, and the 
inexpensive drug was produced from galegine of G. offici-
nalis in 1950 (Chan et al. 2010; Yang 2011).

Since secondary metabolites are useful to human 
health as a major component of food and drugs, plants 
are important sources for the discovery of new medi-
cine (Amani et  al. 2021; Delgoda and Murray 2017). 
The extraction of these useful biochemicals through 

conventional farming methods and the large-scale 
vulnerability of the plants has resulted in falling them 
into the category of endangered plants (Gantait and 
Mukherjee 2020). To alleviate this problem, in vitro cul-
ture technology are particularly useful for high-value 
products that are threatened by overexploitation (Krol 
et al. 2021). In vitro plant cell or tissue cultures can be 
used throughout the whole of the year to produce high 
and stable yields of desired chemicals under controlled 
and sterile conditions (Krol et  al. 2021). Hairy roots 
are caused by the infestation of a soil-born bacterium 
called Rhizobium rhizogenes (formerly called Agrobac-
terium rhizogenes) in a variety of plants (Gutierrez-
Valdes et  al. 2020). This technology has been used in 
recent years for the genetic enhancement of medicinal 
and aromatic plants and also for obtaining economic 
products in the form of secondary metabolites, which 
are of great importance due to their ethnobotanical 
and pharmaceutical properties (Gantait and Mukherjee 
2020). Due to genetic and biosynthetic stability (Häk-
kinen et al. 2016; Peebles et al. 2009), the high growth 
rate in growth regulator-free media, and production 
consistency in response to elicitors, hairy root culture 
is more suitable than cell suspension culture for the 
production of specialized metabolites (Halder et  al. 
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2019). Based on their accumulation pattern, second-
ary metabolites can be classified into constitutive, pre-
formed, and inducible metabolites (Hartmann 2007). 
Induced metabolites (such as terpenes, phytoalexins, 
and alkaloids) are metabolites whose biosynthesis is 
activated or increased in response to internal or exter-
nal factors (Halder and Jha 2020; Matsuura et al. 2018).

Elicitation is one of the most effective and widely 
used biotechnological tools for the induction of sec-
ondary metabolites in plant tissue cultures (Akula and 
Ravishankar 2011; Wang and Wu 2013). The term elici-
tor originally refers to molecules capable of stimulat-
ing phytoalexins but is now commonly used to refer to 
molecules that arouse any type of plant defense response 
(Nürnberger 1999) and lead to increased synthesis and 
accumulation of secondary metabolites (Halder et  al. 
2019). Numerous factors influence the change in sec-
ondary metabolite content during elicitation, including 
type and concentration of elicitor, duration of exposure, 
type of culture, cell line, the composition of the medium, 
age or stage of the culture at the treatment time, and the 
presence or absence of growth regulators (Dhiman et al. 
2018; Halder et al. 2019; Kaur and Pati 2018; Naik and Al-
Khayri 2016).

Salicylic acid (SA) is a natural phytohormone pro-
duced by plants during their normal metabolic processes 
(Narayani and Srivastava 2017) and in response to stress 
(Szymczyk et al. 2021) and is involved in the signal trans-
duction cascades of plant defense responses (Giri and 
Zaheer 2016; Ramirez-Estrada et  al. 2016). Considering 
the biosafety of the products, the use of these nontoxic 
molecules as elicitors to improve the yield of phyto-
chemicals in vitro plant cultures has been highly recom-
mended (Gai et al. 2019).

Chitosan, a natural biopolymer found in shrimp or 
insect shells (Malerba and Cerana 2015) is a low-cost, 
safe, and nontoxic compound (Chayjarung et  al. 2021) 
that has the potential to induce the production of sec-
ondary metabolites in plants (Jiao et al. 2018). Chitosan 
is known to potentially trigger plant defense responses, 
forming a semipermeable film around plant tissue 
(Ghauth et  al. 1994; Pérez-Alonso et  al. 2012). It also 
induces the synthesis of pathogenesis-related (PR) pro-
teins and several defense enzymes such as phenylalanine 
ammonia lyase and peroxidase (Ferri and Tassoni 2011).

Ultrasonic waves, often considered “mechanical waves” 
have been used to enhance the production of valuable 
secondary metabolites and stimulate the release of these 
compounds into the surrounding medium in plant cell 
cultures (Alsoufi et  al. 2019a; Wang et  al. 2006). High 
energy ultrasound waves are usually destructive to bio-
logical material, but low energy ultrasound waves have 
been used to stimulate plant defense responses and 

secondary metabolite production (Wu and Lin 2002; 
Zare et al. 2014). Depending on the plant species, ultra-
sonic waves can significantly increase the synthesis of 
secondary metabolites (Dörnenburg and Knorr 1995; 
Taherkhani et al. 2019). The advantages of ultrasound are 
that it is extremely inexpensive and technically feasible, 
without the need to add external chemical substances, 
and with a lower risk of microbial contamination (Alsoufi 
et al. 2019a).

In recent years, numerous elicitors have been shown to 
enhance the accumulation of various secondary metabo-
lites in many plant species. For example, salicylic acid 
increases papaverine and noscapine in Papaver arme-
niacum L. (Naeini et  al. 2021), and tanshinone in Sal-
via przewalskii Maxim (Li et  al. 2020a), Also chitosan 
increase oleanolic acid saponins in Calendula officinalis 
L. (Alsoufi et  al. 2019b), and saponin in Psammosilene 
tunicoides, W. C. Wu & C. Y. Wu. (Qiu et al. 2021), ultra-
sonic waves also increase oleanolic acid in Calendula off-
cinalis L. (Alsoufi et al. 2019a).

To our knowledge, there has been no report on the 
hairy root induction and production of galegine in the 
hairy root culture of G. officinalis. Therefore, it aimed 
to investigate the effect of SA, chitosan, and ultrasonic 
waves on galegine accumulation in hairy root cultures of 
this plant.

Material and methods
Hairy roots induction
Three-week-old sterile seedlings as explants source were 
used to induce hairy roots. Leaf and cotyledon explants 
were inoculated with A4, A13, and 15834 strains of 
R. rhizogenes suspension for 10, 15, and 20  min. The 
explants were then placed in the growth room in the dark 
on 1/2 B5 solid culture medium, (pH = 5.8), containing 
150 µM acetosyringone. 48 h after inoculation, the inocu-
lated explants were washed with sterile water containing 
500 mg/L cefotaxime, three times to remove excess bac-
teria. After removing excess water with sterile filter paper, 
explants were placed on a solid culture medium contain-
ing 300  mg/L cefotaxime and placed in a dark growth 
room until roots were observed. The induced roots were 
then transferred to liquid 1/2 B5 culture medium on a 
shaker at 110 rpm (Fig. 1d). After several subcultures, the 
roots were transferred to an antibiotic-free medium. The 
transgenicity of the roots was determined by polymerase 
chain reaction (PCR).
Molecular confirmation of transformed hairy roots
Genomic DNA was extracted from hairy root lines using 
a CTAB-based method (Pirttilä et al. 2001). The polymer-
ase chain reaction was performed to confirm the pres-
ence of rolB and rolC genes and to ensure the absence of 
virG in potential transgenic roots. So, to prepare 20 µL of 
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PCR reactions, 0.5 µL of each forward and reverse prim-
ers (Table 1) at a concentration of 10 µmol, 10 µL of PCR 
master mix (Sinaclon, Tehran), 1  µL of genomic DNA, 
and 8 µL of nuclease-free water were used. PCR was per-
formed in a thermal cycler according to the following 
thermal program: 95 °C for 5 min, 35 cycles of 95 °C for 
60 s, 59 °C for 60 s, and 72 °C for 90 s, followed by 72 °C 
for 5 min. The PCR products were observed and exam-
ined after electrophoresis on a 1.5% agarose gel under 
Gel-Doc.

Elicitor preparation and treatment
To preparation of elicitors, 0.138 g salicylic acid (Sigma-
Aldrich, Münich, Germany) was first dissolved in 100 μL 
1  N NaOH and made up to 1  mL with sterile distilled 
water, then passed through a 0.45-micron nitrocellu-
lose filter and used in hairy root cultures at concentra-
tions of 100, 200 and 300  μM. The stock of 1000  mg/L 
of  water-soluble chitosan (Chitoplant; Sigma-Aldrich, 
Münich, Germany) was prepared and filtered through a 
0.45-micron nitrocellulose filter before use. The filtered 
chitosan was applied to the hairy root cultures at con-
centrations of 100, 200, and 400 mg/L. Also for ultrasonic 
treatment, the hairy roots were placed in the ultrasonic 
bath (Bandelin, DT 102 H, 35 kHz, 320 W, Belgium) for 1, 
2, and 4 min. Subsequently, the elicited hairy roots were 
placed on a 110 rpm shaker at room temperature in the 
dark. After 2 and 4 days, the hairy roots were harvested. 

After harvest, excess water was removed from the roots 
using Whatman filter paper and the roots were weighed 
with an analytical balance (AND Weighing FX-5000i Pre-
cision Balance 5200 × 0.01 g).

H2O2 and MDA contents
The method of Sergiev et  al. (1997) was used to meas-
ure H2O2 and MDA contents. For this, 1.5  mL of 1% 
trichloroacetic acid (pH = 7.0) was added to 100  mg of 
hairy roots powder and the samples were centrifuged 
at 12,000 rpm for 15 min at 4  °C. Finally, to measure of 
H2O2 content, 0.5  mL aliquot of the supernatant was 
added to 0.5 mL of 10 mM PBS (pH = 7.0) and 1 mL of 
1 M potassium iodide. For the blank, 0.5 mL of extraction 
solution was used in place of the extract. Absorbance was 
recorded with a spectrophotometer at 390 nm. A stand-
ard curve with known H2O2 concentrations was used to 
calculate the amount of H2O2 content.

The thiobarbituric acid (TBA, Sigma-Aldrich) accord-
ing to Heath and Packer (1968) method was used to 
determine malondialdehyde (MDA) production as a 
measure of lipid peroxidation of hairy roots. For this 
purpose, 0.5 mL of the extract was added to 1 mL of the 
reaction solution (containing 20% trichloroacetic acid 
and 0.5% thiobarbituric acid) and incubated in a boiling 
water bath (100  °C) for 30  min. The samples were then 
immediately placed on ice and centrifuged at 10,000 rpm 
for 15  min at 4  °C. The absorbance of the supernatant 
was recorded at 532  nm and corrected for nonspecific 
absorbance at 600  nm using a UV–vis spectrophotom-
eter. The amount of malondialdehyde (MDA) was calcu-
lated by using an extinction coefficient of 155 mM−l cm−l 
(Heath and Packer 1968).

Determination of the phenol, flavonoid, and galegine 
contents
Zero point three gram of the hairy roots powder was 
mixed with 10  mL of HPLC grade methanol (Merck-
Germany). The samples were shaken at 110 rpm (25 °C) 

Fig. 1  Hairy roots obtained from leaf explants (a) and cotyledons (b) inoculated for 15 min with the R. rhizogenes strain A4, 3-week-old roots 
obtained from inoculation of cotyledon explants with the strain R. rhizogenes A4 (c). HR-G3 line of hairy root in liquid 1/2 B5 culture medium (d)

Table 1  The sequences of primers used to determination of 
transgenic roots

Gene name PCR product 
length (bp)

Primer sequences

rolB 592 5′-CTC​ACT​CCA​GCA​TGG​AGC​CA-3′
5′-ATT​GTG​TGG​TGC​CGC​AAG​CTA-3′

rolC 473 5′-TGG​AGG​ATG​TGA​CAA​GCA​GC-3′
5′-ATG​CCT​CAC​CAA​CTC​ACC​AGG-3′

virG 319 5′-AGT​TCA​ATC​GTG​TAC​TTT​CCT-3′
5′-CTG​ATA​TTC​AGT​GTC​CAG​TCT-3′
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for 30 min and then sonicated in an ultrasonic bath (Ban-
delin, DT 102 H, 35 kHz, 320 W, Belgium) for 40 min at 
room temperature. Samples were concentrated to 700 μL 
after straining with Whatman filter paper (Class 42) at 
50 °C in an oven. The extracts were then passed through 
a 0.45-micron polyvinylidene fluoride (PVDF) membrane 
filter and used to determination of the total phenol and 
flavonoid contents as described before in Khezri et  al. 
(2022). Also, galegine content was determined using the 
HPLC method modified from Raigond et  al. (2018) and 
described before in Khezri et al. (2022). Briefly, To meas-
ure the amount of galegine in control and treated sam-
ples, a reversed-phase C18 column (250  mm × 4.6  mm, 
5  μm  particle size) was used in the YL9100 HPLC sys-
tem (YoungLin Clarity, South Korea), which consisted of 
YL9120 UV/Vis detector with Rheodyne 9725i manual 
sample injector. The determination of galegine was car-
ried out at a column oven temperature of 25 ± 2 °C with 
a flow rate of 1.0  mL/min in the isocratic system using 
0.05 M potassium dihydrogen phosphate (pH = 3.5) and 
100% acetonitrile (at a ratio of 70–30) as the mobile 
phase. UV–vis detector was set at 232  nm. The 20  μL 
of each sample was injected into the HPLC system. The 
concentration of galegine in the samples was identified 
and quantified using the standard quantification method 
(ESTD) and a standard curve (y = 64.702 x + 422.83; 
R2 = 0.998) was constructed using galegine (AKOS 
GmbH—AKOS000276789, Germany).

Statistical analysis
The effects of different concentrations and durations of 
elicitation on fresh weight and biochemical character-
istics were statistically analyzed as a factorial experi-
ment based on a completely randomized design (CRD). 
All data were obtained from at least three replicates. 

Means were compared by Duncan’s multiple range test 
(p ≤ 0.01) using SPSS 16.0 software.

Results
Hairy roots induction
Hairy roots emergence at wounded sites of inoculated 
explants was observed in 5–20  days after co-cultiva-
tion. Leaf and cotyledon explants of G. officinalis were 
transformed with a wild strain of R. rhizogenes A4, 
ATCC 43057™ (Fig.  1a, b). The results were not satis-
factory for strains A13 and 15834. The highest induc-
tion rate (58.32%) and the most number of roots (2.61 
roots per explant) were obtained from the leaf explants 
co-cultivated with A4 strain for 15 min.
PCR amplification
The presence of the rolB (592 bp Fig. 2a) and rolC (473 bp 
Fig. 2b) genes and the absence of virG (319 bp Fig. 3) in 
the transformed roots of R. rhizogenes were confirmed 

Fig. 2  PCR analysis of hairy roots obtained by inoculation with the A4 strain of R. rhizogenes using specific primers for the rolB gene (a) and the 
rolC gene (b). Lanes 1, 50 bp DNA ladder (Sinaclone); lane 2, Ri plasmid of R. rhizogenes as positive control; lane 3 and 4, DNA-free PCR reaction as 
negative control; Lanes 5, 6, 7, and 8, Hairy roots from inoculation

Fig. 3  PCR analysis of hairy roots using the virG-specific gene 
primer. Lane 1, 50 bp DNA ladder (Sinaclone); lane 2, Ri plasmid of R. 
rhizogenes as positive control; lane 3 and 4, DNA-free PCR reaction as 
negative control; lanes 5, 6, 7, and 8, hairy roots from inoculation
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by PCR analysis using specific primers (Table 1). The R. 
rhizogenes plasmid was used as a positive control.

Determination of best growing hairy root line
To determine the best hairy root lines in terms of growth 
rate, the high growing lines were weighed every three 
days and a growth curve was plotted. According to the 
results, the line HR-G3 obtained from the cotyledon 
was chosen as the best line (Figs. 1c; 4) and it was sub-
cultured once a week. Then, at the end of the growth log 
phase (approximately 10th day), chitosan (100, 200, and 
400  mg/L), salicylic acid (100, 200, and 300  µM), and 
ultrasound (1, 2, and 4 min) were applied. The roots were 
harvested two and four days after elicitation.

Growth characteristics
The results showed that the fresh weight was increased 
significantly in most treated hairy roots as compared 
with untreated roots. Among the elicitors, the applica-
tion of 100 mg/L chitosan for 4 days had the best posi-
tive effect on hairy root weight (Fig. 5). Salicylic acid at 
all concentrations significantly increased fresh weight as 
compared with untreated roots. For roots treated with 
chitosan for 2 days, only 200 mg/L resulted in a signifi-
cant increase in fresh root weight, but at 4-day treatment 
increasing chitosan concentration caused in reduction 
of hairy root weight. As so at the highest concentration 
(400  mg/L), the difference was not significant as com-
pared with untreated roots. For ultrasonic, at its high-
est intensity (4  min) there was no significant difference 
treated hairy root’s fresh weight in comparison with the 

untreated roots, but the lower intensities for both the 
2- and 4-day treatments significantly increased the fresh 
weight of the roots.

H2O2 and MDA contents
To investigate the ROS burst and scavenging in response 
to the elicitor treatments, H2O2 and MDA content were 
determined in hairy roots treated with chitosan, SA, and 
ultrasound.  The amount of MDA and H2O2 increased 
significantly in hairy roots treated for two days with all 
three elicitors, except for 100  μM SA, compared with 
untreated roots. However, their levels in hairy roots har-
vested after four days showed no significant change in 
any of the treatments compared to untreated roots. The 
highest MDA and H2O2 contents were obtained when 
hairy roots were treated with 200  mg/L chitosan for 
2  days without significant differences with 300  μM SA, 
and 2 and 4 min treatment with ultrasound (Fig. 6).

Total phenol and flavonoids
The results showed that the at 2-day treatment only 
the hairy roots treated with ultrasound for 4  min had 
a significantly higher phenolic content (15.32  mg/g 
FW) than the control, and the other treatments had 
no significant effect. Similarly, the 4-day application 
of all salicylic acid concentrations and also ultrasonic 
waves for 1, 2, and 4 min, did not result in a significant 
increase in total phenolic content as compared with 
untreated roots (Fig. 7a). 2-day application of chitosan 
did not lead to a significant increase in total phenolic 
content in treated roots (Fig.  7a). However, the 4-day 
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application of chitosan at all concentrations (100, 200, 
and 400 mg/L) resulted in a significant increase in the 
total phenolic content in the treated hairy roots as 
compared with the untreated ones.

The application of salicylic acid for 2 days did not sig-
nificantly increase total flavonoid content in hairy roots 
compared with untreated roots. However, its applica-
tion at all concentrations studied for 4 days resulted in 
a significant increase in total flavonoid content of hairy 
roots in comparison with the untreated roots (Fig. 7b). 
On the other hand, 100 mg/L of chitosan did not cause 
a significant increase in total flavonoid content in hairy 
roots treated both for 2 or 4  days, while at 200 and 
400 mg/L it caused a significant increase in total flavo-
noid content at both 2 and 4 days. Hairy roots treated 
with ultrasound for 1, 2, and 4  min had significantly 
higher flavonoid contents than untreated ones after 
both 2 and 4 days. It was observed that an increase in 
ultrasound duration resulted in an increase in flavonoid 
content at the 2-day treatment, but at the 4-day treat-
ment, an increase in ultrasound duration result in a 
decrease in total flavonoids, however this decrease did 
not significant. As so, the highest flavonoid content was 
obtained in hairy roots that treated with ultrasound for 
4 min and harvested two days later (8.82 mg/g FW).

Galegine content
HPLC analysis revealed a very significant (p < 0.01) dif-
ference between treated and untreated hairy roots in 
galegine content (Fig.  8). The presence of galegine was 

confirmed by retention time (approximately 1.4) using 
the galegine standard (Fig.  9). Treatment of hairy roots 
for 2  days with any of the salicylic acid concentrations 
did not significantly increase the galegine content. How-
ever, treatment of the roots with 200 and 300 µM of the 
elicitor for 4  days significantly increased the galegine 
content (12.58 and 12.38  mg/g FW, respectively). Also, 
the galegine content of hairy roots in treatment with 200 
and 400  mg/L chitosan for both two and four days was 
increased, but no significant increase was observed in 
hairy roots treated with 100 mg/L chitosan. In compari-
son with the control, hairy roots treated with ultrasound 
for 1, 2, and 4 min had a significantly higher content of 
galegine harvested both 2 and 4 days after. Although the 
galegine content in hairy roots harvested four days after 
treatment decreased, the amount was still higher than 
untreated roots. Overall, the highest amount of galegine 
was obtained in hairy roots treated with ultrasound for 
4 min and harvested 2 days after elicitation (14.55 mg/g 
FW, Fig. 8).

Discussion
Elicitors are chemical or biological factors derived from 
various sources that are capable of inducing physiologi-
cal changes in living organisms (Zhao et al. 2005). Elici-
tation is a potential tool to overcome various difficulties 
associated with the production of most commercially 
important bioactive secondary metabolites from wild 
and cultivated plants, undifferentiated or differentiated 
tissues (Halder et  al. 2019). The application of methyl 
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jasmonate, jasmonic acid, salicylic acid, abscisic acid, and 
other signaling molecules can inhibit growth and thus 
affect the amount of biomass and secondary metabo-
lites (Halder et  al. 2019; Srivastava and Srivastava 2014; 

Wang and Wu 2013). According to the literature, the 
response of hairy roots to elicitation is highly variable 
among different plants and elicitors. Thus, we observed 
that in most treatments used, fresh weight of hairy root 
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culture of G. officinalis was increased by elicitation with 
SA, chitosan, and US. While SA positively affected the 
growth of hairy root culture of Agastache foeniculum 
(Pursh) Kuntze (Nourozi et  al. 2014) and Tripterygium 
wilfordii Hook F (TwHF) (Halder et  al. 2019; Zhu et  al. 
2014) compared to the control, chitosan treatment neg-
atively affected the growth rate of hairy roots and both 
fresh and dry mass of in  vitro hairy roots of Calendula 
officinalis L. (Alsoufi et  al. 2019b). In contrast, in some 
species, including orchids (Ferri and Tassoni 2011) and 

Agastache foeniculum (Nourozi et al. 2014) chitosan acts 
as a growth promoter.

In the present study, the application of elicitors in the 
culture medium of hairy roots resulted in a concentra-
tion-dependent increase in the content of H2O2 and 
MDA, total phenol and flavonoid, and galegine compared 
with untreated roots. As in most cases, the application 
of higher concentrations of salicylic acid for two days in 
hairy root culture significantly increased the content of 
H2O2 and MDA, and application for four days did not 
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significantly change the content of these factors. The 
content of galegine and flavonoids in roots treated with 
salicylic acid for 4 days was higher, and this increase was 
significant compared to untreated roots. The amount of 
total phenol in most of treated hairy roots did not change 
significantly compared to untreated roots.

Some studies reported that induction of oxidative 
stress was observed in plants exposed to methyl jas-
monate (MJ) and SA (Di-Qiu et al. 1999; Ho et al. 2020; 
Mir et al. 2019). Also, treatment with SA increased pho-
tosynthesis and activated antioxidant enzyme activity in 
Cannabis sativa L. (Pilaisangsuree et  al. 2020; Shi et  al. 
2009). Exogenous SA also can induce the activity of anti-
oxidant enzymes and the expression of related genes, as 
well as the formation of pathogen-related proteins (PR) 
in plants (Mejía-Teniente et al. 2013). Salicylic acid (SA) 
causes systemic acquired resistance (SAR) in plants. SAR 
is a physiological state induced by specific environmen-
tal stimuli, thereby increasing the plant’s defense capac-
ity against biological stress (van Loon 2016). At the 
molecular level, SAR is generated in local and systemic 
tissues by increasing the expression of a large number 
of pathogenic gene families. These pathogenesis related 
(PR) genes encode a heterogeneous group of low molecu-
lar weight proteins that are induced by chemical stimuli 
(Tripathi et al. 2019).

The inefficiency of SA in promoting secondary metabo-
lites production in the roots of Valeriana amurensis (Cui 
et al. 2012), Valeriana jatamansi Smir. ex Kom. (Shuang 
and Hong 2020), Gentiana dinarica Jones (Krstić-
Milošević et  al. 2017) has also been reported. However, 

several studies have demonstrated the efficacy of SA in 
enhancing the target metabolites in plant cells or organ 
cultures, such as Isatis tinctoria L. (Gai et al. 2019), Sal-
via przewalskii Maxim (Li et  al. 2020a), and Papaver 
armeniacum L. (Naeini et al. 2021).

According to the results, all concentrations of chi-
tosan applied for 2 days caused a significant increase in 
H2O2 and MDA, but their application for four days did 
not cause a significant change in the amount of these 
parameters. Conversely, the application of all concentra-
tions of chitosan for four days resulted in a significant 
increase in total phenols, but the application for two days 
did not significantly change the amount. The concen-
trations of 200 and 400  mg/L of chitosan in the 2- and 
4-day treatments increased the total flavonoid content 
and galegine. However, the concentration of 100  mg/L 
did not significantly change the amount of these param-
eters. Chitin and chitosan are the structural components 
of the cell wall of fungi. They are N-acetylglucosamine 
polymers, mainly glucosamine, and they are among the 
most abundant polymers on earth (Hadwiger 2013). This 
material is non-toxic and environmentally friendly. The 
mechanism of action of chitosan in plants is not yet fully 
understood. However, many reports are showing that 
chitosan has triggered several defense responses in plants 
(Hidangmayum et  al., 2019). Biochemical and molecu-
lar changes observed in chitosan-treated plants include 
activation of ROS inhibitor system, membrane lipid per-
oxidation (Li et al. 2020b), hydrogen peroxide accumula-
tion (Lin et al. 2005), increase in cytosolic Ca2+ (Zuppini 
et  al. 2004), hypersensitivity reaction (Hadwiger and 
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Beckman 1980), activation of MAP-kinases (Petutschnig 
et al. 2010), an increase of mRNA of genes related to PR 
pathogenesis (Hadwiger 2013; Li et  al. 2020b), preven-
tion of excessive transpiration and increase of stoma-
tal conductance, improvement of root and overall plant 

growth, production of phytoalexins (Hidangmayum et al. 
2019), and induction of chitinase and glucanase enzymes 
involved in pathogen resistance (Hidangmayum et  al. 
2019; Sathiyabama et al. 2014).

The induction of plant defenses after elicitation with 
chitosan is usually associated with physiological activi-
ties, mainly as antioxidants (e.g., polyphenols) (Ferri and 
Tassoni 2011). Chitosan seems to effectively increase 
the content of a variety of polyphenols, flavonoids (i.e., 
anthocyanins), and antioxidants, which are very impor-
tant for plants (Ferri and Tassoni 2011). In a similar study 
it was observed that the addition of chitosan to the cul-
ture medium of Plumbago indica L. hairy roots resulted 
in the greatest increase in plumbagin production at a 
concentration of 200 mg/L (Gangopadhyay et al. 2011;). 
Moreover, (Qiu et  al. 2021) reported that in the hairy 
root culture of Psammosilene tunicoides W. C. Wu & C. 
Y. Wu, the highest total saponin accumulation occurred 
in the roots induced by 200  mg/L chitosan for 9  days 
(Qiu et al. 2021). Alsoufi et al. (2019b) also reported that 
chitosan in hairy root cultures of Calendula officinalis L. 
increased the accumulation and secretion of oleanolic 
acid saponins up to three-fold (Alsoufi et al. 2019b).

According to the studies, the application of chitosan 
particles of different sizes in wheat seedlings under 
salt stress significantly reduced MDA concentration, 
increased chlorophyll and proline content, enhanced 
photosynthesis, activated antioxidant enzyme activity 
such as SOD, POD and CAT (Hidangmayum et al. 2019). 
Also, chitosan at different concentrations increases H2O2 
and MDA content in scab culture of Digitalis lanata 
Ehrh. (Pérez-Alonso et  al. 2012). Exogenous application 
of chitosan dramatically triggered the content of reactive 
oxygen species (ROS) scavenging enzyme activities in the 
hairy roots of Psammosilene tunicoides (Qiu et al. 2021).

Ultrasound-treated roots harvested four days after the 
treatment caused no significant change in the content of 
total phenolic, H2O2, and MDA, whereas all ultrasound 
treatments resulted in a very significant increase in the 
contents of total flavonoids and galegine. Ultrasound 
(US) is a special physical elicitor with various biological 
effects that can generally damage biological materials at 
high density and stimulate biological activities such as 
enzymatic and microbial biological transformations and 
cell biosynthesis at low density (Erte et  al. 2021). Ultra-
sonic waves can significantly increase the synthesis of 
secondary metabolites, depending on the plant species 
(Dörnenburg and Knorr 1995; Taherkhani et  al. 2019). 
So, US induces cell membrane permeability (Knorr 2003), 
and produces a stress response similar to that induced by 
wound stress. In this way, the application of US releases 
ATP from the damaged cells, and distributes it through 

Fig. 9  HPLC chromatogram showing galegine standard (a) galegine 
content in untreated hairy roots (b), and in roots treated with 
ultrasonic waves for 4 min in hairy root culture of G. officinalis (c)
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the intercellular spaces and binds it to the ATP receptors 
in the plasma membrane of the damaged cells. The bind-
ing of ATP to its receptors generates secondary signal-
ing molecules. These secondary signals are transmitted 
through the cytosol and initiate the signal transduction 
network that leads to the activation of transcription fac-
tors that cause nutrient biosynthesis (Jacobo-Velázquez 
et al. 2017).

Wu and Lin (2002) reported that ultrasound treatment 
caused cross-membrane ion flux, production of reac-
tive oxygen species (ROS), and a rapid increase in phe-
nylalanine ammonia lyase activity (PAL), followed by 
increased production of polyphenols (PP), and phenolic 
compounds in the cell suspension of Panax ginseng C.A. 
Meyer. Induced production of phenolic secondary metabo-
lites was also reported in the cell cultures of Morinda cit-
rigolia L. (Komaraiah et  al. 2005), hazelnut (Rezaei et  al. 
2011), and Vitis vinifera L. (Santamaria et  al. 2012). In 
some studies, treatment with high-intensity ultrasound has 
been reported to stimulate the accumulation of secondary 
metabolites and increase antioxidant activity in agricultural 
products such as strawberries (Gani et  al. 2016), peanuts 
(Sales and Resurreccion 2010) and rice sprouts (Ding et al. 
2018a) and wheat (Ding et al. 2018b).

At all, it was concluded that to increase the content of 
secondary metabolites in the hairy root culture of G. offici-
nalis, the application of elicitors is an effective strategy. Our 
results showed that among the elicitors, the application of 
ultrasonic waves for 4 min was more effective to increase 
the content of the flavonoids and galegine.
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