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Abstract
Background Complex genomic profiling (CGP) has transformed cancer treatment decision making, yet there is a lack of 
robust and quantifiable evidence for how utilisation of CGP improves patient outcomes.
Objective This study evaluated cohort level clinical effectiveness of CGP to improve overall survival (OS) in real-world 
advanced cancer patients using a registry-based matched control population.
Patients and methods Two cohorts of advanced and refractory cancer patients were seen in consecutive series for early 
phase trial enrolment consideration. The first cohort (CGP group) accessed tumour profiling via a research study; while the 
second cohort that followed was not profiled. Overall survival between cohorts was compared using Kaplan-Meier curves 
and Cox proportional hazard models. Potential confounding was analysed and adjusted for using stabilised weights based 
on propensity scores.
Results Within the CGP group, 25 (17.6%) patients received treatment informed by CGP results and this subgroup had 
significantly improved survival compared with CGP patients in whom results did not impact their treatment (unadjusted 
HR = 0.44, (0.22–0.88), p = 0.02). However, when comparing the entire CGP cohort with the No CGP cohort, no significant 
survival benefit was evident with adjusted median OS for CGP of 13.5 months (9.2–17.0) compared with 11.0 (9.2–17.4) 
for No CGP (adjusted HR = 0.92, (0.65–1.30), p = 0.63).
Conclusions This study utilised real-world data to simulate a control arm and quantify the clinical effectiveness of genomic 
testing. The magnitude of survival benefit for patients who had CGP result-led treatments was insufficient to drive an overall 
survival gain for the entire tested population. Translation of CGP into clinics requires strategies to ensure higher rates of 
tested patients obtain clinical benefit to deliver on the value proposition of CGP in an advanced cancer population.
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Key Points 

Complex genomic profiling can facilitate meaning-
ful clinical benefit for a subset of tested advanced and 
refractory cancer patients who access clinical trials and 
targeted therapy.

The proportion of tested patients who receive personal-
ised treatment and derive a survival benefit from com-
plex genomic profiling must be substantial to ensure the 
value of testing this population in a real-world setting.

1 Introduction

The transformative role of genomics for informing tailored 
treatment decisions in oncology is underpinned by increas-
ingly sophisticated profiling methods using next-genera-
tion sequencing (NGS) technologies. Complex genomic 
characterisation of cancers, whether by large, targeted 
panels, whole genome, or multi-omics assays, facilitates 
efficient identification of established targetable variants, 
but also allows identification of novel predictive biomark-
ers driving development of therapeutics for specifically 
defined subpopulations. The proportion of Phase 3 trials in 
common cancers, including a molecularly targeted agent, 
shows a dramatic increasing trend from 26% in 2010 to 
62% in 2020 [1]. This is confirmed by the multitude of 
recent international approvals for targeted agents, includ-
ing against pan-cancer biomarkers, validating the signifi-
cance of the molecular profile in systemic treatment deci-
sions in oncology [2, 3].

Globally, there are many large-scale pan-cancer preci-
sion oncology studies offering complex genomic profiling 
(CGP), often in the advanced/refractory setting with the 
rationale of identifying targets for experimental treatment 
options. Notable studies such as the ProfiLER study in 
Europe or NCI-Match and I-PREDICT in the USA used 
molecular profiling results to recommend therapies via 
clinical trials or access programmes for patients with 
actionable biomarkers. These studies have largely dem-
onstrated positive clinical outcomes for the subset of tested 
patients who received result-led therapy. The ProfiLER 
study reported that 44 % of matched therapy lines initiated 
achieved disease control or partial response and a recent 
I-PREDICT publication showed doubling of disease con-
trol rates and progression-free survival for those initiating 

a treatment regimen with higher matching scores (propor-
tion of identified biomarkers targeted through combination 
therapy) [4–7].

Despite growing support for genomic-informed treat-
ment in a research context [4, 7–9], there has not been 
broad adoption of CGP into routine care and research even 
shows rates of simpler standard profiling are suboptimal 
[10-–13]. Widespread access to testing still requires a sig-
nificant investment and infrastructure to facilitate at scale. 
To justify investment in CGP, public health systems and 
insurance companies require evidence of comparative 
effectiveness of using complex testing to improve health 
outcomes in a tested population. Currently, our ability to 
gather this evidence is limited by the fact that studies are 
non-randomised, and largely in advanced and refractory 
populations where there are often low rates of initiating 
result directed therapy (~ 15%) as a proportion of the 
tested population [4, 9, 10, 12, 14–16]. A lack of robust 
and quantifiable evidence for how utilisation of CGP 
improves patient outcomes, means that there is a paucity 
of economic evaluations of complex testing in the litera-
ture [11, 14, 15]. Together these evidence gaps result in 
uncertainty and delays in funding at a health system level, 
which are critical to facilitate integration of CGP to clini-
cal care.

The evidentiary gold standard of randomised controlled 
trials (RCTs) for pan-cancer molecular profiling directed 
treatment compared to standard of care are difficult to con-
duct due to the heterogeneity in cohorts and outcomes and 
the prioritisation of testing to maximise genomic discovery 
[4, 14, 17]. The landmark SHIVA trial performed molecular 
profiling on patients who were then randomised to receive a 
targeted therapy or standard treatment, and is the only ran-
domised precision oncology study to date. Although this 
study demonstrated no survival benefit, these results were 
published in 2015 and there has been a substantial growth in 
testing capability and access to targeted therapies since that 
time [18]. Precision oncology studies are typically single arm 
with heterogeneous patient populations, and diverse treatment 
histories. Therefore, demonstrating the relative effectiveness of 
complex testing is difficult as there is no easily defined coun-
terfactual cohort. Commonly, reported outcomes are between 
those receiving targeted versus untargeted therapy, which suf-
fers from potential biological and clinical selection bias, and 
the use of a fixed progression-free survival ratio with patients 
as their own control results in outcomes that are dependent 
on a patients’ treatment history [4, 5]. Outcomes are also 
rarely described across the entire tested population, where the 
majority of tested patients do not benefit from CGP because 
of patient deterioration and the lack of availability of targeted 
treatments [6, 19, 20].

A potential avenue to overcome the evidentiary limita-
tions of single-arm precision oncology trials is to apply a 
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registry-based synthetic control arm to a group receiving CGP, 
which permits a health outcome assessment across the entire 
tested population rather than one focusing on selected patients 
who receive treatment [12, 21]. The use of real-world registry 
or health record data as a source of external or ‘synthetic’ 
control is expanding in clinical research and is recognised by 
various international regulatory bodies including the US Food 
and Drug Administration (FDA) and the National Institute for 
Health and Care Excellence (NICE) [22–24]. This study aims 
to estimate the overall survival following the use of a CGP pro-
gramme for advanced and refractory cancer patients compared 
to a similar real-world patient cohort who did not receive CGP.

2  Methods

This was a retrospective observational study utilising two 
series of advanced and refractory cancer patients who were 
referred for consideration of early phase trials through a spe-
cialised tertiary centre clinic after progression on standard 
of care treatment. One of these cohorts was offered routine 
CGP through a research programme. We simulated a syn-
thetic trial using these (CGP and No CGP) cohorts to com-
pare overall survival (OS) using propensity score methods 
to balance the two groups based on clinical characteristics.

2.1  CGP Cohort

The cohort receiving CGP was a subset of a national single-
arm prospective complex testing study recruited via the 
Peter MacCallum Cancer Centre Phase 1 Trials Programme 
in Melbourne between March 2017 and August 2018. The 
clinic offered profiling via the CGP study to uncover tar-
geted treatment options to pursue via clinical trials or access 
pathways after progression on standard of care treatment. 
Informed consent for testing was obtained with oncologists 
from the study team. The CGP assay was an in-house 391 
gene comprehensive cancer DNA panel (see Supplementary 
Notes). Treatment recommendations were made after cura-
tion of results and multidisciplinary review at a molecular 
tumour board. Participants were followed for a minimum of 
12 months post-test to capture result-led treatment decisions 
and overall survival.

2.2  Control Cohort (No CGP)

Patients attending the same clinic in the 12 months follow-
ing the recruitment of the CGP study population (recruited 
between September 2018 and September 2019) were iden-
tified as a potential counterfactual advanced-stage pan-
cancer cohort and did not have access to complex profiling 
through the clinic. Any standard of care (defined as publicly 

reimbursed) profiling and treatment had been actioned 
before referral for trials, as was the case for the CGP group. 
Therefore, this cohort presented a unique control sample 
with minimal selection bias around employing complex 
genomics to uncover treatment options. Baseline and sur-
vival data were collected via an administrative register for 
these patients.

2.3  Study Eligibility

Cohorts were refined further for a cohesive population based 
on eligibility of (a) metastatic or incurable stage, (b) Eastern 
Cooperative Oncology Group (ECOG) less than or equal to 
two, (c) failure of a standard initial line of systemic therapy 
where this exists, and (d) non-synchronous cancers (Fig. 1). 
Colorectal cancers were excluded from analysis due to inten-
tionally limited recruitment in the CGP cohort leading to 
major imbalance between cohorts and likely violation of 
the positivity assumption of propensity score analysis (see 

Fig. 1  CONSORT diagram. CGP complex genomic profiling, PS per-
formance status, Pts patients
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below) [25]. Patients in the CGP study where testing failed 
due to technical issues or a lack of sample available for test-
ing were included in the No CGP cohort as there was no 
probability of result impacting treatment in these cases and 
their experience more closely reflected that of the No CGP 
cohort. Patients were excluded from the No CGP cohort if 
they presented to clinic with previous complex testing such 
as self-funded commercial panels.

2.4  Derivation of Propensity Score Matching 
and Weighting

The propensity score is defined as the probability of treat-
ment assignment conditional on key covariates and is used 
to create a balanced sample that would normally be obtained 
through randomisation [26, 27]. Propensity score analysis 
offers advantages over more common methods for confound-
ing adjustment, such as multiple regression, through trans-
parent balancing of covariates across groups in a process 
independent from outcome analysis [26, 28, 29]. We used 
logistic regression to estimate the probability of receiving 
CGP for each patient based on factors that may impact their 
likelihood of being in the CGP group or that have prognos-
tic relevance. The following patient and disease character-
istics were included as covariates to account for measured 
confounding: age, sex, ECOG, cancer type, failed lines of 
systemic treatment and remaining reimbursed therapeutic 
options as per clinician at initial appointment. Although all 
these clinically relevant covariates were included, i.e., no 
variable selection was performed, variable transformations 
were considered for age and potential interactions with failed 
lines and cancer types to explore optimal model fit, with 
the final transformations selected based on Akaike Informa-
tion Criterion (AIC). The resulting propensity scores were 
used in inverse probability of treatment weighted (IPTW) 
analyses. Stabilised weights were calculated and truncated 
at the 1st and 99th percentile to reduce excessive influence 
of uncommon patient profiles [25]. Inverse probability of 
treatment weighted methods were employed over alterna-
tives, such as propensity score matching, due to the priority 
of retaining sample size. Assessment of balance achieved in 
baseline covariates was compared using weighted standard-
ised differences [25].

2.5  Outcomes and Survival Analysis Methods

Date of genomic study consent for CGP was the index date 
for overall survival, and initial clinic visit was the index date 
for the No CGP group. For both cohorts, this represented the 
start of the process for identifying investigative treatment 
options. As the cohorts reflected successive time periods, 
potential follow-up time was systematically different. All 

patients had a minimum of 12 months’ follow up and sur-
vival analysis was censored at 18 months to reduce discrep-
ancy in time at risk across cohorts. Unadjusted and IPTW 
adjusted Kaplan-Meier survival curves were used to gener-
ate plots and estimate survival probabilities, unadjusted and 
IPTW adjusted hazard ratios (HRs) were estimated using 
Cox proportional hazards regression. It was calculated that 
a HR of 0.65 could be detected with 80% power at a 5% 
significance level with a sample of 260 and a 65% event 
rate [30]. The proportional hazards assumption was assessed 
through significance testing of scaled Schoenfeld residuals. 
Robust variance estimates were used in adjusted analyses to 
account for the dependency induced through weighting sub-
jects [31]. Data cleaning was performed in Stata/IC version 
14.2 and analysis and graphics performed using R statistical 
software, version 3.6.3.

3  Results

3.1  Cohort Description

A total of 272 patients were included in the analysis, with 
139 receiving CGP and 133 in the No CGP cohort (Table 1). 
Distributions of variables across groups were similar, but 
there was evidence of imbalance as demonstrated by stand-
ardised differences greater than 0.1 for several factors. The 
CGP patients were slightly younger, more frequently ECOG 
0 compared to 1, had more sarcomas and non-cutaneous 
melanomas but fewer head and neck, genitourinary and 
upper gastrointestinal primaries. The CGP group had lower 
numbers of failed lines of systemic therapy, likely reflect-
ing higher rates of rare subtypes of cancers without many 
standard systemic options. For the CGP group, 25 (17 %) 
patients received a result-led targeted treatment (Table S1, 
see Supplementary Material) largely through clinical trials 
or off-label access programmes. Rates of trial enrolment 
were similar across groups with 31 (22%) in CGP (16 result-
led, 15 non-targeted) compared with 34 (26 %) in No CGP. 
For those who did not enrol in a clinical trial, and for whom 
standard treatment data were available, rates of initiating 
further treatment after baseline visit were also similar (CGP 
32 % and No CGP 30 %). Median follow-up time in the CGP 
group was higher (median 13.8 [interquartile range (IQR) 
6.5–18.0] months) than No CGP (median 9.4 [IQR 4.3–14.9] 
months) reflecting the earlier index dates in the CGP group. 
However, all patients had data collected between 12 and 18 
months and event rates were similar with 78 (55 %) for CGP 
and 81 (61 %) for No CGP.
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3.2  Inverse Probability of Treatment Weights 
and Balance Diagnostics

The propensity score model is presented in Table S2 (see 
Supplementary Material). The IPTWs ranged from 0.54 to 
2.59, with a mean of 0.98, and the distribution of weights 
was similar across treatment groups (Figure S1, Supplemen-
tary Material), indicating there were no signs of individu-
als with a disproportionately large weight in the analysis. 
Applying IPTWs to our sample resulted in well-balanced 
cohorts, this weighting resulted in slightly adjusted denomi-
nators (Table 1).

3.3  Survival Analysis

Results for all survival analyses are presented in Table 2. 
Kaplan-Meier curves for the CGP and No CGP cohorts 
(Fig. 2a) and further stratified by whether result-led treat-
ment (RLT) was initiated for the CGP cohort (Fig. 2b), dis-
play the survival benefit for CGP. The unadjusted assessment 
of OS within the CGP group indicated potential benefits 
of receiving a RLT, with median OS not reached for those 
with RLT and 13.6 months for those where CGP results did 
not influence subsequent treatment (HR [95 % CI] = 0.44 
[0.22–0.88], p = 0.02). In the unadjusted comparison, the 
CGP group demonstrated significantly improved median OS 
(14.4 vs 9.9 months, HR [95 % CI] = 0.71 [0.53–0.96], p 
= 0.03) compared to no CGP. Figure2b displays the benefit 

Table 1  Baseline characteristics by CGP group

Data presented as n (%) or median [range], p-value determined by Chi squared statistic or Mann Whitney U test as appropriate
Rare classification defined by specific histology as incidence < 6 per 100,000
CGP complex genomic profiling, CUP cancer of unknown primary, ECOG Eastern Cooperative Oncology Group, GU genitourinary cancer, 
H&N/NM head and neck non-melanoma, IPTW inverse probability of treatment weighted, SD standardised difference, UGI upper gastrointesti-
nal cancer
Ϯ As per referring clinician or study clinician review, *p < 0.05, **p < 0.01

Unadjusted Adjusted using IPTW

CGP (N = 139) No CGP (N = 133) p-value SD CGP (N = 141.4) No CGP (N = 125.4) SD

Age 57.4 [21.8–86.1] 61.3 [30.8–82.5] 0.014* 0.342 60.7 [21.8–86.1] 59.7 [30.8–82.5] 0.005
Sex
 Male 73 (52.5) 74 (55.6) 0.693 0.063 77.1 (54.5) 69.3 (55.3) 0.015

ECOG
 0 58 (41.7) 36 (27.1) 0.032* 0.332 49.2 (34.8) 42.4 (33.8) 0.031
 1 72 (51.8) 89 (66.9) 83.5 (59.1) 75.8 (60.5)
 2 9 (6.5) 8 (6.0) 8.7 (6.2) 7.1 (5.7)

Failed lines of systemic treatment
0 [0–6] 1 [0–7] < 0.001** 0.539 1 [0–6] 1 [0–7] 0.085

Therapeutic options  remainingϯ

 0 87 (62.6) 92 (69.2) 0.158 0.235 93.1 (65.8) 81.5 (65.0) 0.040
 1 39 (28.1) 36 (27.1) 39.3 (27.8) 36.7 (29.3)
 2 or more 13 (9.4) 5 (3.8) 9.0 (6.4) 7.1 (5.7)

Cancer primary
 CUP 7 (5.0) 10 (7.5) 0.021* 0.534 9.7 (6.9) 8.5 (6.7) 0.103
 GU 4 (2.9) 9 (6.8) 4.5 (3.2) 5.9 (4.7)
 Gynae 15 (10.8) 11 (8.3) 13.5 (9.5) 11.6 (9.2)
 H&N/NM Skin 19 (13.7) 24 (18.0) 25.6 (18.1) 22.1 (17.6)
 Lung 17 (12.2) 16 (12.0) 16.7 (11.8) 14.4 (11.5)
 Melanoma 12 (8.6) 3 (2.3) 7.4 (5.2) 5.0 (4.0)
 Other rare 17 (12.2) 9 (6.8) 12.8 (9.1) 11.5 (9.2)
 Sarcoma 22 (15.8) 11 (8.3) 16.7 (11.8) 14.4 (11.5)
 UGI 26 (18.7) 40 (30.1) 34.4 (24.4) 32.5 (25.9)

Rare
 Yes 106 (76.3) 85 (63.9)  0.036*  0.272 102.4 (72.4) 87.1 (69.5)  0.066
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from CGP in the RLT subgroup, but also shows improved 
OS for the CGP (No RLT) subgroup compared to No CGP. 

The survival benefit for the CGP cohort in the unadjusted 
analysis was no longer demonstrated in the IPTW-adjusted 
survival analyses that accounted for imbalance in prognos-
tic variables between the cohorts (median OS 13.5 vs 11.0, 
HR [95 % CI] = 0.9 [0.65–1.31], p = 0.63) (Fig. 2c). When 
the adjusted CGP group is stratified into RLT and no RLT 
(Fig. 2d) the balancing to represent a synthetic trial, achieved 
through weighting cohorts is evident as the ‘CGP (No RLT) 
and No CGP curves overlap. Although Fig. 2d shows survival 
gains for those patients where actionable targets were identi-
fied and actioned in the CGP cohort, this was of benefit to only 
17 % of patients and is insufficient to drive a survival gain for 
the entire CGP cohort. There was no evidence of violation of 
the proportional hazards assumption across analyses.

4  Discussion

This study demonstrates the potential value of real-world 
data to facilitate comparative effectiveness analyses that 
are critical to the evaluation and translation of CGP for 
advanced cancer populations. Despite our results support-
ing earlier findings that patients with RLT initiated from 
CGP have improved OS, this proportion was not sufficient 
to establish a significant OS benefit across the entire tested 
cohort.

The novelty of this study was the identification of a 
suitable control cohort and use of endorsed methodology 
to adjust for confounding in a real-world setting [22–24]. 
This analysis builds on literature supporting the potential of 
complex profiling to enable viable treatment options for a 
proportion of advanced cancer patients, as it extends on the 
common ‘within group’ survival comparisons that are often 
reported for single-arm cohorts. Through achieving a bal-
anced control cohort, we were able to evaluate the effective-
ness of testing versus no testing, rather than a more biased 
and restricted ‘targeted versus untargeted’ testing subgroup 
evaluation. This comparison differs from conventional ‘tar-
geted versus untargeted’ comparisons, as patients who do 
not initiate treatment after testing are not excluded from 
analysis. We retained these patients in our CGP (No RLT) 
and No CGP subgroups, as the primary aim was assessing 
the value of CGP in the entire tested population, irrespec-
tive of the treatment outcome. This minimises selection bias 
from restricting evaluation to treated patients, as all tested 
patients are deemed suitable for treatment at the time of 
initiating testing.

The use of real-world control arms is emerging in oncol-
ogy as an approach to evaluate rare and challenging cohorts 
such as clinical outcomes for rare biomarker-positive popu-
lations with the Flatiron Health database [32, 33]. To our 
knowledge the only other study using real-world data to 
estimate the comparative effectiveness of CGP to inform 
treatment in advanced pan-cancer is a recent article by 

Table 2  Survival analyses by CGP groups

CGP complex genomic profiling, IPTW inverse probability of treatment weighted, NR not reached
Hazard ratio determined by Cox proportional hazards regression
Survival probabilities determined by Kaplan-Meier methods
95 % confidence intervals presented in brackets, *p < 0.05

Within CGP group (N = 139) CGP result-led impact (n = 25) No result-led impact (n = 114) p value

Median survival (months) NR 13.6 (10.4–17.8)
12-month survival probability 80.0% (65.8–97.3) 52.5% (44.0–62.7)
Log rank test 9 events 68 events 0.02*
Univariate hazard ratio 0.44 (0.22–0.88) 0.02*

Unadjusted CGP vs no CGP (N = 272) CGP (n = 139) No CGP (n = 133) p value

Median survival (months) 14.4 (12.0–NR) 9.9 (8.6–13.4)
12-month survival probability 57.5% (49.8–66.5) 41.6% (33.7–51.2)
Log rank test 77 events 81 events 0.03*
Univariate hazard ratio 0.71 (0.52–0.97) 0.03*

IPTW (adjusted) CGP vs no CGP (N = 276) CGP (n = 141) No CGP (n = 125) p value

Median survival (months) 13.5 (9.2–17.0) 11.0 (9.2–17.4)
12-month survival probability 52.5% (43.9–62.8) 45.8% (37.2–56.4)
Adjusted univariate hazard ratio 0.92 (0.65–1.30) 0.63
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Weymann et al [21]. They compared survival outcomes 
for patients undergoing whole genome and transcriptome 
sequencing with propensity-score matched controls from a 
population-based cancer registry in Canada. Findings were 
consistent with our study, where a minority (15 %) of tested 
patients received result-led treatment, and no OS gain for 
tested patients was seen compared to matched controls. The 
use of a larger dataset permitted a comprehensive match-
ing approach for control selection but required estimation of 
temporal data such as the index date for the control group. 
Our study utilised propensity score weighting to retain 
maximum data. As observational data become more com-
monly employed for complex evaluations, it will be criti-
cal to ensure clinical assumptions informing analyses hold 
to leverage the potential of observational data for reducing 
rather than amplifying uncertainty in estimating interven-
tion effects. Further research exploring study designs such as 
simulated controls will support much-needed evaluation of 
the relative benefits of complex genomic testing strategies.

With a rate of RLT for CGP patients of 17 % and a dra-
matic survival benefit demonstrated in this RLT subgroup, 

a lack of survival gain in the overall CGP cohort in our 
adjusted comparative analysis supports commonly cited con-
cerns around the current limited clinical effectiveness, and 
by extension the cost effectiveness, of complex genomics 
from a payer or public health perspective [4, 11, 14]. Given 
that the proportion and impact of RLT change in this CGP 
cohort is comparable to international studies in the literature, 
such as ProfiLER and NCI-Match who reported treatment 
initiation in tested patient rates of 6 % and 12 %, respec-
tively, the likelihood of similar limitations on effectiveness 
of using CGP to improve survival in these larger advanced 
and refractory cancer cohorts is real [4, 6, 21, 35].

These results highlight the importance of increasing the 
rate and clinical impact of actionable findings to achieve 
real-time targeted treatment survival benefits that support 
genomic testing. Commonly reported reasons for low rates 
of RLT initiation in precision oncology studies include lack 
of biomarkers identified, patient deterioration, continuation 
of standard therapy and lack of trial and drug access [4, 
15, 34]. Efficiency gains and cost reductions of scaling up 
complex testing in conjunction with more comprehensive 

Fig. 2  Kaplan-Meier survival curves displaying overall survival stratified by complex genomic profiling (CGP) group and result-led treatment 
(RLT)
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and sensitive testing technology and growing targeted ther-
apy options will support increasing use of CGP. However, 
implementation challenges such as inequity and barriers 
to trial access, prohibitive drug costs and lack of decision 
support for clinicians mean CGP impact beyond informing 
standard of care treatments may be even lower in a com-
munity setting and must be considered [11, 12, 16, 35, 36]. 
Studies exploring the use of CGP to inform initial systemic 
treatment options rather than the more common refractory 
populations may better capture the relative survival benefits 
of CGP informed access to both standard and investigative 
targeted therapies, particularly for patients with lung cancer 
or sarcoma where molecular profiles can define the entire 
treatment pathway [11]. Notably improved evidence for the 
comparative effectiveness of CGP in terms of improved 
survival is only an initial step towards translation as sub-
sequent economic evaluations will be largely influenced 
by therapeutic access and costs. Further research utilising 
linked clinical and genomic real-world data will be key to 
identifying cancer populations and timepoints when using 
CGP to inform treatment will be particularly valuable and 
encourage large-scale testing access for those most likely to 
yield real-time survival benefits [12, 36–39].

As a retrospective study, this work has certain limita-
tions. As with any observational study, there is potential 
for unmeasured confounding that has not been adjusted 
for [23]. As a single-site study, the sample size was lim-
ited and with the adjusted HR of 0.92, the study was not 
sufficiently powered to detect if this is a minor yet statisti-
cally significant clinical benefit demonstrated by the CGP 
group. The analysis relies on the assumption that refractory 
cancer patients recruited through the clinic for CGP repre-
sent a similar distribution of patients referred for clinical 
trial assessment to those in the No CGP group. To negate 
the impact of this limitation, thorough eligibility criteria 
were applied to ensure the final cohorts represented similar 
patient groups. The two series of patients that immediately 
followed each other across a total recruitment period of 32 
months, had a large overlap in trials available, which reduces 
but cannot remove the potential for favourable bias in sur-
vival for the No CGP group through improved treatments or 
supportive care. In this study, completion of available data 
was high; however, additional prognostic clinical data such 
as liver function or sites of metastatic disease and a larger 
overall sample size could have added greater validity to the 
specification of the propensity score model and prognostic 
comparability of the two groups, particularly with such a 
heterogenous population [40]. To enable a comparison of 
cohorts with CGP results versus no CGP, we included CGP 
patients with failed testing in the No CGP cohort, and while 
this may minimise potential bias due to the differing recruit-
ment time periods, other sources of bias such as biological 
factors with low volume disease cannot be ruled out. Finally, 

the study involved patients seen at an academic centre who 
had failed standard of care treatment, and while this was 
consistent across the CGP and No CGP cohorts, the results 
may therefore not be generalisable to a community setting.

5  Conclusions

In summary, this study utilised a synthetic control cohort 
to assess the relative survival benefit of using CGP in an 
advanced real-world pan-cancer population to overcome the 
bias in precision oncology utility estimates and determine 
the value of testing at a population level. Although currently 
the use of CGP may result in limited gains to an unselected, 
late-stage population, further real-world evidence explor-
ing how CGP can impact certain cancer subpopulations at 
higher rates and through earlier initiation in the treatment 
pathway, will allow identification of more effective testing 
strategies and support translation of genomics into oncology 
care where it is of most clinical value.
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