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Complex thought and behavior arise through dynamic recruitment of large-scale brain
networks. The signatures of this process may be observable in electrophysiological
data; yet robust modeling of rapidly changing functional network structure on rapid
cognitive timescales remains a considerable challenge. Here, we present one potential
solution using Hidden Markov Models (HMMs), which are able to identify brain
states characterized by engaging distinct functional networks that reoccur over time.
We show how the HMM can be inferred on continuous, parcellated source-space
Magnetoencephalography (MEG) task data in an unsupervised manner, without any
knowledge of the task timings. We apply this to a freely available MEG dataset in which
participants completed a face perception task, and reveal task-dependent HMM states
that represent whole-brain dynamic networks transiently bursting at millisecond time
scales as cognition unfolds. The analysis pipeline demonstrates a general way in which
the HMM can be used to do a statistically valid whole-brain, group-level task analysis on
MEG task data, which could be readily adapted to a wide range of task-based studies.

Keywords: magnetoencephalography, MEG analysis, network, dynamic, hidden Markov model

INTRODUCTION

It is likely that the brain supports complex thought and behavior by dynamic recruitment of whole-
brain networks across millisecond time-scales. The signatures of these dynamics may be observable
in M/EEG data, although robust modeling of the evolution of functional connectivity on rapid
cognitive timescales remains a challenge (O’Neill et al., 2017a). Network dynamics are observable
using sliding time-window approaches on both resting state (de Pasquale et al., 2010, 2012) and task
data (O’Neill et al., 2017b). Yet the temporal resolution of sliding window approaches is limited,
as each window requires relatively large amounts of data, typically several seconds in length. In
particular, a short window length will give poor estimation of the graphical networks, while a long
window length limits the visibility of fast time-scale in the sliding window analysis.

Alternatively, Hidden Markov Modeling can be used to segment observed data into a set of
discrete functional states that reoccur over time. Hidden Markov Models (HMMs) do not require
pre-specification of sliding window length, instead the relevant time-scales are learnt directly form
the data. The HMM estimates adaptive state visits or ‘windows’ in a data driven manner. State-
wise functional connectivity can be robustly estimated by pooling data across all visits to each
state, though each individual visit may only last for tens or hundreds of milliseconds. The result is
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that the HMM is capable of identifying dynamic re-organization
of whole brain networks on fast, milliseconds time-scales.
Previous applications of HMMs to source MEG data have shown
state switching between large-scale networks on the order of
100 ms (Baker et al., 2014).

The HMM can be used to flexibly characterize dynamic states
across a range of data modalities and has been applied to an
increasing number of tasks and datasets. This includes time-
varying oscillations during finger tapping in source reconstructed
MEG signals (Vidaurre et al., 2016), identifying processing stages
during cognitive tasks in EEG (Borst and Anderson, 2015), and
finding state sequences associated with perception and recall
of narrative structure in fMRI (Baldassano et al., 2017). These
examples show the ability of the HMM to represent behaviourally
relevant dynamics within its states and state time-courses. This
approach can be extended to explore the relationship between
states and cognition in very large datasets using Stochastic
Inference (Vidaurre et al., 2017a). For example, HMM states
inferred on 820 fMRI datasets from the Human Connectome
Project revealed a hierarchical temporal structure, where the
switching and rate of occurrence of brain states was shown to be
both heritable and predicative of psychological traits (Vidaurre
et al., 2017c).

Here we present a group-level HMM analysis of source-space
MEG data during a face processing task collected by (Wakeman
and Henson, 2015). This demonstrates a general way in which
the HMM can be used to do a statistically valid whole-brain,
group-level task analysis on MEG task data, which could be
readily adapted to a wide-range of task studies. This approach
reveals task dependent whole-brain dynamics at millisecond
time-scales as cognitive processes unfold. Two different HMM
models are fitted to the data. Firstly we use an HMM on the
broadband power envelope of source MEG signals, which is
able to identify states with distinct networks of power, similar
to the approach used on resting state MEG data in (Baker
et al., 2014). Secondly, we use a time-delay embedded HMM
on the raw source MEG signals, which is able to identify
states with distinct multi-region spectral properties and phase
locking networks, similar to the approach used on resting state
MEG data in (Vidaurre et al., 2017b). The intention is not
to statistically compare these two approaches but to provide
some insight into their use and the information they provide.
These two HMM variants provide an alternative representation
of frequency domain task-responses as fast transient events of
distinct multi-region spectral patterns. Each event on a single
trial may only burst for tens of milliseconds, but following
averaging across many trials can lead to an apparently sustained
response in a similar manner to the work in (Shin et al.,
2017).

We demonstrate the use of the HMM for the analysis of
task data on a freely available MEG dataset in which subjects
are viewing Face or Scrambled Face stimuli, while making
a subjective decision about the symmetry of the image and
responding with a button press (Wakeman and Henson, 2015).
Completion of this task is expected to recruit visual perception,
decision-making and motor processes in rapid succession over
the course of a trial (∼1.5 s). The HMM provides a means

to interrogate the dynamic recruitment of networks as these
processes unfold within the brain on fast sub-second time-scales.

MATERIALS AND METHODS

Hidden Markov Models
Here, we summarize the Hidden Markov Model and its use for
describing source-space MEG data. A detailed introduction to
the general theory of Hidden Markov Modeling can be found
in (Rabiner and Juang, 1986) whilst more detail on the specific
implementation for MEG data can be found in (Rezek and
Roberts, 2005; Baker et al., 2014; Vidaurre et al., 2016, 2017a)

A Hidden Markov Model (HMM) can represent dynamics in
the brain as a system moving through a set of discrete states.
The states are mutually exclusive, in that only one may occur at
any one point in time (although this assumption is relaxed by
the use of soft, probabilistic inference) and Markovian, in that
the next state is only dependent on the current state. Critically,
the states are abstract (hidden) and not directly observable
from the data. The link between these hidden states and our
observed data comes from an observation model (also known as
emission probabilities or output probabilities). Each state has its
own observation model defining a probability distribution from
which our observed data is drawn whilst our system is in that
state (see Figure 1A). This separation between the underlying
state dynamics and the form of the observation models make the
HMM a highly flexible framework. We may tune the observation
model to suit a range of modalities or datasets whilst keeping the
HMM inference and wider statistical framework constant.

In neuroimaging applications, the HMM observation model
can be set up to match existing approaches in static functional
connectivity estimation. For instance, a Gaussian Graphical
Model can be estimated to provide a probabilistic description
of functional brain data with a joint-multivariate normal
distribution across brain regions. Such models are completely
characterized by their covariance matrix (Bishop, 2006), which
describes the functional connectivity within the network.
This approach has been widely adopted for static functional-
connectivity estimation in fMRI (Marrelec et al., 2006; Varoquaux
et al., 2010) and MEG (Colclough et al., 2017). The HMM
provides a temporal extension to this approach by tuning
the observation model of each state to describe a distinct
multivariate-normal distribution. In other words, each state’s
observation model takes the same distributional form as a static
functional connectivity estimate. The switching between states
then describes switching between large-scale undirected Gaussian
Graphical Models, each containing a description of the functional
activity within the network (Baker et al., 2014). The observation
model may be further tuned depending upon the specific needs
of a dataset or modality, making the HMM a highly flexible
framework. For instance, (Vidaurre et al., 2016) observes a
multivariate autoregressive model describing the raw MEG time-
courses.

When looking to characterize the spatial and temporal
properties of the brain, the HMM uses a full network graph across
N nodes, i.e., a [N×N] multivariate Gaussian process is specified
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FIGURE 1 | (A) A schematic of a Hidden Markov Model. Each sample at a given time point t is described as one of a set of discrete hidden states denoted by Xt.
Each state has an observation model Y which characterized the distributions of the observed data whilst state X is ‘on’. (B) An illustration of a two node system
moving through three HMM states. The observation model for each node is shown in the line plots to the left. Each state has a distribution for each node describing
the observed values whilst that state is ‘on’. The time-series to the top right show the observed data for each node. The values are color-coded according to which
state is on at each time point. Note that at each point in time the observed values are drawn from the distribution of the appropriate observation for that sample. The
bottom row shows the true state time-course for the system.

at each time-point. The dynamics of this network over time (T)
is described by the transitions between states in the state-time
course. In contrast, models such as ICA (Brookes et al., 2011) or
micro-states (Lehmann and Skrandies, 1984; Koenig et al., 2005)
seek to decompose neural data into sets of activation patterns and
their temporal evolution. The spatial component of these models
are often referred to as “networks” despite the fact that they are
not full network graphs and correspond to spatial maps defined
by [N× 1] vectors; this is in contrast to the full [N×N] graphical
networks used in the HMM.

As an illustration, Figure 1B shows how the HMM can be
used to describe a simulated bivariate time-series. Here the

observed data are generated using known Gaussian observation
models and state time-courses from three states. For real data
analysis, we would start with the raw data and the inference
would estimate the parameters of the observation models and
state time-courses. In our simulation, each states observation
model generates data with different mean values for the two
nodes summarized by the distributions on the left hand side of
Figure 1B. The first state has a mean of zero in the first time-
series and a mean of one in the second. The second state has
a mean of −1 in both nodes and the third state has a mean
of one in times-series one, and zero in time-series two. The
observed data at each time point is randomly drawn from the
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distribution of the currently active state as defined by the state
time-course.

Formally, the HMM requires us to pre-specify the number of
hidden states (K) and the form of the observation models. The
number of states (K) is important to explore when fitting a HMM
to a new dataset. This is to confirm that the number of states
is sufficient to provide a useful description of the dataset whilst
ensuring that key results are robust to changing the number
of states inferred. A number of approaches may be useful in
exploring this. Firstly the final Free Energy in the HMM inference
is an approximation to the model evidence and may be used to
formally compare models. If we explore a set of HMMs with
different values of K, we would prefer to take the model with the
lowest value of free energy as this represents the model which
best fits the data with the fewest parameters. In practice, the
Free Energy is likely to monotonically decrease with increasing
values of K making objective choice of the ‘best’ model difficult.
A more subjective approach is to ensure that the results are valid
across HMMs with different numbers of states. The HMM may be
estimated with different values of K and compared. This approach
is used in (Baker et al., 2014, Figure 2-figure supplement 1) to
show that changing K did not change the topographies of the
most prominent states. Finally, the inference in the HMM-MAR
toolbox is adaptive to some extent, such that if K is higher than
is supported by the data, then the variational inference scheme
can prune out the excess of states. From a purely quantitative
point of view, a more optimal estimation of the number of states
would require the use of the so-called infinite Hidden Markov
model (Beal et al., 2002), which is however less practical to apply
on electrophysiological data due to its high computational cost
(Nielsen et al., 2017).

Software
All analyses are performed using freely available tools in
MATLAB. The code carrying out the analysis in this paper can
be found here: https://github.com/OHBA-analysis/Quinn2018_
TaskHMM. This analysis depends on a number of other toolboxes
and software packages. The preprocessing and source-space
parcellation analyses are performed using the OHBA Software
Library (OSL1). This builds upon Fieldtrip, SPM and FSL to
provide a range of useful tools for M/EEG analyses. The HMM
is inferred using the HMM-MAR toolbox2. All the software and
scripts to carry out the analyses can be downloaded from the
project hosted on the Open Science Framework (Quinn et al.,
20183). The HMM analyses can be very computationally intensive
even on a modern computer system. The analyses in this paper
were computed on a Linux workstation with an Intel Xeon E5
CPU clocked at 1.90 GHz and 32 Gb of RAM. The analysis can
be adapted to work on computers with less RAM by changing
the Stochastic Inference Batch settings in the Stochastic Inference
section.

Details on installation and setup of the dependencies can be
found in the README.md file in the main study repository.

1https://ohba-analysis.github.io/osl-docs/
2https://github.com/OHBA-analysis/HMM-MAR
3https://osf.io/ugjbr/

In brief, the OSL and HMM-MAR toolboxes must be on the
MATLAB path and initialised. Please note, that all file paths
specified here are relative to the location of the download
accompanying this paper, ie the paths assume that the top-
level of the download is your present working directory.
Firstly, the paths in scripts/+utils/get_studyinfo.m should be
edited to specify the location of the downloaded toolboxes and
data as well as the directory to save generated analyses into.
utils.get_studyinfo returns a config structure storing these paths
in and is routinely used within the other analysis scripts. Finally,
the path to the downloaded scripts should be added add the
top of scripts/hmm_0_initialise.m. Running this script adds all
the relevant paths and toolboxes to the MATLAB path ready for
subsequent analyses. The analyses depend on the use of SPM12
and FSL 5.0.9 on a unix-type system.

The following sections describe the pre-processing stages
performed prior to Hidden Markov Modeling. These steps
process the continuous data after Maxfilter processing through
to source-space parcellated time-series. The descriptions are
annotated with specific function calls where appropriate.
More details can be found in the accompanying script
hmm_1_prepreocessing.m in the “scripts” directory.

Data Acquisition and Experimental
Design
Analysis was carried out on MEG data (acquired on a Elekta
Neuromag Vectorview 306) in a freely available dataset in which
19 participants completed a simple visual perception task using
pictures of faces (Wakeman and Henson, 20154; Revision 0.1.1).
Each participant completed six scans in which they viewed sets of
famous, unfamiliar or scrambled faces whilst making a perceptual
judgment on the symmetry of the faces. Each trial begins with
a fixation cross onset between 400 and 600 ms before a target
stimulus appears. The target is either the face or scrambled face
stimulus, and remains onscreen for between 800 and 1000 ms.
Further details of the data acquisition and experimental design
can be found in (Wakeman and Henson, 2015).

Data Preprocessing
A summary of the data preprocessing pipeline can be seen in
Figure 2A. All the code for the preprocessing can be found in
script hmm_1_preprocessing.m.

Maxfilter
The analysis starts with the MEG and structural MRI data
downloaded from Revision 0.1.1 of (Wakeman and Henson,
2015)4. The online dataset includes both raw MEG datasets
(eg., run_01_raw.fif) and MEG datasets that have undergone
Maxfilter processing (eg., run_01_sss.fif). Maxfilter is a method
for separating which parts of the recorded MEG signal arise from
neuronal activity within the brain, and which come from external
noise sources. In the interest of reproducibility, our analysis
begins with the continuous MEG data that have already been
processed with Maxfilter as described in (Wakeman and Henson,
2015).

4https://openfmri.org/dataset/ds000117/
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FIGURE 2 | (A) A schematic for the preprocessing pipeline used prior to HMM analysis. (B) An illustration of the HMM definition, preprocessing and post-stats.

Data Import
The first stage of hmm_1_preprocessing.m runs a short check
to ensure that the maxfilter preprocessed data can be found in
the location specified in the get_studyinfo datadir variable. The
data are then converted to SPM12 format and copied into a
spm_sss directory within the specified analysis directory. The
import is performed using osl_import.m and the copy with
spm_eeg_copy.m.

Coregistration
Registration between structural MRI and the MEG data was
carried out using RHINO (Registration of Headshapes Including
Nose in OSL). This uses scalp extraction tools in FSL and
is designed to make full use of Polhemus head shape points,
including those on the nose, during coregistration. In this case,
the data provided by (Wakeman and Henson, 2015) has been de-
faced to ensure participant anonymity in this publicly available
dataset. As such, here we perform the coregistration using
only the Fiducial landmarks, but generally recommend using a
large number of Polhemous headshape points across the scalp,
forehead and nose to ensure a high quality registration. The
coregistration is performed using osl_headmodel.m.

The importing and coregistration steps process file structure
and meta-data, and do not impact the MEG data itself. The
following analysis stages all involve manipulation and denoising
of the MEG data within the SPM12 objects in the spm_sss
directory.

Downsampling and Filtering
The MEG data were down sampled to 250 Hz to reduce
computational demands and the amount of disk space consumed

by the analyses. Secondly, a band pass filter was applied from 1–
45 Hz, to remove very slow trends and high frequencies in the
dataset.

These steps are implemented using spm_eeg_downsample.m
and osl_filter.m (a wrapper around spm_eeg_filter.m).

Bad Segment Detection
Time segments containing artifacts were detected using an
automatic algorithm to ensure reproducibility and avoid user
bias that may be introduced by manual artifact detection.
Bad segments were rejected by identifying outliers in the
standard deviation of the signal computed across all sensors
in 1s non-overlapping windows. Outliers were identified using
the generalized extreme Studentized deviate method (Rosner,
1983) at a significance level of a 0.05 and with the maximum
number of outliers limited to 20% of the data set. The
windows corresponding to the outliers were then marked as bad
samples in the continuous dataset and excluded from subsequent
preprocessing and analysis. The bad segment detection is
performed using osl_detect_artifacts.m which returns an SPM
object with any identified bad segments marked as artifact
events.

Independent Component Analysis
Further de-noising was applied using temporal Independent
Components Analysis (ICA) across the sensors using the FastICA
algorithm (Hyvarinen, 1999) on only the ‘good’ time-samples
remaining after Bad Segment Detection, and was run separately
on each session of data. ICA separates a signal into a set
of additive non-Gaussian subcomponents that are statistically
independent from one another. These components may be
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inspected to identify components that describe ‘noise’ sources in
the data. These noise components may then be removed from
the analysis. Importantly, each Independent Component is the
length of the whole recording and as such its removal will have
some effect on every sample. Therefore, if a component identifies
a short-lived artifact, its subtraction will still have an affect on the
rest of the dataset. Given this, we use ICA to identify artifacts
that reoccur regularly throughout the entire dataset such as eye
movement and the heartbeat. Any short-lived artifacts or periods
of high variance should be removed in the bad segment detection
stage. If the ICA yields components with large brief artifacts,
we recommend returning to the bad segment detection and
ensuring that the duration of the artifact is marked as bad, before
re-estimating the ICA on the remaining data.

The ICA components were correlated with the
Electrooculogram (EOG) and Electrocardiogram (ECG)
artifact channels to identify likely ‘noise’ components. Any
components with a correlation greater than r = 0.5 were removed
by subtraction of those spatio-temporal components from
the decomposition. The results were checked by hand if: a)
the session had zero or greater than four noise components,
or b) if no candidate noise component was found for the
EOG or ECG. On average, 2–3 components were rejected
across the 114 scan sessions. The ICA is performed using
osl_africa.m which performs the ICA estimation, automatic bad
component detection and reconstruction of the data from the
good components. This returns an SPM object with the ICA
reconstructed data included as an online-montage.

Sensor Normalization
The Elekta Neuromag system contains both Magnetometers
and Planar-Gradiometers. These sensor-types have variances on
different orders of magnitude and so do not equally contribute to
the covariance matrix calculation during beamformer estimation.
To reduce this disparity, the two sensor-types were normalized
prior to beamforming. An eigenvalue decomposition was
computed across sensors within each coil type, and the data
divided by the smallest eigenvalue within each (Woolrich et al.,
2011). This was carried out separately on each session of data.
This is performed using the normalize_sensor_data.m function
within OSL.

Source Localisation
The continuous sensor data were projected onto an 8 mm grid
in source space using a Linearly Constrained Minimum Variance
(LCMV) vector beamformer (Veen and Buckley, 1988; Woolrich
et al., 2011) carried out separately on each session of data.

The beamformer weights were estimated across an 8 mm grid
cast within the inner-skull of the MNI152 brain. Defining the
grid in MNI space ensures that we have the same number of
grid points in each dataset and that the location of these points is
comparable across participants. This is particularly relevant when
applying the parcellation in the next section.

A covariance matrix was computed across the whole time-
course and was regularized to 50 dimensions using PCA rank
reduction. Note that Maxfilter reduces the dimensionality of
MEG data to ∼64. Regularizing the covariance estimation to 50

dimensions removes the influence of the smaller components
in the dataset and preserves the contribution from the largest
components. A reduction to 50 dimensions was chosen as the
SSS Maxfilter reduces dimensionality to ∼64, which ICA further
reduces to ∼62 (an average of two ICA components were
removed per dataset). A rank of 50 is conservatively below this
upper limit on the dimensionality. The source localisation is
performed using osl_inverse_model.m.

Parcellation and Leakage Reduction
Parcel-wise time courses were estimated and orthogonalised
following the methods in (Colclough et al., 2015, 2016).
A weighted (non-binary) parcellation with 39 cortical regions was
applied. A single time-course was estimated per node from the
first principle component across voxels, with voxel contributions
weighted by the parcellation. Parcellation is performed using the
ROInets.get_node_tcs function within the ROInets module of
OSL.

Spatial leakage is a major confound when considering
network connectivity estimates in MEG source space. This
arises from the blurring of sources from their true locations
into neighboring regions. To attenuate these effects, symmetric
multivariate leakage correction was applied across the whole
network (Colclough et al., 2015). This is a multivariate extension
of previous orthogonalisation methods that identifies the set
of orthogonal time-courses that are least displaced from the
original, unmodified time-series. This is a conservative approach
that removes all zero-lag correlation from the dataset, and could
potentially be removing true neuronal functional connections
at, or close to, zero-lag. One interesting alternative is the
“innovations” approach, which looks to remove only the
spurious zero-lag interactions, by effectively estimating the
required orthogonalisation on the residuals of a multivariate
autoregressive processes (Pascual-Marqui et al., 2017). However,
this does require the choice of an appropriate model order
for the multivariate autoregressive process; and in practice on
real MEG data we have observed little difference between the
“innovations” and “symmetric” leakage correction approaches.
Another alternative is to build in models of the cross-talk
functions into the spatial leakage correction (Hauk and Stenroos,
2014).

Orthogonalisation is performed in the first stage
of hmm_2_envelope_estimation.m and hmm_3_embedded_
estimation.m as the two HMM variants are processed slightly
differently immediately prior to inference.

Epoching
Epochs were defined based on the trigger channel in each
session. Nine conditions were extracted. There are three
repeat conditions (First, Immediate and Last) of each of
three Face conditions (Famous, Unfamiliar and Scrambled).
A trial structure containing the start and end samples for
each epoch and the corresponding condition label was saved
for each session for later use on the HMM state time-course.
Crucially, the epoching was not applied to the MEG data
used for the HMM inference, rather, the continuous MEG
data is used without knowledge of the task structure or
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timings. For simplicity, HMM analyses use contrasts between the
three Face conditions across all repeat conditions. Differences
between the three repeat levels are not estimated in this
analysis.

Epoching is performed using spm_eeg_definetrial.m within
hmm_1_preprocessing.m.

Hidden Markov Model Inference
Two variants of the HMM were estimated. Firstly, an Amplitude
Envelope HMM (AE-HMM) was estimated to describe
broadband power following the methods in (Baker et al.,
2014). Secondly, we estimated a Time-Delay Embedded HMM
(TDE-HMM) to characterize spectrally resolved networks
characterized by Power-spectral densities and phase-locking.
We did not apply the HMM with Multivariate Autoregressive
observations (Vidaurre et al., 2016) due to the number of
channels (parcels) in this data, it is only effective at modeling a
smaller number of signals. Both the AE-HMM and TDE-HMM
are appropriate for application to large-scale brain networks
inferred from parcellated source-space MEG data. A summary
of the HMM definition, inference and post-statistics is shown in
Figure 2.

Both the Amplitude Envelope HMM and Time-Delay
Embedded HMM are specified through an options structure
that is passed with the data to the hmmmar.m function. This
structure specifies a wide range of options including the number
of states to infer, the type of observation model, the nature of the
inference and some optional preprocessing. More details of the
range of options that can be specified here can be found on the
HMM-MAR wiki page5.

The hmmmar.m function computes the inference of the
HMM parameters and returns several key variables. Firstly, the
hmm struct is the HMM-MAR object containing a range of
details about the state estimates, training options and priors.
More details can be found here6. Secondly, the Gamma and
vpath variables contain the inferred state time-courses. Gamma
contains the full a-posteriori probability of each state at each time
point, whilst the vpath contains the hard state assignment for
each time point (known as the Viterbi path) following a Viterbi
Decoding.

Amplitude Envelope HMM
The Amplitude Envelope (AE-HMM) was used as described
in (Baker et al., 2014). The AE-HMM infers a multivariate
Gaussian model on the amplitude envelopes of the
source time-series. This section accompanies the code in
hmm_2_envelope_estimation.m.

Data processing
The source time-courses were band-pass filtered between
2–40 Hz and symmetrically orthogonalised (see section
“Parcellation and Leakage Reduction”) before the amplitude
envelope was computed using the Hilbert Transform. The
envelopes were then smoothed with a 100 ms moving average

5https://github.com/OHBA-analysis/HMM-MAR/wiki/User-Guide#-hmm-mar-
model-estimation
6https://github.com/OHBA-analysis/HMM-MAR/wiki/User-Guide#struct

filter and normalized to have zero mean and standard deviation
of one. Bad segments that had been set to zero prior to ICA were
removed from the dataset and the continuous ‘good segments’
concatenated. The locations of the discontinuities between
the good segments were passed to, and accounted for, in the
HMM inference. This is important, in order to ensure that
the HMM does not try to explain temporally separated data
samples; for instance, the final sample in one good segment
being used to predict the first sample of the next. Finally, the
normalized envelope data were temporally concatenated across
participants. The resulting input to the HMM is a matrix whose
first dimension is the total number of ‘good’ samples across all
participants after concatenation and the second dimension is the
number of parcels.

Observation model
The observation model for each of the K states is a multivariate
normal distribution defined across N nodes. An N×1 vector of
mean values, and an N×N covariance matrix are specified.

Time Delay Embedded HMM
The Time Delay Embedded HMM (TDE-HMM) was used as
described in (Vidaurre et al., 2017b). The TDE-HMM infers a
multivariate Gaussian distribution describing a delay-embedding
of the source time-courses. This section accompanies the code
within hmm_3_embedded_estimation.m.

Data processing
The source time-courses were orthogonalised using Multivariate
Symmetric orthogonalisation (see section “Parcellation and
Leakage Reduction”). Bad segments were removed using the
same procedure as the preprocessing for the AE-HMM. The sign
ambiguity in the beamforming process means that data from the
same parcel from different sessions may have arbitrarily opposite
signs. Across a group-level dataset this can lead to suppression
between group-level phase relations between nodes. To reduce
this effect we applied the sign-flipping algorithm described in
(Vidaurre et al., 2017b).

The source-reconstructed time-courses for each parcel were
then time delay embedded using L lags. Here we set L to be
15, with values between −7 and 7. At 250 Hz this specifies
a 30 ms lag in both directions. Increasing this window will
increase sensitivity to lower rather than higher frequencies. The
embedding creates a large NLxS matrix where S is the number
of time samples in the dataset. The first dimension of this
matrix containing the spatial and lag information was reduced
by projecting the matrix onto the first 4N components of a PCA.
This resulted in a final data matrix of size 4NxS, which was then
used in the HMM inference.

Note that the number of PCA components retained across
the time-delay embedding in the previous step affects the range
of frequencies visible to the HMM. In general, fewer PCA
components will bias the HMM towards lower frequencies due
to the fact that lower frequencies tend to explain more variance
in the data. A choice of 2N recommended as the minimum value,
though in this case we chose 4N to ensure that the model can
observe higher frequency content such as beta band dynamics
(15–30 Hz).
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Observation model
Similar to the AE-HMM, the observation model for each of the
6-states is defined as a multivariate normal distribution. This
analysis is designed to emphasize the oscillatory signals within
the MEG source space data, as such we only model the 4Nx4N
covariance matrix within each state. The mean is not modeled in
this case, as we expect oscillatory signals to be zero-mean after
filtering and normalization.

Stochastic Inference
Once the data has been pre-processed and the observation model
defined, the inference is the same for the AE- and TDE- HMMs,
and makes use of the stochastic variational inference described
in (Vidaurre et al., 2017a). The options for stochastic variational
inference are selected by the variables starting with BIG in
the hmmar options structure (e.g., options.BIG∗). Critically, the
options.BIGinitbatch and options.BIGbatch specify the size of
batches to use in the inference. This must be shorter than
the number of elements in the T variable (i.e., the number
of continuous data segments). As a general rule, making the
batch size closer to numel(T) will make the inference slower and
closer to the standard, non-stochastic variational estimation. In
contrast, making the batch size smaller will make the inference
faster and less memory intensive, but potentially noisier. Here
we select a batch size of 15, meaning that the inference will
consider 15 continuous segments at each iteration. A batch size
of 10 or 5 is recommended for computers running on less
than 32 Gb of RAM. The Stochastic Inference will try to use
the parallel processing pool in MATLAB by default. On a very
high performance computer, or for ease of debugging, this can
be turned off by setting options.parallel = 0. This method is
tractable for very large datasets and allows for a fully Bayesian
estimation, providing full posterior distributions for each HMM
parameter.

Run-to-Run Variability
It is crucial to ensure that the HMM results is stable across
multiple runs of the inference. This step can be assess by running
the HMM multiple times and qualitatively comparing the results
of each iteration. A single run can be selected from amongst
the alternatives by taking the inference with the lowest value of
free-energy at the end of the inference. The free-energy is an
approximation to the model evidence and as such, the model
with the lowest free-energy can be taken as the one which best
explains the data without becoming too complex. Here, the HMM
inference was repeated ten times and analysis proceeds with the
iteration with the lowest free-energy.

HMM Global Temporal Statistics
Once the HMM has been inferred we can estimate a range
of statistics reflecting the properties of the HMM states. The
HMM inference returns a time course of posterior probabilities,
Gamma, representing the probability that a state is on at each
time point, and vpath, a Viterbi Path (Bishop, 2006) containing
the mutually exclusive state allocations. Global statistics about
the HMM dynamics were estimated from the Gamma time-
course, as the posterior probabilities they represent are not

mutually exclusive and are potentially more sensitive to cases
where two or more states are approximately equally probable.
First, the average life-time (also known as the dwell-time) of
each state was computed as the average time elapsed between
entering and exiting a state. Second, the fractional occupancy was
computed across all time within a single participant’s dataset as
the proportion of time spent in each state. Finally, the interval
length was computed as the time elapsed between visits to a state.
These metrics were computed in the same way for both variants
of the HMM.

Example code can be found in the Temporal Statistics
section of hmm_4_envelope_results.m and hmm_5_embedded_
results.m, the computation uses the functions getFractional
Occupancy.m, getStateLifeTimes.m and getStateInterval
Times.m.

HMM Validation
The HMM is highly sensitive to differences in variance; whether
they arise from dynamics in underlying neuronal behaviour,
biological artifacts (such as eye or head motion), acquisition
artifacts (such as sensor jumps, periods of flat data or zeros),
or differences between scan sessions (sensor noise or gain).
Ideally, the HMM should only represent biologically relevant
differences with a neuronal origin, so particular care must be
taken during data pre-processing and normalizing. Artifacts or
differences in noise that we might normally expect to “average-
out” across trials or sessions may still lead to considerable
distortion in the HMM inference; if a state is describing an
artifact, it cannot contribute to the description of the neuronal
dynamics.

The following practical checks are performed on the temporal
statistics of the of the HMM to identify whether we are describing
data artifacts or between session/subject variance:

1. States describing artifacts or session specific noise are
likely to exhibit unusual temporal statistics. If the overall
fractional occupancy or lifetimes for one or more states are
very different to the other states, then they may describe
artifacts. This can be confirmed by manual inspection of
the raw time-series during periods for which the state is on.

2. Similarly, the temporal statistics for the states should be
relatively consistent across sessions and participants. If a
single session (or participant) is described by a single state,
it is likely that a session specific difference in gain or noise
is driving the state time-course. If this is the case, then we
should check that the data are appropriately normalized
within sessions prior to concatenation.

In practice, these checks should be completed once the HMM
has been inferred on a new dataset, to identify any remaining
artifacts which may then be removed and the HMM re-inferred.
Once this process is complete, we can be confident that the
HMM is focused on relevant dynamics rather than spurious noise
sources. In the present dataset, these checks were used iterate
tuning of the parameters used in the automatic bad-segment and
ICA component rejection.

Frontiers in Neuroscience | www.frontiersin.org 8 August 2018 | Volume 12 | Article 603

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00603 August 25, 2018 Time: 19:47 # 9

Quinn et al. Task-Evoked HMM Network Analysis

HMM Task-Evoked Temporal Statistics
To see if the HMM state time-course, which has been inferred
in an unsupervised manner with no knowledge of the task
timings, shows task dependencies, we perform an analysis
similar to an event-related potential/field on the Gamma time-
course (i.e., the posterior probability of each state at each
time-point). Specifically, the continuous time courses of the
posterior probability, representing the probability that a state is
on at each time point, were epoched around the presentation
of the stimulus, and then averaged across trials within each
participant. The resulting evoked fractional occupancy represents
the proportion of trials in which the HMM was in a given state for
each time-point within the epoch.

The evoked fractional occupancy was normalized by the
baseline period (−130 to −30 ms before object onset), and the
post-stimulus evoked fractional occupancy was passed into a
two-level GLM. The first level GLM fits the evoked fractional
occupancy across trials at each time-point for each participant
using a trial-wise design matrix, and the second level computes
the effect across participants at the group level, while modeling
the between-subject variance as a random effect.

The first-level GLM has a design matrix with four regressors: a
constant vector representing a mean-term and three regressors
representing each trial-type by selecting the trials of each trial
type from the famous face, unfamiliar face and scrambled faces
conditions. The three condition regressors were demeaned prior
to fitting the GLM. The parameter estimates for these predictors
are summarized with three Contrasts Of Parameter Estimates
(COPEs). One mean COPE and two differential contrasts are
computed from the resulting parameter estimates. One contrast
between faces and scrambled faces, and a second between the
famous and unfamiliar faces.

The first-level estimates were carried forward to the group
level, where the mean of each of the first level COPEs were
fitted across participants with the first-level VARCOPEs included
as a mixed-effects term. Statistical significance at the group-
level was assessed using non-parametric permutations by sign-
flipping (Nichols and Holmes, 2002; Winkler et al., 2014). One
thousand permutations were computed with a maximum statistic
taken across time and states to correct for multiple comparisons.
A time-point was considered to be significantly different from
baseline if its group level cope exceeded the 95th percentile of
the null distribution. These statistical procedures represent a
test again the null hypothesis that the distribution of first level
COPEs for each contrast has a zero mean. This is a standard
approach for group-level statistics in neuroimaging (Winkler
et al., 2014; O’Neill et al., 2015, 2017a). Other established
statistical approaches could also be applied to the epoched
Gamma time-courses, such as Fieldtrip’s timelock statistics7.

Spatial Maps and Connectivity
The spatial distribution of power or connectivity can be
estimated directly from the fitted state-specific distributions in
the observation model. For example, if we have a Multivariate
Normal observation model fitting the mean and covariance

7http://www.fieldtriptoolbox.org/development/cluster_permutation_timelock

of power envelopes, we may take the expectation of those
distributions as the characteristic power and functional
connectivity (in the form of power correlations). This provides
an absolute value for each dimension of the observation model
that highlights the features driving the inference. This method
was applied to the results of the AE-HMM to generate state-wise
mean activation maps directly from the values in the observation
model. More specifically, the spatial maps from the AE-HMM
are computed directly from the observation model by taking the
expectation of the posterior distribution of the mean envelope
value for each state and parcel. The inferred parameters of
these distributions are contained within hmm.state. Example
computation can be found in the Mean Activation Maps section
of hmm_4_envelope_results.m.

We may also estimate a state’s characteristics post hoc by
computing metrics across all time points when a particular state is
being visited. This is more computationally intensive than direct
description via the observation model, but allows for a wide range
of state descriptors to be used beyond the information directly
available in the observation model. This approach was used to
estimate state-wise Power and Cross Spectral Densities from the
results of the Embedded HMM. A state-wise multi-taper was used
to estimate power and phase-locking coherence from the raw
data weighted by each state’s posterior probability following the
method in (Vidaurre et al., 2016, 2017b). This was repeated for
each state and each parcel and was used as the basis of a whole-
brain power map or Coherence (Nunez et al., 1997) network
analysis.

The state-specific spectra are computed for the TDE-
HMM analysis in the Statewise Spectra section of
hmm_3_embedded_estimation.m. This makes use of the
hmmspectramt function to compute the multitaper spectrum for
each parcel and state separately for each participant. These are
visualized in hmm_5_embedded_results.m.

Spectral Modes
The Power and Cross Spectral Density across the parcellation
was computed from the spectral range of 1–40 Hz for each
state. To aid visualization, Spectral modes are then computed by
computing a Non-Negative Matrix Factorisation (NNMF) across
the PSD estimates. The factorisation is carried out across all
nodes, connections, states and participants. This was computed
across 500 replicates of the Alternating Least Squares algorithm
implemented in the MATLAB Statistics Toolbox (Berry et al.,
2007). This is a data driven approach for spectral factorization
and avoids setting arbitrary frequency bands of interest. The
NNMF computes a low-rank approximation to the full solution.
As this model is not unambiguously defined, the results can vary
on repeated runs. Therefore, to ensure that the resulting spectral
modes are interpretable as separate frequency bands, the NNMF
was repeated twenty times an the results whose spectra was best
approximated by single Gaussian distributions selected as the
final result. This ensures that a factorisation with approximately
unimodal spectra is used to visualize the HMM states. The four
spectral modes approximately correspond to theta, alpha, beta
and low gamma bands (see the central column in Figure 5). State-
wise spatial maps and coherence networks were then estimated
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for each spectral factor and also thresholded for visualization
using the GMM approach described above.

The NNMF is computed in the Spectral Mode NNMF section
of hmm_5_embedded_results.m using the utils.run_nnmf.m
function.

The NNMF is an optional step that avoids the specification
of a priori frequency bands, however the user can choose
to work within specific frequency bands if preferred. This is
achieved by indexing into the frequency dimension in the
psd or coh variables created by the multi-taper estimation in
hmm_3_embedded_estimation.m. This approach is applied to
generate the ‘broadband’ (1–30 Hz) network plots in Figure 4.

The phase-locking Coherence networks were thresholded
for visualization using a Gaussian Mixture Model (GMM), as
described in (Vidaurre et al., 2017b). This takes the distribution
of all connection strengths, and models it as a mixture of two
Gaussians, corresponding to one population of with typical
connection strengths, and population with connection strengths
that have unusually high values. Only the connections that
are more probable to have been drawn from the Gaussian
representing the high-valued population of connections (with

the higher mean) are shown in the results. If the distribution
is well described with a single Gaussian, we do not show any
connections. This is implemented in the teh_graph_gmm_fit.m
and used at the end of the Spectral Mode NNMF section of
hmm_5_embedded_results.m.

RESULTS

Amplitude Envelope HMM
The Amplitude Envelope HMM is inferred on the amplitude
time-courses, and can identify states characterized as having
distinct multi-region spatial patterns of amplitude and/or
amplitude correlations.

Global Temporal Statistics
The global temporal properties of the HMM are inspected
through the state time-courses and posterior probabilities. The
fractional occupancies, average lifetimes and interval times are
summarized in Figures 3A–C. By inspection, we can see that the
temporal properties of the states are relatively consistent. The

FIGURE 3 | Results summary for the Amplitude Envelope HMM. The right column shows the overall temporal statistics estimated from the continuous data without
considering task structure. The fractional occupancy (A), Lifetimes (B) and Interval times (C) are shown. The middle column shows the group level results of the
GLM analysis computed from the task-evoked fractional occupancies. (D) Shows the mean change in occupancy across all trials relative to baseline. Periods of
significant change are indicated by a solid line at the bottom of the plot color-coded to state. (E) The result of the differential contrast between the Face and
Scrambled Face stimuli. (F) The results of the differential contrast between the Famous and Unfamiliar face stimuli. (G) The mean activation maps for the six states
extracted from the HMM observation models. The activation in each state is z-transformed.
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FIGURE 4 | Results summary for the Time-Delay Embedded HMM, Note that these results are independently estimated from the results in Figure 3. The right
column shows the overall temporal statistics estimated from the continuous data without considering task structure. The fractional occupancy (A), Lifetimes (B) and
Interval times (C) are shown. The middle column shows the group level results of the GLM analysis computed from the task-evoked fractional occupancies.
(D) shows the mean change in occupancy across all trials relative to baseline. Periods of significant change are indicated by a solid line at the bottom of the plot
color-coded to state. (E) the result of the differential contrast between the Face and Scrambled Face stimuli. (F) the results of the differential contrast between the
Famous and Unfamiliar face stimuli. (G) The mean activation maps and Coherence networks for the six states extracted from the post hoc multi taper estimation.
These results reflect wideband activation in each state and are z-scored across parcels.

average lifetime is around 100 ms and the mean interval is around
500–1000 ms, both consistent with previous literature (Baker
et al., 2014). One exception is State 1, which has a much longer
interval time of around 2.5 s, consistent with its lower occupancy.

Although all of the HMM inferences were blind to any
knowledge of the task timings or structure in the data, the
state dynamics may still have captured task relevant changes.
These may be recovered by epoching the posterior probabilities
of each state and averaging across trials for each time point
in the epoch, to create the task-evoked fractional occupancy.
Task-evoked analysis can then proceed on a state-by-state basis
with the epoched posterior probability of each state. The results
for the two-level GLM analysis of the trial-wise posterior
probabilities of the HMM state time-courses can be seen in
Figures 3D–F. The horizontal bars indicate periods of time
which show significant increases in probability after sign-flipping
permutations with maximum statistic multiple comparisons
correction. All the states show some degree of modulation in
their occupancy after the stimulus onset. We focus on the states
whose occupancy increases. As the probability of each state must
sum to one at any time point, an increase in the probability

of one state will lead to a decrease in one or more of the
others.

Figure 3G shows a spatial map of the mean amplitude
envelope across all parcels in each state, this is taken as the
expectation of the posterior distribution of envelope mean in
the observation model. As with the previous application of the
envelope HMM (Baker et al., 2014), these spatial maps reveal
an interpretable set of networks. As the networks in this study
come from data within a task context, they do not show an exact
correspondence with the resting state networks as seen in (Baker
et al., 2014). Instead, they reflect networks that are associated with
the processing demands imposed by the visual decision-making
task incorporating a motor response.

Next, we focus on individual states showing significant
increases in occupancy relative to the pre-stimulus period.

Early occipital response
State 4 shows the earliest increase in task-evoked occupancy,
peaking around 150 ms after stimulus onset with an increased
occupancy of around 13% (Figure 3D). Neither of the
condition contrasts between Faces and scrambled faces show
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FIGURE 5 | The spectrally resolved power maps and network coherence plots for the four task responsive states in the Time-Delay Embedded HMM. A shows the
band-limited power for state 1, which showed an early increase in task-evoked occupancy. The top, middle and bottom rows show the power and connectivity for
the low, alpha and beta bands respectively. (B–D) show the responses for the three other task responsive states with the same layout as (A). (B,C) show that the
majority of the power and connectivity in states 3 and 5 reside in the low frequencies in frontal cortex. Finally, (D) shows that the later responding motor state 6 is
characterized by high power in the motor cortex.

a significant change in occupancy (Figures 3E,F) though the
Faces>scrambled faces contrast shows a slight increase during
the same time-window. This state is characterized by high values
in the mean amplitude envelope across occipital cortex relative
to the other states (Figure 3G). Given the timings and spatial
distribution of the power of this state, it is likely to reflect the
early visual processing of the stimuli.

Frontal response
State 5 has a sustained increase in occupancy during the latter
part of the epoch, between 350 and 800 ms (Figure 3D). The
increase reaches significance around 100 ms after the peak of state
4 and has dropped below threshold by the time of the average
response at 932 ms. The contrast between Faces and Scrambled
faces shows that the face stimuli have a larger occupancy than
scrambled faces between 500 and 700 ms after stimulus onset
(Figure 3E). In addition, the contrast between Famous and
Unfamiliar faces reveals that famous faces lead to a greater
occupancy in state 5 than unfamiliar faces during the same time-
window as the previous contrasts, though the magnitude of the
effect is much smaller. State 5 is characterized by high values in
the mean envelope amplitudes in the frontal lobe relative to other
states (Figure 3G).

Non-task responsive states
While not showing any significant changes in occupancy
when locked to stimulus onset, the remaining states still

characterize meaningful networks related to overall brain
dynamics independent of the task of interest. State 2 is associated
with high envelopes in the occipital and frontal lobes; and shows
a small, non-significant increase in occupancy around 100 ms
after stimulus onset. State 3 shows a left-hemisphere-lateralized
fronto-temporal network whose task-evoked occupancy is similar
to State 5.

Time-Delay Embedded HMM
The Time Delay Embedded HMM is used on the raw time
courses, rather than on the envelope time courses as is the case
with the Amplitude Envelope HMM. Furthermore, it has the
potential to identify states that have distinct multi-region spectra
and/or phase locking networks.

Global Temporal Statistics
As with the Amplitude Envelope HMM we can inspect
the state time-courses to characterize their global dynamics
(Figures 4A–C). All six states have similar fractional occupancies
of around 15–20%, with state 2 occurring less than the other five
states. The lifetimes of the Time Delay Embedded HMM states
average between 50 and 100 ms, slightly faster than the Amplitude
Envelope HMM. This is a reflection of the faster dynamics
within the raw time-courses that are lost when computing the
amplitude/power envelopes. The interval times average around
500 ms, with the exception of state 2 that takes around 1–2 s to
reoccur, consistent with its lower global occupancy.
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As with the Amplitude Envelope HMM, the state-wise task
dynamics are recovered by epoching the posterior-probabilities
of each state time-course and computing two first-level GLM
fits, the first isolating the grand mean and the second computing
contrasts between the Face and Scrambled face stimuli and
the Famous and Unfamiliar Face stimuli. These results can be
seen in (Figures 4D–F). In contrast to the Amplitude Envelope
HMM, here we describe the states in full frequency resolution
by computing the Power and Cross Spectral Densities using
a multitaper on the raw data weighted by the posterior state
probabilities. The wideband Power Spectral Density maps can be
seen in Figure 4G.

Next we describe individual states that show significant task
responses.

Early occipital response
State 1 has a significant increase in occupancy across trials around
150 ms after stimulus onset (Figure 4D), this increase is larger
for the Faces than the Scrambled Faces stimuli (Figure 4E), but
does not significantly differ for the Famous and Unfamiliar Faces
(Figure 4F). The PSD shows that state 1 has relatively large
broadband PSDs and coherences within the occipital lobes. This
state is generally similar to State 4 in the envelope HMM, but
we are now able to resolve coherence and a significant difference
between the stimulus conditions.

Fronto-temporal response
Shortly after the occipital response, State 5 shows an increase in
task-evoked occupancy. This increased probability is sustained
from just before 200 to around 800 ms (Figure 4D), the increase is
significantly larger for Faces than Scrambled Faces stimuli around
190 ms after stimulus onset (Figure 4E), this difference is very
short-lived compared to the sustained increase in the mean across
conditions, suggesting that the onset of State 5 might be earlier
for Face stimuli. There is no significant difference between the
Famous and Unfamiliar faces (Figure 4F). State 5 is characterized
by a fronto-temporal power distribution with a peak in the
Right Hemisphere temporal pole (Figure 4G). There is not an
equivalent state in the envelope HMM, which only shows the
occipital response within 200 ms of stimulus onset.

Frontal response
State 3 shows a sustained increase in task-evoked occupancy
between 300 and 800 ms (Figure 4D). The occupancy of this
state is larger for Face than Scrambled Face stimuli between 550–
700 ms (Figure 4E) and briefly larger for Famous than Unfamiliar
faces around 750–800 ms (Figure 4F). The power distribution
of this state localizes it to within the frontal lobes. This state is
similar to State 5 in the Amplitude Envelope HMM.

Post-movement motor response
Finally, State 6 has an increased occupancy starting from 1300 ms
after stimulus onset (Figure 4D). Crucially, this occurs around
400 ms after the average response time from the button press,
coinciding with the expected timing of the post-movement beta
rebound. The power distributions of State 6 show power in left
hemisphere motor cortex and right hemisphere parietal lobe

(Figure 4G). This response shows no significant difference for
either of the condition contrasts.

Non-task responsive states: State 2 and 4 do not show any
significant changes in task-evoked occupancy (Figure 4D), or in
either of the condition contrasts (Figures 4E,F). They correspond
to a lateral occipital and a motor state respectively.

Frequency Resolved State Description
We have only considered the wideband spectral content of the
HMM states up to this point, yet the power correlations and
coherence in MEG networks are known to differ across frequency
(Hipp et al., 2012). Next, we breakdown the task responsive states
to describe their frequency content as a complement to the results
in Figure 4. A NNMF is used to identify modes within the power
spectra across all participants and nodes. As this factorization
is not uniquely identifiable, it was run several times until the
resulting modes were unimodal to ensure that the results are
readily interpretable, effectively imposing the prior assumption
that we wanted to identify modes that were indeed unimodal.
Figure 5 gives a summary of the power and phase-locking
of the task-responsive states from the Time-Delay Embedded
HMM across the three identified NNMF modes, which broadly
correspond to low-frequency, alpha and beta bands.

The power and coherence in State 1 reside almost exclusively
in the alpha band (Figure 5A). In contrast, States 3 and 5
are characterized by low-frequency power and coherence in the
frontal lobes (Figures 5B,C). Finally, the motor activation in State
6 is strongest within the beta band (Figure 5D).

HMM Reconstructed Time-Frequency Responses
As the Time Delay Embedded HMM provides us with a time-
course and a spectrum for each state, we can use this to construct
an alternative to task evoked standard time-frequency plots.
Figure 6 shows a summary of the TF response estimated by
a 5-cycle wavelet transform and by the sum of the state-wise
outer product of the task-evoked occupancy and the state PSD.
The HMM-reconstructed TF response can be thought of as a
regularized (or low-rank approximation) of the full TF plot and
reflects the dynamics as represented by the HMM. Note that the
task-evoked occupancy is the same for each parcel, the difference
between parcels is carried by the spectrum, which is estimated for
each parcel and state using a multi-taper.

The HMM-reconstructed TF responses are able to reconstruct
the most prominent features of the wavelet plots. Figure 6A
shows the response within the Occipital Pole. The HMM plot
is able to characterize an early increase in alpha, followed by a
desynchronisation and rebound around 1300 ms after stimulus
onset (Figure 6B). This is primarily carried by the alpha power
and early task-evoked occupancy change within State 1. In
contrast, the response in parietal cortex does not show a strong
evoked response (Figure 6C). Instead it is characterized by
a more sustained increase in low-frequency or Theta power
between stimulus onset and the button press followed by a
rebound in Beta power. The HMM is able to reconstruct these
patterns of activity using States 5, which is associated with low-
frequency power in this parcel; and State 6, which shows a beta
peak (Figure 6D).
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FIGURE 6 | The time-frequency responses from two parcels estimated by Wavelet transform or constructed by the task-evoked state occupancies and state-wise
power spectra. (A) A 5-cycle wavelet and the HMM constructed Time-frequency plot for the Occipital Pole parcel time-course. The state-wise spectra are shown in
the left-hand subplot and the task-evoked occupancies in the bottom subplot. The overall time-frequency response is constructed from the outer product of these
vectors summed across states. (B) A 5-cycle wavelet transform and HMM constructed Time-Frequency plot for a Motor cortex parcel.

DISCUSSION

Hidden Markov Models can describe the switching dynamics of
large-scale brain networks on short, cognitively relevant time-
scales. Here, we outline how a HMM can provide a framework
for describing trial averaged induced power changes in task
MEG data. Crucially, the HMM is able to describe dynamics
arising from either sustained increases in oscillatory power
or increase in the rate or amplitude of transient bursting
activity. This rich description of rapid network dynamics
in brain networks is tractable at both fast time-scales and
across large-scale brain networks. The present results show
that rapid switching between large brain networks estimated
without knowledge of any task structure can carry pertinent
task structure and provide a rich description of how the
brain solves a task by dynamic reorganization of large-
scale brain networks. The AE-HMM and TDE-HMMs yield
broadly consistent results, though the TDE-HMM – working
on the raw time-series rather than collapsing by broad-band

enveloping – is directly sensitive to spectral content and is
able to resolve a richer description of the task structure at
higher temporal resolution including phase relationships among
multiple regions.

Statistical Assessment
Statistical testing of dynamic networks can lead to combinatorial
explosion of tests across connections, time and experimental
conditions. In electrophysiological data, frequency often becomes
an essential additional dimension. This leads to both difficulty in
establishing and summarizing the most salient effects in the data
and ensuring that multiple-comparisons correction is carried out
appropriately. The HMM aids in both of these issues. The state
observation models naturally provide high-level summaries of
the data and statistics can be performed on a limited number
of state time-courses rather than across individual parcels,
connections and frequencies. As such, the HMM is able to
describe complex, dynamic networks in a tractable, interpretable
and statistically both valid and efficient way.
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Transient States and Bursting
Oscillations
The task-evoked structure within this paper arises from epoching
the HMM state time-courses after inferring state time-courses
without knowledge of task events or timings. The resulting
task-evoked occupancies are smooth and often imply sustained
changes in occupancy throughout the task epoch, yet they are
constructed from transient states that are discrete at the single
trial level. For instance, state 5 in the TDE-HMM shows a
sustained increase in task-evoked fractional occupancy lasting
around 600 ms starting from 175 ms after stimulus onset. Yet, the
average lifetime of each state visit for state 5 is around 80 ms. This
result is in line with recent work which suggests that task-evoked
time-frequency responses occur from brief bursts of oscillation
which only appear to be sustained once we average across trials
(Shin et al., 2017). This bursting perspective suggests that some
neuronal oscillations arise from transient events that may be
better characterized by their rate or duration rather than absolute
power. Indeed, such parameters are cognitively relevant across a
range of data modalities (Shin et al., 2017). In addition, deep brain
stimulation selectively targeted at transient bursts in beta power
outperforms tonic stimulation in reducing motor impairment
in Parkinson’s Disease (Tinkhauser et al., 2017). In that respect,
HMM – by its discrete nature on single-trial level - might help
to uncover mechanisms such as oscillatory bursting that so far
have been buried in the averages performed by conventional
time-frequency analysis.

HMM in Relation to Sliding Windows and
ICA
Hidden Markov Modeling addresses some of the limitations of
sliding window approaches for estimating dynamic functional
connectivity (O’Neill et al., 2017a). Whilst sliding window
methods estimate connectivity within short, uniform data
segments spanning the continuous time-series, the HMM
decomposes the data efficiently and unsupervised by inferring
adaptive data segments for each state and estimating the
connectivity across all visits to that state. This removes the
necessity of pre-specifying window length and the need for
windows to be sufficiently long to robustly estimate a large-scale
functional connectome. Instead, the features of these windows
(such as distribution of life-times etc.) become interesting
properties in themselves; they are accessible to analysis and might
carry functional significance.

While we are proposing that the HMM helps to overcome
some of the limitations of sliding window approaches, clearly
sliding-window approaches are still important and useful. This
includes when working at slow time-scales, for which the
requirement of using longer windows is not prohibitive; and
when working with metrics of functional connectivity that cannot
be straightforwardly represented as a generative model in the
HMM.

Another alternative approach to network dynamics is
temporal ICA estimation, which identifies components within a
dataset based on their temporal independence. A shortcoming
of ICA is that standard ICA components are based exclusively

on spatial features. HMM states, instead, are probability
distributions that can capture rich spectral properties in the data,
including information of power and phase. This is the case of the
embedded HMM and the HMM-MAR. The HMM thus provides
a more powerful approach for characterizing spectrally-defined
networks in electrophysiological data.

Limitations
The choice of parcellation is an important preprocessing stage;
parcellation is a spatial dimensionality reduction that makes
the HMM network modeling more tractable and robust to
small spatial variations across participants. The choice of atlas
is crucial; it defines the sampling across space and will ideally
reflect the effective resolution of the underlying source solution.
Here, we have used a cortical parcellation from (Colclough
et al., 2015). This 39 region parcellation has been previously
used to reliably estimate large-scale static functional connectivity
networks in MEG (Colclough et al., 2017, 2016). The use of
such a relatively coarse parcellation is consistent with evidence
that the effective dimensionality in MEG source space (following
Maxfiltering) is approximately 64 (Taulu and Simola, 2006),
and with the findings from an adaptive parcellation approach
(Farahibozorg et al., 2018). Nonetheless, exploring the definition
of ‘optimal’ functional parcellations is an active field of research
in both fMRI and MEG (Glasser et al., 2016; Farahibozorg
et al., 2018). Note that the pre-processing code can easily make
use of a different parcellation by inputting a different nifti file
into the ROInets.get_node_tcs call in hmm_1_preprocessing.m.
However, it should be noted that the number of parcels should
be less than the rank of the data (which in our case was ∼60
following Maxfilter and ICA denoising) in order for the spatial
leakage correction to work, and which is clearly a sensible
constraint to apply regardless.

The HMM makes a number of assumptions to ensure that the
inference is tractable. Firstly, we assume a fixed number of states
(K). The objective is not to establish the ‘correct’ number of states,
but to identify a number that provides a description of the dataset
at a useful granularity. This is analogous to the choice of the
number of components in an ICA decomposition. Nonetheless,
as in ICA, care must be taken to ensure that the results are
reasonably robust to the choice of K. Here we followed the
approach in (Baker et al., 2014) who explored the network maps
from a range of choices of K. Increasing K above 6 did not change
the topologies of the most prominent states or their task profiles.
For simplicity in this tutorial paper, this test was performed
on the envelope HMM and applied to both the AE-HMM and
TDE-HMM.

Another core assumption in the HMM is that the states are
mutually exclusive, in that only a single state may be active
at a single time-point. This may be potentially undesirable in
descriptions of brain dynamics in which multiple networks
are often though to operate in parallel. However, the Bayesian
implementation of the HMM inference used here provides the
posterior probabilities of each state at each time point are also
returned in the variable Gamma. These posterior probabilities
are not mutually exclusive and may identify times in which two
or more states are equally probable. Further, it is worth noting
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that network multiplexing can also be realized at slower time
scales, for example, through temporal correlation of the rate of
occurrence of state fractional occupancies at slower time scales.
Addressing the information contained in the state time courses at
multiple time scales is an important area for future investigations.

Future Work With HMMs
The HMMs presented in this paper are designed to explore
whole brain states during continuous data recordings that
are then interrogated to explore state-wise task dynamics. As
such, the results focus on the large-scale trends in power and
functional connectivity during the task leading to networks
describing effects such as an early alpha response in occipital
cortex or a post-movement beta rebound in motor cortex. More
subtle effects within the data could be probed with hypothesis
driven design choices when setting up the HMM. For instance,
the HMM could be inferred on a parcellation restricted to
occipital cortex to further explore the states involved in visual
processing. Similarly, the HMM inference could be restricted
in time to infer states only from epochs of interest within the
task.

We may also adapt the constraints on the HMMs observation
model or state time-courses to explore a specific question. These
analyses may require additional code and analysis steps not
detailed here, but are potentially of interest to a range of cognitive
and clinical applications. For example, a HMM may be inferred
on one dataset to identify a set of observation models defining
states. These states can then be fixed and state-time courses
inferred from a second dataset. Another alternative is to constrain
the order of state visits and only allow the duration to vary.
This approach was applied in (Baldassano et al., 2017) to identify
individual variance in event structure when viewing or recalling
video sequences. Finally, the HMM inferred in this manuscript
is unsupervised with respect to task and condition structure,
however the inference may be tuned to perform supervised
learning. We may infer a HMM whose states allow the maximum
decoding of task conditions or behavioral performance.

To summarize, we have presented a pipeline for the analysis of
rapid dynamics in large-scale brain networks using HMMs. The
HMM is a flexible framework for describing the induced power
changes in electrophysiological datasets and provides insight into
how smooth trial-averaged responses can be constructed from
transient bursting events. The utility of the HMM framework
in task data is demonstrated in the very rapid task-evoked and
condition sensitive changes in fractional occupancy of the states;
representing dynamic functional connectivity on cognitive time-
scales.
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