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Introduction
The advancement in next-generation sequencing (NGS) tech-
nology has exponentially increased the amount of available 
biological data. NGS methods generate cost-effective enor-
mous volumes of omics data, including genomic, transcrip-
tomic, proteomic, and epigenomic data. This leads to delivering 
a more comprehensive understanding of the various properties 
of genes, proteins, or biomolecules. Multi-omics data provide 
multiple views with different feature sets for the same patients. 
Therefore, there is necessary to develop new approaches to 
handle large-scale data to integrate and analyze multi-omics 
data, and machine learning is playing a vital role in this task.1,2 
Arjmand et al1 discussed the importance of utilizing machine 
learning in multi-omics data integration in the prognosis, diag-
nosis, and treatment of cancer. Cai et al2 listed the technology 
that has been used to measure each omic, the resultant data 
formats, and the corresponding analytical strategies. The ana-
lytics strategies may handle the data in earlier (data concatena-
tion), middle, late stage of the prediction model. While 
concatenation treats the heterogeneous omics data similarly, 
the late stage strategy treats various omics independently. In 

the middle stage strategy, the model is built based on finding 
the relationships among the omic features, then integrate them 
in one prediction model that learns from the associations 
between the extracted relationships to mimic the actual bio-
logical associations. Some methods apply clustering based on 
a joint latent variable model to integrate multi-omics data to 
categorize cancer data into subtypes.3,4 In this work, we propose 
utilizing an embedding technique to merge various omics in the 
prediction model. The aim is to find the global association 
among discriminative features from the various omics data that 
works together in the cause or the progress of the diseases.

Data embedding techniques are used to map the data into 
lower dimensional approaches.5-8 Kohonen5 suggested an arti-
ficial neural network named self-organizing map (SOM) to 
find spatial organized internal representations for higher-
dimensional features. SOM topological information must be 
determined in advance. Hinton and Roweis6 proposed using 
stochastic neighbor embedding (SNE) to locate the sample’s 
data points in a 2 or three-dimensional map. SNE struggles to 
capture the local structure of the data in a map, which is solved 
later by using the t-distributed variant, where the newer 
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version is known as t-SNE.7 UMAP is another dimensionality 
reduction and visualization method that is built on mathe-
matical foundations related to the Laplacian eigenmaps. 
UMAP preserves more of the global structure than t-SNE 
with superior run time performance.8

Argelaguet et  al9 proposed multi-omics factor analysis 
(MOFA), a Bayesian model that factorizes omics data to 
extract fundamental causes of variation in multi-omics data 
sets. Chalise and Fridley introduced iOmicsPASS, a network-
based multi-omics integration method that provides a super-
vised evaluation of quantitative multi-omics data to calculate 
biological interaction scores. A shrunken gene-centroid algo-
rithm is applied to the scores to discover predictive sub-
networks for phenotypic groups. Chalise and Fridley introduced 
a clustering integration approach named intNMF for multi-
omics data integration. The approach exploits non-negative 
matrix factorization (NMF) to classify disease subtypes of 
datasets consisting of DNA methylation, mRNA gene expres-
sion, and protein expression. The approach utilizes a separate 
set of clusters of multiple high-dimensional molecular data 
without the need for distributional assumptions.10 Meng et al 
proposed a multivariate integration method called multiple 
co-inertia analysis (MCIA). The method applies a covariance 
optimization criterion to detect interactions and variations 
between multiple datasets by projecting the multiple datasets 
into the same dimensional space.11 In another study by Lyu 
and Haque the high dimensional RNA-Seq data was embed-
ded into a two-dimensional map to classify tumor types 
through a convolutional neural network. A heatmap was cre-
ated for all the genes to confirm the association of top genes to 
tumor-specific pathways.12

Fatima and Rueda introduced iSOM-GSN, which inte-
grates multi-omics data of gene expression, gene CNA, and 
gene methylation by embedding the high dimensional multi-
omics data into a lower two-dimensional grid. The embed-
ding applies Kohonen’s self-organizing map (SOM) to gene 
expression data and merges them with other genomic features 
to enhance visualization and performance. Then, a convolu-
tional neural network is applied to classify diseases types and 
status.13 In addition, Alkhateeb et al introduced a prediction 
model of a 5-year interval survival of breast cancer InClust5 
based on integrating multi-omics data that consists of 
gene expression, copy number alteration (CNA), and clinical 
features datasets using a deep learning model. It expands 
the iSOM-GSN model by exploiting a self-organizing 
map (SOM) to embed each omics data into a lower two-
dimensional relational map instead of relying only on the 
gene expression map as in the iSOM-GSN model. Three 
convolutional neural networks are used to classify each map. 
The outputs of CNNs are fed to an integration layer that 
utilizes majority votes to predict the model’s output.14 
Another work involving SOM was introduced by Jansen et al 
and named SOMatic. SOMatic is a gene regulatory network 

that integrates scRNA-seq and scATAC-seq data by assem-
bling a self-organizing map (SOM) for each dataset to distin-
guish genes and chromatin that might alter over time. Then, 
k -means clustering accumulates the 2 SOMs data into 
meta-clusters to connect similar genes and corresponding 
genomic regions.15

In another study, Zhou et al incorporated t-distributed sto-
chastic neighbor embedding (t-SNE) and residual neural net-
work (ResNet) to integrate multi-omics data, including gene 
expression, copy number alteration (CNA), and mRNA for 
Nottingham Prognostics Index (NPI) prediction in a cohort of 
breast cancer patients. t-SNE was applied separately to each 
omics data, then concatenated their maps before being fed to 
the residual neural network (ResNet).16 This paper designs a 
GSN via UMAP to integrate multi-omics data for predictions 
of disease states. First, we apply UMAP to the gene expression 
omics to embed it into a lower dimension and create a template 
map to project other omics data into the template to enhance 
the performance. Then, all feature maps will feed a convolu-
tional neural network for disease classification.

Materials and Methods
Datasets

In this work, 2 cancer data sets are investigated: TCGA Prostate 
Adenocarcinoma (PRCA) for patients’ classification based on 
Gleason scores17 and the TCGA Breast Invasive Carcinoma 
(BRCA)18 that explores the tumor stages. Both data sets con-
tain 3 omics: gene expression, DNA methylation, and copy 
number alteration (CNA). The total number of samples for 
PRCA and BRCA is 499 and 570, respectively.

The PRCA is divided into 3 classes; 3 + 4, 4 + 3, and the 
combination of 4 + 5 and 5 + 4 as the same class due to the low 
number of samples in theses advance classes. The BRCA is 
divided into 3 classes: 2A, 2B, and 3A. We only considered the 
samples with the 3 omics, which reduced the number of sam-
ples to 387 and 392 patients for PRCA and BRCA, respec-
tively. The distributions of samples in both datasets are listed in 
Table 1.

Pre-processing

We adopted the preprocessing steps in Fatima and Rueda.13 
First, the gene expression features were filtered to eliminate all 
those with less than 0.2% variance. As a result, the number of 
gene expression features went down from about 39 000 to 
16 000. Then, all 3 omics data were normalized on an average 
scale, and genes that are not listed in HUGO format were 
eliminated. The last step was to substantially distinguish the 
mutated genes through the MutsigCV algorithm14; it calcu-
lates False-discovery rates (q-values), then genes with q ⩽ 0.1 
were identified as significantly mutated that yielded select 14 
mutated genes from MutsigCV output for this study. These 
genes are listed in Table 2.
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Proposed method

The workflow of our method is illustrated in Figure 1. It starts 
by generating a gene similarity network (GSN) via UMAP on 
gene expression omics to convert the high-dimensional gene 
expression omics to a two-dimensional map and create a fea-
ture template. Then, the template integrates all omics data and 
depicts each sample as a colored image filled in with all omics 
data. Finally, those images are fed to CNN for classification.

Uniform manifold approximation and projection (UMAP).  Uniform 
manifold approximation and projection is a dimension reduc-
tion method employing Riemannian geometry and algebraic 
topology theory.8 UMAP utilizes the high dimensional data 
to build a fuzzy weighted graph illustrating the likelihood 
of connection of each pair of data points. Then, this graph is 
mapped into a lower dimensionality, creating a fuzzy 
graph similar to the high dimensional graph to preserve the 
local structure. UMAP assumes a uniform distribution of 
data on the Riemannian manifold, the approximation of the 

Riemannian metric is locally constant, and the manifold is 
locally connected. UMAP uses a radius to connect each data 
point with its neighbors that fall within the radius distance. 
The radius is a critical aspect of UMAP, where it might cause 
points to cluster in small and isolated clusters with a small 
radius or too large clusters with a large radius. UMAP over-
comes this issue by selecting a local radius based on the dis-
tance between each point and its nearest neighbor. UMAP 
operates by building the weighted k -neighborhood graph 
and then computing the low-dimensional layout of this 
graph.

Weighted K-neighborhood Graph.  Assume the input dataset 
G g g gN= …{ , , ., }1 2  with dissimilarity metric d G G: × → ≥ 0  
for each gi  and an input hyperparameter k, we will compute 
δi  and εi  as follows:

	 δi i ij i ijd g g j k d g g= ( ) ≤ ≤ ( ) >{ }min , | , ,1 0 	 (1)

εi  is set to satisfy the following:

Table 1.  The distribution of samples among 2 datasets the Gleason score classes in the PRCA dataset and the tumor stage classes in the BRCA 
dataset.

The PRCA data set The BRCA dataset

Number of samples Gleason score class Number of samples Tumor stage

147 3 + 4 179 2A

101 4 +3 129 3B

139 4 + 5 and 5 + 4 84 3A

Table 2.  The top 14 selected genes using MutsigCV in the PRCA dataset.

Gene Gene Description

SPOP SPOP (Speckle Type BTB/POZ Protein) is a Protein Coding gene.

FOXA1 FOXA1 (Forkhead Box A1) is a Protein Coding gene.

CTNNB1 CTNNB1 (Catenin Beta 1) is a Protein Coding gene.

CLPTM1L Cleft Lip And Palate Transmembrane Protein 1-Like Protein is a Protein Coding gene.

DPYSL2 DPYSL2 (Dihydropyrimidinase Like 2) is a Protein Coding gene.

NEIL1 NEIL1 (Nei Like DNA Glycosylase 1) is a Protein Coding gene.

PITPNM2 PITPNM2 (Phosphatidylinositol Transfer Protein Membrane Associated 2) is a Protein Coding gene.

ATM Ataxia-telangiectasia (A-T) is a recessive disorder resulting from germline mutation of the A-T mutated (ATM) gene on 
chromosome 11q.

EMG1 EMG1 (EMG1 N1-Specific Pseudouridine Methyltransferase) is a Protein Coding gene.

ETV3 ETV3 (ETS Variant Transcription Factor 3) is a Protein Coding gene.

BRAF BRAF (B-Raf Proto-Oncogene, Serine/Threonine Kinase) is a Protein Coding gene.

NKX3-1 NKX3-1 (NK3 Homeobox 1) is a Protein Coding gene.

ZMYM3 ZMYM3 (Zinc Finger MYM-Type Containing 3) is a Protein Coding gene.

SALL1 SALL1 (Spalt Like Transcription Factor 1) is a Protein Coding gene.
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The adjacency matrix of undirected weighted graph B can be 
computed as:
	 B A A A AT T= + − ° 	 (4)

Where:
A is the weighted adjacency matrix of D– , and “∘” is the 

Hadamard product.

Low-dimensional layout.  A low-dimensional force-directed 
graph layout algorithm is employed in practice by UMAP.

The algorithm applies repulsive force at vertices and gravi-
tational forces at edges. The gravitational force between 2 ver-
tices i  and j  at coordinates x and xi j  is computed as the 
following:
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Where: a  and b  are hyper-parameters.
The repulsive force is computed as the following:
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Where:
  is a constant number to avoid dividing by zero.

Gene similarity network and omics integration

We apply UMAP on the gene expression omics to build the 
GSN and visualize genes on a two-dimensional map. The two-
dimensional map coordinates the genes based on their similar-
ity and shows the connections between linked genes. The 
two-dimensional map is used as a template to integrate all 
omics data. The integration is done by creating a circular zone 
of chosen radius around genes points as depicted in Figure 2, 
then filling those zones with different colors related to omics’ 
type as shown in Figure 3. Each data sample would contribute 
to coloring the RGB palette if it only falls within a certain 
radius of a gene point. The red color (R) is donated for gene 
expression, the green (G) for DNA methylation, and the blue 
(B) for CNA.

Classification
CNNs are deep feed-forward neural networks that apply 
convolution operations as feature extraction from images.19 In 

Figure 1.  Shows the workflow of the proposed method.
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addition to the convolutional layers, CNNs consist of other 
layers that incorporate dropout regularization technique to 
enhance their performance. These layers include pooling layers, 
fully-connected layers, and classification layers. The architec-
ture of our CNN is as follows:

First convolutional layer

It consists of 32 convolutional filters of size 3 × 3 with a recti-
fied linear operator (ReLU), a Max-pooling layer of 2 × 2 size 
and 1 × 1 stride, a normalized layer, and a dropout layer of 20% 
ratio.

Second convolutional layer

It consists of 32 convolutional filters of size 3 × 3 with a recti-
fied linear operator (ReLU), a Max-pooling layer of 2 × 2 size 
and 1 × 1 stride, a normalized layer, and a dropout layer of 50% 
ratio.

Third convolutional layer

It consists of 32 convolutional filters of size 3 × 3 with a recti-
fied linear operator (ReLU), a Max-pooling layer of 2 × 2 size 
and 2 × 2 stride, a normalized layer, and a dropout layer of 50% 
ratio.

First fully connected layer

It consists of 128 neurons with a rectified linear operator 
(ReLU), a normalized layer, and a dropout layer of a 10% ratio.

Second fully connected layer

It is the prediction layer, and it consists of 3 neurons that feed 
their output to a Softmax layer to predict the classes based on 
their probabilities.

Experiments and Results
For this experiment, we applied the proposed model to both 
the PRCA and the BRCA data sets. We kept the default set-
ting of UMAP’s neighbor, which is 15. Using grid-search, we 
set the learning rate to 0.07 and employed 1000 epochs which 
provided the best accuracy. The datasets samples are divided 
into 70% training pool and 30% testing pool. We also ran 
iSOM-GSN model13 on the both data sets and kept the default 
parameter to compare it with the proposed method. The pro-
posed method performed very well in the testing pool, where it 
achieved over 99% in all evaluation metrics, as in Table 3.

We used the following performance measurements as evalu-
ation metrics:

	 Accuracy TP TN
TP FN FP TN

=
+

+ + +
	 (7)

	 Precision tp
tp fp

=
+

	 (8)

	 Recall
tp

tp fn
=

+
	 (9)

	 F measure
PPV Sensitivity

PPV Sensitivity
1

2
− =

× ×

+
	 (10)

Where:
PPV  is positive predictive value that is measured as 

equation (11):

	 PPV tp
tp fp

=
+

	 (11)

Sensitivity or true positive rate (TPR) is defined as:

	 Sensitivity TPR tp
p

= = 	 (12)

Specificity or true negative rate (TNR) is defined as:

	 Specificity TNR tn
p

= = 	 (13)

tp  is true positive, fp  is false positive, tn  is true negative, and 
fn  is false negative.

The results illustrate the robustness of our model. For both 
data sets, the performance of the model almost scored near 

Figure 2.  The template created by UMAP and gene expression.

Figure 3.  The integration of the 3 omics where the mixed (RGB) colors 

indicate the combination of their values.
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perfection in each evaluation metric. For the PRCA data set, 
the accuracy of the proposed model is 99.37%, while it is 
97.89% for iSOM-GSN model. The area under the curve 
(AUC) is a robust overall performance measurement20; it 
measures how the prediction model can classify both positive 
and negative classes. The proposed model scored 0.9992 of 
AUC compared to 0.9984 for the iSOM-GSN. Similarly, for 
the BRCA data set, the accuracy of the proposed model is 
97.66%, while it is 82.83% for iSOM-GSN model. The pro-
posed model scored 0.9982 of AUC compared to 0.9676 for 
i-SOM-GSN. The proposed model outperformed iSOM-
GSN by 1% to 2% in the remaining performance measure-
ments as seen in Table 3 for both data sets.

Discussion
Many previous studies depend on early data concatenation21 or 
independent analysis of the late merging of the omics data in 
the prediction model.14 Data embedding techniques try to 
extract the meaningful relationships using visual maps, then 
merge those relationships in the CNN model to find the global 
associations from the spatial representation of the omics. The 
model utilizes UMAP, which tries to find the global and local 
structure of the relationships among the features and represent 
it on a two-dimensional map. The model outperformed the 
state-of-art iSOM-GSN in predicting the cancer outcomes 
from 2 publicly available data sets. The first is Gleason score 
levels in prostate cancer, and the second is the tumor stage in 
breast cancer. The clinical reports may incorporate the multi-
omics biomarkers to assist the physicians in prescribing the 
proper treatment.

Similar to iSOM-GSN, this work’s main limitation is that it 
can only integrate 3 omics because we are using the RGB col-
oring system. Another limitation of the current multi-omics 
data models is the lack of a large number of samples. Most of 
the current publicly available data sets contain a couple of hun-
dreds of samples that may lead to insignificant results in the 
lower number of data sets’ samples.

Conclusion
Cancer has a heterogeneous nature, where there is always a 
necessity to find biomarkers for different subtype of cancer.22 In 

this model, the GSN map was created using UMAP to merge 
patients’ samples with 3 omics, including Gene expression, 
DNA methylation, and CNA. The maps are colored using the 
samples values in the RGB coloring system. The embedded 
patients’ maps are fed into a deep learning prediction model 
consisting of several CNN levels. UMAP extracts the discrimi-
native relationships between the features by mapping them into 
Laplacian eigenmaps. The model is applied to the PRCA and 
BRCA to predict the outcome of cancer, and it outperformed 
iSOM-GSN that is another embedding data integration model.

The integration happens at the middle stage of the machine 
learning model. While the genes were selected from the gene 
expression data to create the template, all omics have been used 
in coloring the two-dimensional maps. The future direction is 
to investigate more types of cancer and other complex diseases, 
and to enhance the embedding techniques to reach the ulti-
mate modeling of the molecular-based analysis.
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