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The epithelial–mesenchymal transition (EMT) is a highly conserved program necessary 
for orchestrating distant cell migration during embryonic development. Multiple studies 
in cancer have demonstrated a critical role for EMT during the initial stages of tum-
origenesis and later during tumor invasion. Transcription factors (TFs) such as SNAIL, 
TWIST, and ZEB are master EMT regulators that are aberrantly overexpressed in many 
malignancies. Recent evidence correlates EMT-related transcriptomic alterations with 
metabolic reprograming in cancer. Metabolic alterations may allow cancer to adapt to 
environmental stressors, supporting the irregular macromolecular demand of rapid pro-
liferation. One potential metabolic pathway of increasing importance is the hexosamine 
biosynthesis pathway (HBP). The HBP utilizes glycolytic intermediates to generate the 
metabolite UDP–GlcNAc. This and other charged nucleotide sugars serve as the basis 
for biosynthesis of glycoproteins and other glycoconjugates. Recent reports in the field 
of glycobiology have cultivated great curiosity within the cancer research community. 
However, specific mechanistic relationships between the HBP and fundamental path-
ways of cancer, such as EMT, have yet to be elucidated. Altered protein glycosylation 
downstream of the HBP is well positioned to mediate many cellular changes associated 
with EMT including cell–cell adhesion, responsiveness to growth factors, immune system 
evasion, and signal transduction programs. Here, we outline some of the basics of the 
HBP and putative roles the HBP may have in driving EMT-related cancer processes. With 
novel appreciation of the HBP’s connection to EMT, we hope to illuminate the potential 
for new therapeutic targets of cancer.
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inTRODUCTiOn

Since the time of Otto Warburg in the 1930s, scientists have been 
intrigued by the unique metabolic profile of cancer cells (1, 2). 
Current research corroborates Warburg’s original observation 
that cancer prefers glycolysis over mitochondrial oxidative phos-
phorylation (OXPHOS) (3). Initially, this metabolic reprograming 
appeared paradoxical due to the inefficiencies of glycolysis (i.e., 
~38 ATP from OXPHOS versus 2 ATP from glycolysis). Despite 
early conflicting viewpoints on the Warburg Effect, aerobic glyco-
lysis stands at the center of cancer metabolism demonstrating its 
importance as an “Emerging Hallmark of Cancer” (4).

Despite decades of research, the molecular advantages of the 
Warburg effect in cancer are still being interrogated (5). One 
popular explanation is the “Glycolytic Intermediate Diversion” 
hypothesis (6, 7). This hypothesis suggests that glycolysis is well 
positioned to support anabolic cell growth as it provides the 
metabolic intermediates (e.g., nucleosides, amino acids, and 
other carbon compounds) necessary for enzymatic reactions and 
organelle assembly. A second hypothesis involves the notion of 
“Cell Subpopulations” (8–10). This hypothesis posits that lactate 
from “Warburg-effect cells” is sent to neighboring cells, which 
utilize lactate through the citric acid cycle. The cell subpopula-
tions symbiotically trade off waste for energy to support cancer 
progression. Interestingly, both hypotheses demonstrate the 
ability of the neoplastic state to commandeer normal biological 
processes observed in development and normal physiology (4).

The energetic demand required to survive adverse tumor 
environments is likely only a fraction of the functional sig-
nificance underlying cancer metabolic reprograming. It is likely 
that glycolytic byproducts reinforce the cancer phenotype by 
modulating not just metabolic maintenance but also altering 
other cellular structures and functions. In particular, the role 
of post-translational modifications (PTM), such as glycosyla-
tion, are becoming of increasing importance as they provide 
rapid, reversible adaptations to the stressors that occur during 
early tumorigenesis. Recent studies have revealed new poten-
tial cancer treatment strategies specifically targeting these 
 glycoconjugates (11).

Interestingly, one metabolic pathway with the potential of 
impacting functional macromolecular structures in cancer is an 
understudied pathway called the “hexosamine biosynthetic path-
way” (HBP) (12–15). One downstream metabolite of this path-
way, uridine diphosphate–N-acetylglucosamine (UDP–GlcNAc), 
serves as an essential building block for glycoconjugate biosyn-
thesis. This pathway is well positioned to not only affect metabolic 
intermediates but also functional glycans that accelerate cancer 
progression (11, 16). The HBP has only recently gained traction 
in cancer biology and is becoming of increasing importance (17).

The epithelial–mesenchymal transition (EMT) is a conserved 
epithelial plasticity program capable of impacting cellular 
morphology, migration, stem cell-ness, among other malignant 
phenotypes (18). Moreover, the EMT is involved throughout the 
natural history of cancer from tumorigenesis to late metastatic 
progression (19–21). Master transcriptional regulators of EMT 
(i.e., TWIST, SNAIL, and ZEB) are elevated in a wide range of 
primary and metastatic tumors. Recent evidence demonstrates 

that the expression of key enzymes in the HBP is upregulated in 
cancer cells with a mesenchymal phenotype (22). Thus, in this 
review, we will highlight some of the relevant glycoconjugates 
downstream of the HBP and the implications this has on EMT-
mediated cancer programs.

THe ePiTHeLiAL–MeSenCHYMAL 
TRAnSiTiOn

Epithelial–mesenchymal transition is an essential epithelial 
plasticity program deployed during development (23, 24), wound 
healing (25–27), and stem cell maintenance (28–31). The major 
characteristics of EMT include loss of cellular adhesion, reor-
ganization of cytoskeleton, loss of cellular polarity, and a switch 
from epithelial to mesenchymal gene expression (18). Many of 
these EMT pathways are activated by extracellular signaling, 
highlighting the importance of the tumor microenvironment for 
the induction of EMT. Figure  1A outlines eight critical EMT-
activating pathways: TGF-β, receptor tyrosine kinases (RTKs), 
integrin, WNT, NOTCH, Hedgehog (HH), hypoxia inducible 
factor 1α (HIF1α), and JAK/STAT.

There are three major families of transcription factors (TFs) 
that contribute to EMT and may also be general drivers of 
cancer (Figure  1B): (1) the zinc finger protein SNAIL family 
(SNAI1, SNAI2, and SNAI3) (32), (2) the basic Helix-Loop-
Helix (bHLH) proteins TWIST1 and TWIST2 (33), and (3) the 
zinc-finger E-box binding (ZEB) family of TFs (34). These TFs 
are evolutionarily conserved and critical for development. They 
bind short DNA segments called enhancer boxes (E-boxes) with 
the consensus sequence “CANNTG.” Like many TFs, they are 
able to modulate transcription by recruiting a variety of epige-
netic regulators to alter the chromatin landscape of epithelial 
plasticity genes and interactions with transcriptional coactiva-
tors and corepressors (35).

The most well-established gene targets of EMT TFs are gener-
ally involved in epithelial cell adhesion (36–38). Cadherins rep-
resent a family of calcium-dependent cell–cell adhesion proteins 
particularly targeted by EMT (39–41). Loss of epithelial cadherin 
(E-cadherin) is a major hallmark of EMT (42–44). Thus, loss 
of E-cadherin has been used as a biomarker for many cancers. 
Additionally, loss of tight junctions (e.g., claudin and occludin), 
desmosomes (e.g., desmoplakin and plakophilin), and cytokerat-
ins (intermediate filaments) are commonly observed during 
EMT (18). Conversely, while epithelial markers are repressed, 
mesenchymal markers are increased during EMT. These markers 
include N-cadherin, vimentin, and fibronectin (18). Following 
the transcriptional alterations of these adhesion molecules, 
protein degradation and endocytosis aid in recycling epithelial 
adhesion molecules to promote progress through EMT (45).

Altered gene expression of EMT targets, such as those 
involved in cellular adhesion, often facilitate biological and 
pathological functions such as migration and invasion (46–48). 
Upon detaching from the basal epithelium, epithelial cells 
undergoing EMT may alter their extracellular environment 
by expressing matrix metalloproteinases (MMPs) to promote 
directional migration (49–51). During migration, adhesion 
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FiGURe 1 | Molecular pathways and targets of the epithelial–mesenchymal transition. (A) (1) One of the most well characterized EMT-inducing pathways is 
the transforming growth factor-β (TGF-β) family receptors capable of inducing PI3K–AKT, ERK MAPK, p38 MAPK, and JUN N-terminal kinase (JNK) pathways 
(activating pathways in blue; inactivating pathways in red). (2) The RAS–RAF–MEK–ERK MAPK pathway lies downstream of a number of growth factor activated 
receptor tyrosine kinases (RTKs) and activates a number of major EMT transcription factors (TFs). (3) Integrin signaling can have a multipronged effect on EMT by 
both interrupting critical epithelial adhesion molecules (e.g., E-cadherin) and antagonizing GSK3-β via the integrin-linked kinase (ILK)-AKT signaling, thus promoting 
EMT. (4) WNT signaling can also interfere with GSK3-β, thus stabilizing β-catenin to promote EMT transcriptional programs in cooperation with lymphoid enhancer-
binding factor 1 (LEF1) and T-cell factor (TCF). (5) The Hedgehog (HH)-glioma 1 (GLI1) and (6) NOTCH pathway both can promote transcription of the EMT 
regulators. (7) Recently, a number of inflammatory pathways downstream of interleukin (IL) signaling (e.g., IL-6) have demonstrated the activation of the Janus-kinase 
(JAK)-signal transducer and activator of transcription 3 (STAT3) pathway, which in turn promotes EMT transcription factors. (8) Hypoxia is capable of activating a 
number of key components of EMT through the hypoxia-induced factor 1 (HIF1α). (B) Downstream of these signal transduction pathways leading to EMT are a 
variety of transcription factors with the ability to alter epithelial gene expression. As an epithelial plasticity program, many of the target genes altered include adhesion 
molecules. Known glycosylated proteins involved with EMT are denoted with an asterisk (*).
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molecules are disproportionately redistributed between the 
leading and  trailing edge of the cell, which allows the cell to 
coordinate directed migration leading to tumor dissemination 
and metastasis (24,  52). Beyond metastasis, EMT has recently 
been attributed to more fundamental roles in cancer biology 
including suppressing apoptosis and senescence (53). The EMT 
has also been implicated in immune evasion (54) and metabolic 
reprograming (22, 55) of cancer cells. Together, the data discussed 
above suggest that the EMT program promotes many cancer cell 
phenotypes leading to malignancy.

THe HeXOSAMine BiOSYnTHeTiC 
PATHwAY

Since the 1950s, cancer has been notorious for its addiction 
to glucose and glutamine (7, 56–58). Upon depletion of these 
carbon sources in cancer cell culture media, cellular growth is 
abrogated. Both glucose and glutamine (Gln) are essential for 
the first committed step and rate-limiting step of the HBP, the 
conversion of fructose-6-phosphate (Fru-6P) to glucosamine-
6-phosphate. Approximately 2–5% of glucose (in adipocytes) is 
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FiGURe 2 | The hexosamine biosynthetic pathway (HBP) and glycosylated eMT targets. (A) First, the rate limiting enzyme of the HBP, glutamine:fructose-6-
phosphate transaminase (GFAT), uses glutamine (Gln) as an amine donor to convert Fru-6P into glucosamine-6-P (GlcN-6P). Second, glucosamine-phosphate 
N-acetyltransferase (GNPNAT) N-acetylates GlcN-6P in an acetyl-CoA-mediated reaction to form N-acetylglucosamine-6-P (GlcNAc-6P). Third, 
phosphoglucomutase (PGM) isomerizes GlcNAc-6P to the highly active GlcNAc-1P. The final step is catalyzed by UDP–N-acetylglucosamine pyrophosphorylase 
(UAP1) and charges GlcNAc-1P with UDP to form uridine-5′-diphosphate-N-acetylglucosamine (UDP–GlcNAc). (B) UDP–GlcNAc (depicted as a blue square) is 
essential for N-glycosylation processing and elongation. One critical pivot point includes the branching of complex N-glycans. Inhibiting this process with a bisecting 
GlcNAc is associated with tumor suppressive phenotypes. In contrast, cancers have aberrant expression of glycosyltransferases responsible for branching and 
elongating complex N-glycans. (C) Many of the proteins commonly associated with promoting EMT are modified by glycans containing GlcNAc and are found on 
the cell surface. Hyaluronan, a glycosaminoglycan, is also found extracellularly and is a polymer of glucuronic acid and N-acetylglucosamine. Many nuclear, 
cytoplasmic and mitochondrial proteins are modified by monosaccharides of O-linked N-acetylglucosamine (O-GlcNAc), including many transcription factors, which 
appear to be stabilized by glycosylation (63). Numerous studies have identified various cancers with elevated levels of pan-O-GlcNAcylation (64).
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shunted through the HBP (59). Demonstrating the importance 
of extracellular glucose concentrations on the HBP, glucose 
starvation reduces UDP–GlcNAc levels (60, 61). Conversely, 
elevating extracellular glucose concentrations results in increased 
flux through the HBP (62). Figure 2A summarizes the four key 
enzymatic steps of the HBP:

 (1) Glutamine:fructose-6-phosphate transaminase (GFAT; 
GFPT) utilizes glutamine in a transamination reaction, which 
converts fructose-6-phosphate (Fru-6-P) to glucosamine-6P 
(GlcN-6P);

 (2) GlcN-6P is converted to N-acetylglucosamine-6-P 
(GlcNAc-6P) by Glucosamine-phosphate N-acetyltransferase 
(GNPNAT; GNPNAT), which requires acetyl-CoA;

 (3) Phosphoglucomutase (PGM; PGM) isomerizes GlcNAc-6P 
to N-acetylglucosamine-1-phosphate (GlcNAc-1P);

 (4) UDP–N-acetylglucosamine pyrophosphorylase (UAP1; 
UAP1) charges GlcNAc-1P with UDP to form uridine-5′-
diphosphate–N-acetylglucosamine (UDP–GlcNAc).

Together, the four enzymes of the HBP orchestrate the de novo 
biosynthesis of the charged nucleotide sugar UDP–GlcNAc from 
glucose. This process can be manipulated by endogenous metabo-
lites (i.e., glutamine) (65) as well as exogenous sugars (i.e., glucose, 
glucosamine, and N-acetylglucosamine) (66). Interestingly, this 
pathway is well positioned to sense the four macromolecules of 
life, coordinating carbohydrate, amino acid, lipid, and nucleotide 
donors through by Fru-6P, Gln, acetyl-CoA, and uridine, respec-
tively (67). Despite the limited flux through the HBP, cellular 
UDP–GlcNAc levels can reach over 1 mM making it one of the 
most abundant high-energy cellular compounds (68). UDP–
GlcNAc is utilized in the synthesis of numerous glycoconjugates 
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and is interconverted into other nucleotide sugars (e.g., UDP–
GalNAc, N-acetylmannosamine, CMP-neuraminic acid), which 
are incorporated into glycoconjugates (69). Together, the glycan 
structures downstream of the HBP metabolite, UDP–GlcNAc, 
influence a wide range of functional targets highly relevant to 
cancer and EMT.

Reinforcing the importance of UDP–GlcNAc incorporation, 
recent data suggest that the expression of multiple enzymes of the 
HBP and glycosyltransferases are altered in cancer, correlating 
with EMT, cancer progression, and metastasis. In a recent analy-
sis using unsupervised hierarchical clustering of 1,704 metabolic 
genes and nearly 1,000 cancer cell lines, Shaul and colleagues 
identified a “mesenchymal metabolic signature” (MMS) (22). 
In this MMS, both GFPT2 and UAP1, key enzymes in the HBP, 
were found to be essential for the mesenchymal phenotype (22, 
70). In other studies, metabolites of the HBP (e.g., UDP–GlcNAc) 
were reported to be elevated in cancer cells and this was linked 
to survival (60).

Glycosyltransferases consistently elevated in multiple cancers 
(e.g., stomach and pancreas cancer) include β-1,4-mannosyl-
glycoprotein 4-β-N-acetylglucosaminyltransferase (GNT3),  α-1,6- 
mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase 
A (GNT5), core 2 β-1,3-galactosyl-O-glycosyl-glycoprotein 
β-1,6-N-acetylglucosaminyltransferase (Core 2 GNT; GCNT1), 
N-acetyllactosaminide β-1,6-N-acetylglucosaminyl-transferase-
isoform A (GCNT2), and UDP-N-acetylglucosamine-dolichyl-
phosphate N-acetylglucosaminephosphotransferase (GPT1), 
encoded by the genes MGAT3, MGAT5, GCNT1, GCNT2, and 
DPAGT1, respectively (71). Notably, GNT5 is highly associated 
with breast, lung, and colon cancer metastasis (72–77), whereas 
GNT3 is associated with breast, skin, and colon cancer tumor 
suppression (78–80). GNT5 and GNT3 have antagonistic roles; 
GNT5 promotes complex N-linked glycan branching, whereas 
GNT3 suppresses branching (Figure  2B). It is thought that 
changes in glucose flux through the HBP impacts the function 
of GNT3 and GNT5 (66). The rate-limiting enzyme that forms 
the precursor for N-glycosylation, GPT1, has also been shown to 
drive proliferation, EMT, and cell morphology (81). As discussed 
below, flux through the HBP can alter the distribution patterns 
of glycosylation. To date, this has not been specifically studied in 
EMT. However, there are a number of glycoconjugates affected 
by changes in UDP–GlcNAc availability or changes in their bio-
synthesis. These glycoconjuagtes and their impact on EMT are 
discussed below.

eXTeRnAL GlcnAc-COnTAininG 
GLYCOCOnJUGATeS OBSeRveD  
DURinG eMT

Accumulating evidence strongly suggest changes in protein gly-
cosylation impact numerous cancers including melanoma (82), 
pancreas (83, 84), colon (85), ovarian and breast (86), brain and 
lung (87), liver (88), and prostate (89) cancers. Generally, altera-
tions in N-glycan structure profoundly affect cellular adhesion 
and epithelial morphology in vitro (90). Figures 2B,C show that 
many glycoproteins utilizing UDP–GlcNAc in their biosynthesis 

occur on key EMT adhesion molecules (e.g., E- and N-cadherin). 
E-cadherin has four putative N-linked glycosylation sites (91), 
which are modified by complex N-linked glycans. The number of 
“antennae” on these glycans is regulated by the competing activi-
ties of GNT3 and GNT5. The introduction of a bisecting GlcNAc 
by GNT3 (Figure 2B) reduces the number of antennae and thus 
complexity of the N-linked glycans. Epigenetic regulation of the 
gene encoding GNT3, MGAT3, stabilizes E-cadherin and inhibits 
EMT (92). In contrast, elevated activity or expression of GNT5 
results in more complex N-glycans, which impairs E-cadherin 
localization and cellular aggregation in mice (93). Additional 
studies in mice have revealed that MGAT5 knockdown leads 
to a reduction of N-glycosylated E-cadherin, which increases 
E-cadherin cis-dimerization, catenin recruitment, and cell mem-
brane localization (94, 95). Importantly, aberrantly N-glycosyated 
E-cadherin is found in gastric cancer patients and correlates with 
poor patient survival (94).

Mesenchymal N-cadherin is also modified by N-linked 
glycans, and the modification of these glycans with GlcNAc by 
GNT5 promotes cell migration, MAPK signaling, and reduced 
adhesion (96, 97). Furthermore, N-cadherin N-glycans attract 
galectin-3, forming highly organized lipid rafts on the cell sur-
face, which stabilizes the galectin lattice and enhances cancer 
cell mobility (98). This galectin lattice structure also recruits 
several major signaling receptors such as epidermal growth 
factor (EGF) receptor (EGFR) and TGF-β to promote oncogenic 
signaling (99, 100).

Integrins are heterodimeric glycoproteins responsible for cell–
cell and cell–extracellular matrix interactions (101). The α5β1 
integrin serves as the receptor for fibronectin, and their interac-
tion is critical for cellular migration in development (102–104). 
While both integrin and fibronectin are N-glycosylated, the activ-
ity of GNT3 is associated with shorter less complex N-glycans, 
which is thought to result in reduced integrin-mediated EMT 
signaling (105, 106). Additionally, without N-linked glycans, 
integrins show significantly decreased heterodimerization, cell 
surface localization, and promotion of migration in vitro (107).

Receptor tyrosine kinases are vital to transducing external 
stimuli into internal signals for induction of EMT in many cancer 
(e.g., carcinomas). Interestingly, RTKs involved in growth and 
proliferation (e.g., EGFR) have approximately five times more 
N-glycosylation sites than receptors involved with organogenesis, 
differentiation, or cell cycle arrest (108). The HBP has been shown 
to drive changes in EGFR N-glycosylation; feeding both GNT5 
wild type and GNT5 null tumor cells with N-acetylglucosamine 
elevated UDP–GlcNAc levels and the number of terminal 
GlcNAc residues on cell surface proteins. Analysis of the N-linked 
glycans demonstrated increased flux through the HBP results in 
increased triantennary structures in GNT5 null cells (twofold) 
and a smaller increase in both tri- and tetra-antennary N-glycans 
in GNT5 wild-type cells. Functionally, increased flux through 
the HBP-altered EGFR plasma membrane retention, active 
conformation, EGF ligand binding, and inhibition of endocytosis 
mediated degradation (109, 110). N-glycosylated EGFR recruits 
N-glycosylated TGF-βR to the galectin lattice thereby promot-
ing TGF-β and SMAD autocrine signaling. TGF-βR with highly 
branched glycans, a result of increased GNT5 activity, localizes 
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to the plasma membrane, binds galectin-3, inhibits receptor 
endocytosis, enhances TGF-βR heterodimerization, increases 
tumor metastasis, and promotes EMT-mediated cell migration 
(100, 111). TGF-β itself upregulates GCNT1, a critical GlcNAc 
branching enzyme, producing similar effects in prostate, colorec-
tal, pancreatic, testicular, and breast cancers (112).

The WNT, NOTCH, and HH pathways are also critical for EMT 
and are modified by glycans that utilize GlcNAc for modulation of 
pathway activity. All 19 known WNT ligands contain at least one 
N-linked glycosylation site, and these sites are critical for ligand 
maturation, lipid processing, secretion, and β-catenin signal trans-
duction (113, 114). WNT also regulates transcription of DPAGT1 
to promote EMT through E-cadherin glycosylation (81).

The Notch signaling pathway regulates cell proliferation, 
survival, and differentiation while glycosylation of components 
in this pathway are associated with poor prognosis and metastasis 
in numerous cancers (115, 116). Over two decades of research 
demonstrates the extracellular domain of Notch receptor is gly-
cosylated with N-linked (117), O-fucose (117, 118), O-GlcNAc 
(119), and O-glucose (117, 120) glycans. Extension of O-fucose 
with GlcNAc [catalyzed by O-fucosylpeptide 3-beta-N-acetyl-
glucosaminyltransferase (Fringe in Drosophila)] alters Notch 
ligand–receptor specificity. In Drosophila, extended O-fucose 
glycans are associated with increase sensitization of Notch to the 
Delta ligands and reduced sensitivity to the Serrate/Jagged ligands 
(116). Little is known about the impact of altered HBP flux on 
the Notch receptor, although one might postulate that changes 
in UDP–GlcNAc levels may alter Notch glycosylation and thus 
signaling downstream of this receptor. In the Sonic HH pathway, 
the G protein-couple receptor (GPCR), smoothened (SMO), 
is activated to promote cell proliferation and migration (121). 
Recently, critical N-glycans on SMO were found to abrogate HH 
induced cell migration due to blunted small heterotrimeric Gαi 
protein signaling (122).

Beyond the suite of GlcNAc-modified adhesion molecules and 
receptors, hyaluronic acid (hyaluronan or HA) is an oligomer 
found ubiquitously in the extracellular space particularly of con-
nective, epithelial, and neural tissues (123). Human HA is a mas-
sive (0.5–2 MDa), unbranched glycosaminoglycan composed of 
the repeating disaccharide consisting of GlcNAc and glucuronic 
Acid (GlcNAcβ1–4GlcAβ1–3) (124). It is synthesized by HA 
synthase (HAS) and is extruded through the plasma membrane 
as it is synthesized. Recent reports suggest hyaluronan synthesis 
and catabolism is controlled by UDP–GlcNAc concentrations, 
with hyaluronan serving as a sink for excess UDP–GlcNAc (125). 
Recent studies have demonstrated that modulating levels of 
UDP–GlcNAc and glucuronic acid alter the localization of the 
HAS enzymes (126). Low levels of UDP–GlcNAc are associated 
with an inhibition of HA synthesis, whereas elevated levels of 
UDP–GlcNAc are associated with HA synthesis and melanoma 
progression (126). Consistent with these data, several studies 
have demonstrated patients with higher extracellular HA or HAS 
expression have a worse prognosis and survival with more aggres-
sive and metastatic cancers including breast (127–129), prostate 
(130, 131), lung (132, 133), pancreatic (134), colorectal (135), and 
ovarian (136) cancers. With respect to EMT, high levels of HA are 
sufficient to induce the EMT in kidney and mammary epithelial 

cells (137). Taken together, HA synthesis is in part driven by the 
HBP, has been associated with EMT, and is found at high levels 
in many cancers.

nUCLeAR, CYTOPLASMiC, AnD 
MiTOCHOnDRiAL GLYCOSYLATiOn 
OBSeRveD DURinG eMT

Uridine diphosphate–N-acetylglucosamine can also be utilized for 
the synthesis of O-linked β-N-acetylglucosamine (O-GlcNAc), an 
essential PTM of metazoans (138). O-GlcNAc is found on more 
than 3,000 cytoplasmic, nuclear, and mitochondrial proteins 
(67). O-GlcNAcylation is thought to regulate protein function 
in a manner analogous to phosphorylation. O-GlcNAc has been 
demonstrated to regulate cellular processes such as epigenetics, 
transcription, translation, protein degradation, metabolism, 
ribosomal bioenergentics, and cytokinesis (139).

Unlike N-glycans, the O-GlcNAc modification (or 
O-GlcNAcylation) consists of a monosaccharide of GlcNAc 
covalently attached to serine and threonine residues through an 
O-glycosidic bond (138). Where N-linked glycan synthesis and 
processing is regulated by upwards of 18 enzymes (depending 
on the structure formed), the dynamic cycling of O-GlcNAc 
on proteins is regulated by just two enzymes: the O-GlcNAc 
transferase (OGT) and the O-GlcNAcase (OGA), which add 
and remove O-GlcNAc, respectively (140). OGT activity and 
substrate specificity are regulated by changes in UDP–GlcNAc 
concentrations, and this has led many to suggest that OGT may 
regulate cell function in a manner dependent on extracellular 
glucose concentrations (140). Cancer cells which are dependent 
on glucose and glutamine have been demonstrated to have high 
UDP–GlcNAc levels (discussed above), high O-GlcNAc levels, 
and in some cases increased expression of OGT (140). In sum, 
elevated protein O-GlcNAcylation and OGT expression have 
been reported in numerous malignancies including breast (16, 63, 
64, 141, 142), prostate (143–145), lung (146), pancreas (147), liver 
(148), and colon (146, 149, 150) cancers. Importantly, levels of 
O-GlcNAc, OGT, and OGA have correlated with aggressiveness 
(e.g., Gleason score for prostate cancer) in a number of patient 
tumor samples including prostate (144), breast (64), endometrial 
(151), and bladder (152) cancers.

One important class of proteins heavily O-GlcNAcylated 
are TFs (Figure  2C). Early analyses suggested that over 25% 
of known O-GlcNAcylated proteins were TFs (14). For many 
of these TFs, O-GlcNAcylation serves as a direct or indirect 
competitor of key phosphorylation sites (140). Particularly rel-
evant to EMT is the O-GlcNAcylation and regulation of SNAI1. 
Upon serial phosphorylation by CK1 and glycogen synthase 
kinase (GSK)-3β, SNAI1 is primed for nuclear export, β-TrCP 
ubiquitination, and subsequent proteosomal degradation (153, 
154). Interestingly, SNAI1 is O-GlcNAcylated in hyperglycemic 
conditions preventing GSK-3β phosphorylation, which results 
in SNAI1 stabilization (155). O-GlcNAcylated SNAI1 is associ-
ated with enhanced EMT and migration, which is linked to a 
repression of E-cadherin. Whether other EMT-inducing TFs are 
similarly regulated by O-GlcNAcylation is yet to be determined. 
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Beyond SNAI1, O-GlcNAcylation occurs on other TFs generally 
relevant to cancer including c-Myc (156, 157), β-catenin (158),  
C/EBPβ (159), p53 (160), and FoxO1 (161), NF-kB (162, 163). 
Thus, while more experimentation is needed to demonstrate 
causality between EMT and O-GlcNAcylation, O-GlcNAcylation 
has demonstrated to be a key regulator of cancer biology.

Previous studies from our lab and others have elucidated 
the role of the EMT TF, TWIST1, in suppression of oncogene-
induced senescence (OIS) (20, 21, 164). While normal cells 
respond to oncogene activation with p53-p19ARF, p16-Rb, and 
Atf4-p27KIP-dependent OIS (165, 166), suppression of these 
 pathways through EMT TFs provide an alternative route for can-
cer to maintain cell cycle progression and proceed along a tumo-
rigenic path. Due to the metabolic regulation of the cell cycle, 
it is not surprising many of these proteins orchestrating cellular 
division are also O-GlcNAcylated. Knockdown of OGT results in 
elevated expression of p27Kip (63), a reduction of cyclin D1 and 
B1, and diminished PI3K/AKT signaling (167), suggesting that 
OGT/O-GlcNAc plays key roles during cell cycle progression. 
Furthermore, OGT is thought to control cytokinesis as it is local-
ized to the mitotic spindle where it interacts with Polo-like kinase. 
Disrupting O-GlcNAcylation results in defects in cytokinesis and 
multinucleated cells (168). Overall, global O-GlcNAc levels have 
numerous effects on the cell cycle, indicative of yet another link 
to advancing the neoplastic phenotype.

COnCLUSiOn

The data discussed here highlight alterations in intracellular 
and extracellular glycoconjugates that impact different EMT 

tumorigenic pathways and associated proteins/biomolecules. 
With recent controversies of EMT transcription programs con-
tinuing to unfold (169, 170), it is likely that the role of EMT may 
extend beyond cancer development and metastasis, including 
cancer treatment resistance. Thus, understanding how changes 
in metabolic pathways observed in cancer (e.g., the HBP) impact 
the distribution and composition of glycoconjugates may provide 
deeper insights into mechanisms of cancer biology. While most 
of the research discussed here demonstrates the potential for gly-
coconjugates to regulate EMT, it may be interesting to see in the 
future how EMT reciprocally promotes metabolic reprograming 
and the HBP.
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