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Abstract

Self-control and the ability to resist temptation are critical for successful completion of long-term goals. Contemporary
models in cognitive neuroscience emphasize the primary role of prefrontal cognitive control networks in aligning behavior
with such goals. Here, we use gaze pattern analysis and dynamic functional connectivity fMRI data to explore how individ-
ual differences in the ability to resist temptation are related to intrinsic brain dynamics of the cognitive control and salience
networks. Behaviorally, individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during pre-
sentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic functional connec-
tivity patterns gravitate toward configurations in which salience detection systems are less strongly coupled with visual
systems resist tempting distractors more effectively. The ability to resist tempting distractors was not significantly related
to intrinsic dynamics of the cognitive control network. These results suggest that susceptibility to temptation is governed in
part by individual differences in salience network dynamics and provide novel evidence for involvement of brain systems
outside canonical cognitive control networks in contributing to individual differences in self-control.
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Introduction

In our daily lives, we constantly encounter situations that evoke
conflicting response tendencies: on the one hand impulsive
reactions toward tempting stimuli and on the other hand
actions that serve the realization of previously set goals
(Hofmann et al., 2012). Self-control is correlated with well-being
(Hofmann et al., 2014), and self-control failure has been related
to addiction, obesity, post-traumatic stress disorder, depression
and attention-deficit hyperactivity disorder (Schweitzer and
Sulzer-Azaroff, 1995; Bechara, 2005; Konttinen et al., 2009;
Walter et al., 2010; Özdemir et al., 2014). It is of great scientific
interest to understand why some individuals are able to resist
when faced with temptation, while others fail.

Erotic and sensual images are powerful visual temptations.
The advertisement industry frequently makes use of erotic
images (Reichert and Carpenter, 2004) because they are very
salient and trigger us to involuntarily look toward them
(Sennwald et al., 2016). This might be the case because they
trigger evolutionarily meaningful attention allocation and
approach behaviors (Fromberger et al., 2012). Here, we investi-
gate the neural basis for individual differences in self-control in
the face of temptation using a combination of eyetracking and
dynamic functional connectivity fMRI.

The most prominent model of self-control is the dual-
systems approach, which assumes that a reflective system serv-
ing higher-level goal representations can exert control over an
impulsive system that reacts to stimuli in a direct automatic
manner (e.g. Metcalfe and Mischel, 1999; Strack and Deutsch,
2004; Hofmann et al., 2009). The reflective system has been
mainly associated with frontoparietal cognitive control net-
works (CCNs), while the impulsive system has been linked with
visceral and sensory regions (McClure and Bickel, 2014).
Prefrontal cortical regions have been associated with self-
control (Hare et al., 2009; Hayashi et al., 2013). Based on this
model, the CCN is a prime candidate for studying individual dif-
ferences in self-control.

Another potential candidate for explaining individual differ-
ences in self-control is the salience network (SN). The SN is
comprised of bilateral insula, dorsal anterior cingulate cortex
(dACC) and other subcortical and limbic structures (Seeley et al.,
2007) and is implicated in the direction of attention toward
important stimuli and integration of top-down appraisal and
bottom-up visceral and sensory information [see Uddin (2015),
for review]. This central role in integrating information is
reflected in its unique functional and structural connectivity
profile. For example, the different insular nodes within the SN
are associated with distinct functional connectivity profiles; the
dorsal anterior insular cortex coactivates with areas associated
with cognitive processing, the ventral anterior insular coacti-
vates with areas associated with affective processing and the
posterior insular coactivates with sensorimotor processing
areas (Chang et al., 2013; Uddin et al., 2014).

In the task presented here, attention allocation toward task
relevant information is in conflict with attention allocation
toward task irrelevant, yet intrinsically relevant, information
(e.g. erotic distractors). As the SN has been implicated in the
allocation of attention toward task relevant information by
interacting with other networks, and the coordination of neural
resources (Uddin, 2015), individual differences in SN functioning
might play an important role in explaining why some partici-
pants stay on task while others yield to the erotic distraction.

Most self-control research has focused on the downregula-
tion of impulses by CCNs when examining individual

differences in self-control, while studies of bottom-up processes
that influence self-control are underrepresented (but see
Ludwig et al., 2013; Steimke et al., 2016). Task-based fMRI studies
have indicated that self-control involves dorsolateral prefrontal
cortex modulation of a value signal in the ventromedial pre-
frontal cortex (Hare et al., 2009). Recently, spontaneous fluctua-
tions in resting-state brain activity have been shown to
demonstrate reproducible correlations across brain regions
organized into networks (Shehzad et al., 2009). Because resting-
state networks are thought to represent individual differences
in the brain’s functional organization, resting-state fMRI has
become a leading approach for understanding individual differ-
ences in behavior (Dubois and Adolphs, 2016).

Dynamic functional connectivity of resting-state fMRI data
is a new approach that accounts for the non-stationarity of
brain signals and enables the study of brain dynamics underly-
ing behavior. Whereas the static functional connectivity
approach assumes that the connectivity pattern of the brain
remains stable over time, the dynamic functional connectivity
approach accounts for moment-to-moment variability in con-
nectivity profiles. Within this framework, the brain engages in
reoccurring time-varying functional relations that can be
referred to as functional connectivity ‘states’ (Hutchison et al.,
2013; Calhoun et al., 2014). By taking time variation into account,
the dynamic approach can give a more nuanced understanding
of brain connectivity, which is vital for understanding the
source of individual differences. Our previous work examining
the dynamic functional connectivity profile of different insular
subregions found partially distinct and partially overlapping
dynamic state profiles of the anterior, ventral and posterior
insular subdivisions, highlighting aspects of SN dynamics that
have been previously overlooked (Nomi et al., 2016). Whole-
brain dynamic state characteristics are related to individual dif-
ferences in executive function (Jia et al., 2014; Yang et al., 2014;
Nomi et al., 2017) as well as mental illnesses including schizo-
phrenia and bipolar affective disorder (Damaraju et al., 2014;
Rashid et al., 2014). No previous studies have considered the
relationship between SN dynamics and self-control.

Here, we present results of a study examining the relation-
ship between brain network dynamics and self-control in the
face of temptation. Broadly, we expected that susceptibility to
interference from visual distraction would be reflected in brain
network dynamics. We predicted that individual differences in
self-control would be related to CCN dynamics, SN dynamics or
both. We explored these potential mechanisms underlying indi-
vidual differences in self-control in a relatively large sample of
94 adults.

Materials and methods
Participants

Ninety-four current or former university or college students
(Mean age¼ 25.93, s.d.¼ 3.84; 54 females) were included in
the analysis. These data were part of a larger dataset of 126
participants who also completed additional fMRI tasks, self-
control and cognitive control paradigms (Paschke et al., 2016;
Sekutowicz et al., 2016). Of all participants, 109 had valid behav-
ioral and eyetracking data (Steimke et al., 2016). Fifteen partici-
pants were excluded because either the fMRI registration
process was not successful or because the fMRI scans did not
cover the whole brain.
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Self-control task

In a task designed to assess self-control, participants were
instructed to attend to a cued target location (left or right side of
the screen) while facing the challenge to sustain attention
despite neutral and erotic pictures presented as distractors on
the other side of the screen [Figures 1 and 2; see Steimke et al.
(2016) for behavioral and eyetracking results of the task].
Eyetracking data were acquired using a video-based eyetracker
(sampling rate: 250 Hz spatial resolution: 0.05�, Cambridge
Research Systems, UK). Participants were seated 36 cm from the
screen. To reduce movement, participants were instructed to
rest their chin and forehead on a chin rest. The distracting
images were presented for a variable duration and elicited par-
ticipants’ eye gaze to shift away from the cued target location,
resulting in poorer performance on the task, which was to iden-
tify by button press whether a white target letter was an ‘E’ or
an ‘F’. Variable distractor durations were introduced to prevent
participants from anticipating when the target letter would be
presented. Motivation of participants to perform accurately on
the task was enhanced by offering the chance of a 10 Euro
reward for accurate performance on one trial, which was ran-
domly selected after completion of the task. Target letters were
presented for 10 ms against a dark gray background, and partici-
pants were instructed to respond as quickly and accurately as
possible. The distractors consisted of neutral pictures (e.g.

neutrally rated objects or scenes) and erotic pictures (pictures of
couples in erotic situations) displayed on the contralateral side
of the screen relative to the target location. Note that the task
also included other conditions. Specifically, it included a condi-
tion with disgusting pictures presented before target letter pre-
sentation in the same location as the target letter, an additional
condition with the same timing and location but involving neu-
tral pictures, and a condition where no distractors were pre-
sented. To ensure the absence of carryover effects, the order of
presentation was counterbalanced across conditions. Pictures
were selected on the basis of valence, arousal and attraction
ratings from 96 independent participants and erotic and
neutral pictures were matched for brightness and complexity.
Brightness and complexity (entropy in bits) was estimated using
the Matlab image processing toolbox. Eye gaze distance from
target location was used as a dependent variable. Specifically,
the gaze distance difference score between trials with erotic
and trials with neutral distraction was used. Gaze distance
was used, as it is the most direct measure distractibility.
Additionally, it was found that gaze distance, not reaction time,
was related to delay of gratification in this task: participants
who couldn’t resist to eat one sweet immediately instead of
waiting for two sweets after 45 min also showed greater gaze
distance from target when erotic pictures were presented than
participants who chose to wait (Steimke et al., 2016). A short test

Fig. 1. Timing of behavioral experiment. A trial starts with a fixation cross. The fixation cross is followed by an arrow indicating the location of the next target letter ‘E’

or ‘F’ presented 5.9� of visual angle left or right from the center. After the arrow presentation, a cleared screen is presented for variable delay. Afterwards either a

neutral or an erotic distractor is presented for a variable duration immediately followed by the target letter. Drawings are placeholders for photographs from the inter-

national affective picture system (Lang et al., 2008) and the internet.

Fig. 2. Behavioral and eyetracking data. Mean reaction times, percent errors, gaze distance and standard deviation of the gaze distance (s.d.). Asterisks (*) indicate a

significant difference at P<0.05. Error bars represent the 95% confidence interval for within-subjects comparisons (Loftus and Masson, 1994).
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of fluid intelligence [Leistungsprüfsystem (LPS) Unterteil 3, Horn
(1983)] was performed to be able to control for individual differ-
ences in intelligence.

fMRI data acquisition and preprocessing

Each participant underwent resting-state fMRI scans during
which they kept their eyes open and fixated on a fixation cross.
Whole-brain fMRI data were collected with a 3 Tesla Siemens
Tim Trio magnetic resonance imaging (MRI) scanner (Siemens,
Erlangen, Germany) on a separate day from the behavioral test-
ing. Using a 12-channel head coil, 32 slices were acquired in
descending order with a T2*-sensitive one-shot gradient-echo
echo-planar sequence. To minimize motion, the head was fix-
ated with cushions. The following parameters were used repeti-
tion time of 2 s, echo time of 25 ms, flip angle of 78, data
acquisition matrix of 64 � 64, field of view of 24 cm, voxel size of
3 � 3 � 3 mm and an interslice gap of 0.75 mm, 180 volumes.
Preprocessing was performed with the Data Processing
Assistant for Resting-state fMRI (http://restfmri.net). To ensure
data were at signal equilibrium, the first 10 volumes were
removed. Slice time correction was performed, and the data
were realigned, normalized to an echo planar imaging (EPI)
template and smoothed with a 8 mm Gaussian kernel.

Independent component analysis and static resting-
state connectivity analysis

The first step in the dynamic functional network connectivity
(dFNC) analysis was to parcellate the brain into regions of inter-
est using a high-model order group independent component
analysis (ICA) implemented with the group ICA of fMRI toolbox
(GIFT) toolbox (http://mialab.mrn.org/software/gift/) using the
infomax algorithm (Calhoun et al., 2001; Calhoun and Adali,
2012). A high-model order of 100 independent components (ICs)
was chosen based on previous work demonstrating that this
number of components sufficiently parcellates major brain net-
works [default mode network (DMN); CCN and SN] into individ-
ual brain areas that allows for more fine grained examination of
network node interactions (Kiviniemi et al., 2009; Damaraju
et al., 2014). Additional research demonstrates that model orders
of 100 and below have better reproducibility than model orders
higher than 100 (Abou-Elseoud et al., 2010). Stability of ICs was
ensured by repeating the infomax algorithm 10 times using
ICASSO and selecting the central run for further analysis.
Subject specific spatial maps and time courses were back-
reconstructed using the GICA1 method (Erhardt et al., 2011).

The ICA produced 100 ICs that were then subjected to visual
inspection to eliminate components containing white matter,
cerebral spinal fluid, movement or large amounts of high-
frequency information (Damoiseaux et al., 2006; Allen et al.,
2011). The SN and CCN nodes were selected on the basis of pre-
vious literature showing that bilateral insular regions and dor-
sal ACC are key regions for salience processing (Seeley et al.,
2007), and bilateral dorsolateral prefrontal cortex and lateral
parietal regions are key regions for a variety of cognitive tasks
(Niendam et al., 2012). Note that in the meta-analysis by
Niendam et al. (2012), the dorsal ACC is also implicated in cogni-
tive control. However, this mostly applies to inhibition tasks,
where a conflict between task demands and a competing salient
response is being resolved. Because of the involvement of sali-
ence processing in these kinds of tasks, we assigned this region
to the SN. For enabling easier interpretation of network struc-
ture within the correlation matrices, all remaining nodes were

sorted by visual inspection: visual network, components of the
temporal lobes, DMN, components of the cerebellum and a sub-
cortical network (Figure 3A). Traditional static functional con-
nectivity analysis was performed using the GIFT toolbox
(MANCOVA) adding gaze distance as a covariate of interest. The
correlation matrix representing overall strength of coupling
between these ICs can be seen in Figure 3B.

Independent component post-processing

Post-processing of non-noise ICs in GIFT consisted of despiking,
detrending (linear, cubic and quadratic), regression of the
Friston 24 motion parameters and a low pass filter (0.15 Hz).
Despiking replaces outliers in IC time courses larger than the
absolute median deviation with a third-order spline fit to clean
portions of the data using AFNI’s 3dDespike algorithm.
Despiking decreases the temporal derivative (DVARS) (Power
et al., 2011) over IC time courses and eliminates artifacts in
dFNC analyses (Damaraju et al., 2014).

Sliding window analysis

Post-processed IC time courses were analyzed by using a sliding
window dFNC algorithm in GIFT using window sizes of 22 TRs
(44 s) slid in 1 repetition time (TR). A window size of 44 s was
chosen as previous dFNC work utilized window sizes of 44
(Yang et al., 2014) and 45 s (Damaraju et al., 2014). Furthermore,
previous dFNC research has demonstrated that window sizes of
30–60 s capture distinct dynamic functional connections not
found in larger window sizes (Hutchison et al., 2013; Damaraju
et al., 2014), methodological dFNC work has shown that such
window sizes represent real fluctuations in functional connec-
tivity (Sakoglu et al., 2010; Leonardi and Van De Ville, 2015).
Additional empirical research demonstrates that these window
sizes are able to capture cognitive states (Shirer et al., 2012;
Wilson et al., 2015).

A tapered window consisting of a rectangle convolved with a
Gaussian (r¼ 3) was utilized to account for the limited number
of time points in each sliding window. This produced a cova-
riance matrix with the dimensions of 946 (sliding windows) �
148 (paired connections) per subject. To further account for
noise that may arise from a limited number of time points, each
covariance matrix was regularized using the graphical LASSO
method (L1 norm) (Friedman et al., 2008) of the inverse cova-
riance matrix resulting in a correlation matrix (Damaraju et al.,
2014).

CCN and SN dynamic states

Windowed correlation matrices for components within the CCN
and SN were extracted and subjected to k-means clustering
independently. The SN consisted of the bilateral insular, the
dACC and the orbitofrontal cortex; the CCN consisted of bilat-
eral dorsolateral prefrontal and parietal regions (see Figure 3A
for SN and CCN nodes and Figure 3B for the extracted matrices).
To be able to perform k-means clustering, the sliding windows
of all participants were concatenated for the CCN and SN
separately. Using these concatenated SN and concatenated
CCNs, the number of optimal number of clusters was deter-
mined by using the elbow criterion applied to the cluster
validity index derived from k-means clustering using ‘city block’
distance function (Allen et al., 2014) performed for clustering
values between 2 and 20. This analysis revealed that five is
the optimal number of clusters for the SN as well as for the
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CCN, therefore the five cluster solutions for all results are
presented.

For each of the 5 cognitive network and the 5 SN states,
frequency and dwell time were calculated. Frequency was
calculated as the percent that a brain state prevailed through-
out the duration of the scan. Dwell time was calculated as the
average length, measured in number of sliding windows, that
a participant stayed in a given brain state. Pearson correla-
tions were calculated to relate frequency and dwell time of
cognitive network and SN states to distractibility by erotic
temptation.

Results
Behavioral task results and static connectivity

In Figure 2, the reaction times, error rates, gaze distance and
standard deviation of the gaze distance are presented. All of
these measures revealed a significant difference between
the erotic and the neutral condition at a threshold of P< 0.05
(Table 1). Note, that the error rates are low, potentially pointing
toward a ceiling effect. As expected, the error rate for the temp-
tation effect (error rates for the temptation condition minus
error rates for the neutral condition) is positively and

Fig. 3. Brain networks and static connectivity. (A) Display of the nodes identified by the ICA grouped into functional networks; each color represents a node within

the network. (B) Static whole-brain functional connectivity correlation matrix; CCN and SNs used in the dynamic resting-state analysis are highlighted by red boxes.

The color coding on top of the correlation matrix in Figure 3B corresponds to the colors of the brain areas of the different ICs in Figure 3A.

Table 1. Mean (M), s.d., paired sample t-test results (t-value and P-value) and effect size (g2) for proportion of errors (Errors), reaction time in
milliseconds (RT), mean gaze distance from target location (Mean Gaze) and the s.d. of the gaze distance from target location (s.d. Gaze) in
degrees of the visual angle for the behavioral task

Erotic M(s.d.) Neutral M(s.d.) t-value P-value g2

Error 0.06(0.067) 0.05(0.05) 2.27 0.026 0.05
RT 594.62(64.39) 587.16(63.21) 3.30 0.001 0.10
Mean gaze 3.64(2.06) 3.43(1.8) 3.36 0.001 0.11
s.d. gaze 0.51(0.62) 0.39(0.42) 3.30 0.003 0.09
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significantly correlated with the gaze distance for the tempta-
tion effect (gaze distance from target location in the temptation
condition minus gaze distance from target location in the neu-
tral condition), r¼ 0.275, P¼ 0.007.

Correlations between frequency and dwell time demon-
strate a significant positive relationship between the two
measures (Supplementary Table S1). For a factor analysis,
combining frequency and dwell time to a single compound
score for each state see Supplementary Tables S1–S4.
Performing the traditional static functional connectivity anal-
ysis with gaze distance as a covariate revealed no significant
correlations at a P-value< 0.05 with false discovery rate (FDR)
correction for multiple comparisons.

Dynamic SN states

We identified five different SN states (Figure 4A). Note that the
states are sorted by the average percent of time participants
spent in each of the five states. On average, participants spent
39.53 percent of their time in state 1 (s.d.¼ 27.54), 16.55 percent
of their time in state 2 (s.d.¼ 16.59), 16.02 percent of their time
in state 3 (s.d.¼ 15.72), 15.53 of their time in state 4 (s.d.¼ 17.06)
and 12.37 percent of the time is state 5 (s.d.¼ 16.15). Repeating
of k-means clustering to a total of five estimates revealed stabil-
ity of the results (Table 2). Considering the frequency spent in
each state, there is a floor effect for some participants, meaning
they did not spend any time in that state at all. Five participants
did not enter into state 1, 21 participants did not enter into state
2, 22 participants did not enter into state 3, 19 did not enter into
state 4 and 33 did not enter into state 5. Not all participants
enter into each state because k-means clustering of the con-
catenated data matrix including all subjects allows for the pos-
sibility that individual subjects will not contribute to each state
(Damaraju et al., 2015; Nomi et al., 2016, 2017) The dwell time on
average was 22.56 (s.d.¼ 26.00) for state 1, 10.87 (s.d.¼ 8.97 for
state 2, 9.50 (s.d.¼ 8.25) for state 3, 9.70 (s.d.¼ 9.53) for state 4
and 9.98 (s.d.¼ 12.45) for state 5.

Dynamic CCN states

We identified five different CCN states (Figure 4B). The states
are sorted by the average percent of time participants spent in
each of the five states. On average, the participants spent 34.74
percent in state 1 (s.d.¼ 26.21), 17.98 percent of their time in
state 2 (s.d.¼ 17.52), 17.92 percent in state 3 (s.d.¼ 17.67), 17.14
percent in state 4 (s.d.¼ 17.97) and 12.22 percent of their time in
state 5 (s.d.¼ 13.84). Repeating of k-means clustering to a total
of five estimates revealed stability of the results (Table 3).
Concerning the frequency, 3 participants did not adopt state 1,
20 participants did not adopt state 2, 18 participants did not
adopt state 3, 18 did not adopt state 4 and 28 did not adopt state
5. The dwell time on average was 20.65 (s.d.¼ 26.37) for state 1,
10.96 (s.d.¼ 10.52) for state 2, 10.93 (s.d.¼ 8.35) for state 3, 11.90
(s.d.¼ 11.37) for state 4 and 10.76 (s.d.¼ 11.19) for state 5.

Correlations with eye gaze behavior

As reported in a published paper describing behavioral results
(Steimke et al., 2016), distracting images elicited participants’
eye gaze to shift away from the target location, resulting in
poorer performance on the task (Figure 2). Difficulty resisting
temptations as indicated by gaze distance difference between
erotic and neutral distractors was negatively correlated with the
time spent in SN state 4, r(92)¼�0.26, P¼ 0.012. This correlation
remains significant when using the robust Spearman’s Rank

correlation coefficient [rs(92) ¼�0.251, P¼ 0.015]. To identify
influential outliers, the Mahalanobis distance was calculated.
The analysis revealed two outliers (v2 ¼ 13, 95; v2 ¼ 16, 18) at a
threshold of P< 0.001. Excluding these two outliers reveals that
the correlation between salience state 4 and temptation gaze
effect remains significant (r¼�0.22, P¼ 0.034).

The Pearson’s correlation remained significant when exclud-
ing participants who did not spend any time in state 4,
r(73)¼�0.25, P¼ 0.031. Comparing participants who did not
adopt state 4 at all with those who did enter state 4, using
between group t-tests, revealed marginally significant higher
distraction by temptation for participants who adopted state 4,
t(91)¼ 1.98, P¼ 0.051. State 4 represents a dynamic functional
connectivity state wherein the SN was negatively correlated
with the visual network. All other states were not significantly
correlated with performance on the temptation task (Figure 5A).
Post hoc analysis revealed that time spent in state 4 was nega-
tively correlated with time spent in state 1 [r(92)¼�0.36,
P< 0.001]. Further post hoc testing revealed that the significant
negative correlation between time spent in state 4 and ability to
resist temptation remained significant when controlling for age,
gender and fluid intelligence as measured by LPS (r¼�0.276,
P¼ 0.008, df¼ 89). Correlating dwell time of the five SN states
with the ability to resist temptations revealed the same pattern
as for frequency: state 4 showed a significant negative correla-
tion, while the others did not (Figure 5B). The correlation was
also significant when using the robust Spearman’s Rank corre-
lation coefficient [rs(92) ¼�0.24, P ¼ 0.02].

There was no correlation between frequency or dwell time
of any of the five CCN states with self-control in the face of
temptation (Figure 6A and B).

Correlations with error rates

Difficulty resisting temptation as indicated by the error rate dif-
ference between erotic and neutral distractors was negatively
correlated with the time spent in cognitive network state 1
(r¼ 0.20, P¼ 0.048). However, as displayed in Supplementary
Figure S1, this might have been caused by a few influential
cases. To test the robustness of this finding, we therefore used a
non-parametric Spearman rank order correlation. The results
reveal that the correlation between the temptation error effect
and cognitive network state 1 is no longer significant (r¼�0.16,
P¼ 0.12).

Discussion

Self-control is critical for successful long-term goal attainment.
Here, we use gaze pattern analysis in a self-control task and
dFNC analysis of resting-state fMRI data to explore how individ-
ual differences in the ability to resist tempting distractors are
related to intrinsic brain dynamics. We show that participants
whose intrinsic connectivity patterns gravitate toward configu-
rations in which salience detection systems are less strongly
coupled with visual systems could resist tempting distractors
more effectively.

Our results suggest that individuals whose brains spend
more time in a state where SN and visual network are
decoupled were less distractible by erotic pictures. Most mod-
els of self-control posit a key role for prefrontal CCNs in regu-
latory processes involved in overcoming the impulse to
engage with salient distracting stimuli (Hare et al., 2009;
Hayashi et al., 2013). The current results, in contrast, demon-
strate for the first time that SN dynamic coupling tendencies
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may contribute to individual differences in the ability to resist
temptation.

The SN, with key nodes in insular and anterior cingulate cor-
tices, plays a central role in detection of behaviorally relevant

stimuli and the coordination of neural resources. In particular,
the dorsal anterior insular node of the SN is thought to causally
influence task-positive and DMNs (Uddin et al., 2011). SN dys-
function has been linked with host of psychiatric conditions,

Fig. 4. Dynamic connectivity matrices. Five dynamic SN (A) and CCN states (B). States are sorted by frequency from most frequent (state 1) to the least frequent (state

5). The frequency is indicated by percent time spent in each state.
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particular those involving self-regulation and executive func-
tion deficits (Uddin, 2015). For these reasons, we predicted that
individual differences in intrinsic SN dynamics may contribute
to the ability to focus and maintain attention when faced with
tempting distractors.

Examination of SN dynamics revealed the existence of five
distinct connectivity states of this network (Figure 4). State 1,
which was occupied nearly 40% of the time, was characterized
by a large amount of correlations centered around zero. This is
in line with previous studies (Damaraju et al., 2014; Nomi et al.,
2017) which consistently show that brain states with the high-
est frequency of occurrence show a greater amount of correla-
tions centered around zero compared with less frequently

occurring states. State 2 was characterized by positive correla-
tions of the SN with the sensory motor network. Both states 2
and 3 showed positive intercorrelations within the SN and neg-
ative correlation of the salience with the DMN. State 4 also
showed a negative correlation of SN with DMN and intercorrela-
tion within SN. The most pronounced characteristic by which
state 4 differed from the other states was the negative correla-
tion of the SN and the visual network. State 4 is further charac-
terized by medium-to-high correlations within the SN.
Interestingly, in salience state 4, one node of the SN is corre-
lated with a node from the temporal network. Specifically, the
posterior insula region (see Figure 3A SN region depicted in yel-
low) is correlated with a node located in the temporalparietal
junction (TPJ; see Figure 3A temporal network region depicted
in blue). The positive insula-TPJ correlation is also visible in the
whole-brain static functional connectivity correlation map
(Figure 3B) and in salience state 2 and salience state 5. Thus,
this connection is not unique to salience state 4. The finding of
a correlation between the insula and TPJ is consistent with pre-
vious investigations of TPJ connectivity showing that regions of
the TPJ are functionally connected to nodes in the insular cortex
(Mars et al., 2012) and other nodes in the SN (Kucyi et al., 2012).
The least frequent state 5 showed mixed positive and negative
correlation with regions in the sensorimotor networks, within
SN correlations centered around zero and correlation of SN with
DMN centered around zero.

Examination of CCN dynamics revealed five CCN states. The
most frequent CCN state (state 1) was occupied �35 percent of
the time and was characterized by a greater number of correla-
tions centered around zero, in contrast to the other four states.
This was the case for within CCN intercorrelations and correla-
tions of the CCN with the rest of the brain.

The only significant relationship between brain network
dynamics and individual differences in behavior was observed
for SN state 4. Both frequency and dwell time were significantly
correlated with distractibility by erotic images as measured by
gaze distance from target presentation.

In a recent whole-brain dynamic functional connectivity
study by Nomi et al. (2017), successful executive function was

Table 2. Percent of time spent in each SN state

State
1 (%)

State
2 (%)

State
3 (%)

State
4 (%)

State
5 (%)

1st analysis 39.53 16.55 16.02 15.53 12.37
2nd analysis 39.50 16.50 16.04 15.52 12.44
3nd analysis 39.53 16.54 16.03 15.53 12.36
4th analysis 39.53 16.54 16.01 15.53 12.38
5th analysis 39.53 16.55 16.02 15.53 12.37

Note: Repetition of k-means clustering reveals similar results, suggesting that

the clustering is stable in this dataset.

Table 3. Percent of time spent in each CCN state

State
1 (%)

State
2 (%)

State
3 (%)

State
4 (%)

State
5 (%)

1st analysis 34.74 17.98 17.92 17.14 12.22
2nd analysis 34.74 17.98 17.92 17.14 12.22
3nd analysis 34.55 17.97 18.21 17.13 12.15
4th analysis 34.61 17.75 18.07 17.10 12.46
5th analysis 34.74 17.98 17.92 17.14 12.22

Note: Repetition of k-means clustering reveals similar results, suggesting that

the clustering is stable in this dataset.

A

B

Fig. 5. Correlations between SN dynamics and behavior. (A) Frequency and (B) dwell time of the five SN states with the temptation gaze effect: the higher the tempta-

tion gaze effect, the more participants’ gaze drifted from the target location in the face of tempting distractors. The asterisk (*) indicates a significant difference at

P< 0.05.
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associated with spending more time in the most frequently
occuring state, whereas in our study self-control was not associ-
ated with time spent in the most frequently occurring dynamic
state. These results demonstrate for the first time how highly
salient distractors can interfere with top-down control proc-
esses to a greater extent in individuals who exhibit specific pat-
terns of intrinsic functional connectivity dynamics.

The current results provide more nuanced tests of the dual-
systems model, which pits cognitive control systems against
‘impulsive’ brain systems that react automatically to salient
stimuli. Our separate analyses of CCN dynamics and SN dynam-
ics indeed do not support the predictions of a traditional dual-
systems approach. Instead, our findings suggest that when
visual input has less access to salience detection systems,
tempting erotic distractors are easier to ignore.

It is important to note that the task used in this study is a
visual attention task (Steimke et al., 2016) involving inhibition of
a prepotent attention allocation mechanism. SN properties
might particularly explain individual differences in self-control
when visual attention allocation is involved. On the other hand,
individual differences in self-control tasks relying less heavily
on a prepotent attention allocation mechanism may be better
explained by dynamic brain states related to a reflective system
involving frontoparietal control networks. Future studies should
investigate individual differences in dynamic brain states sup-
porting reflective and impulsive systems in the context of self-
control tasks that involve cognitive operations other than visual
attention, such as working memory updating or task switching
(Miyake et al., 2000).

Taken together, our findings highlight the importance of
considering ‘neural context’ in studies of brain function; the
idea that the functional relevance of a brain system depends on
the status of other connected areas (McIntosh, 2004; Ciric et al.,
2017).

Limitations

k-means is a powerful algorithm to identify a predefined num-
ber of clusters in a dataset. However, it has also been criticized,

as the starting point of the algorithm can influence the cluster-
ing. If the number of clusters chosen does not match the data-
set, the clustering can become unstable and repetition of the
analysis can yield significantly different results. To address this
limitation, we repeated the analysis five times. In Tables 2 and
3, the percent time spent in each state for the five analyses is
presented. The divergence between analyses lies below 0.1 per-
cent, suggesting that the divergence between analyses is minor
and the k-means clustering yielded stable results in our dataset.

Recently, some critiques have attempted to identify possible
shortcomings of dynamic functional connectivity analysis
approaches in resting-state fMRI studies (Laumann et al., 2016).
The authors argue that dynamic variations during rest are
mainly explained by head motion, sampling variability and
states of arousal. Thus, current measures of dynamic brain
function may not actually be related to cognition. Although
head motion and sleep states are certainly of concern in any
fMRI study, other research demonstrates that employment of a
sliding window approach, when strictly accounting for head
motion through subsampling of low motion subjects (Allen
et al., 2014) or scrubbing of high motion volumes (Ciric et al.,
2017), and when accounting for possible states of arousal by
comparing the first and second half of a resting-state scan
(Allen et al., 2014; Damaraju et al., 2014), still produce results
consistent with the interpretation that the brain undergoes
dynamic shifts in functional connections.

With regards to statistical stationarity, recent work argues
that the presence of statistical stationarity over long periods of
time (e.g. averages over an entire resting-state scan) does not
rule out the presence of interesting changes in covariance over
shorter time periods (e.g. sliding windows) [see Miller et al.
(2017) for an extensive discussion of the critizism raised by
Laumann et al.]. All of these issues are also related to the use of
particular approaches used to show a lack of brain dynamics
due to statistically non-significant deviations from a particular
‘static’ null model. Null models used to demonstrate a lack of
brain dynamics are inherently difficult to create due to the fact
that brain scans are inherently dynamic, causing a considerable
gulf between a simulation proposing to capture a lack of
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Fig. 6. Correlations between CCN dynamics and behavior. (A) Frequency and (B) dwell time of the five CCN states with the temptation gaze effect: the higher the temp-

tation gaze effect, the higher the distractibility by erotic images.
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dynamics and actual brain data (Miller et al., 2017). Additionally,
many parameters of any given null model can be tuned to either
show stationarity or non-stationarity, leading to difficulty in
agreement regarding a proper null model of dynamic brain
function. Thus, while there is still a large consensus that brain
function is dynamic (Sakoglu et al., 2010; Allen et al., 2014;
Damaraju et al., 2014; Jia et al., 2014; Rashid et al., 2014; Yang
et al., 2014; Wilson et al., 2015; Nomi et al., 2016), there is less
consensus regarding how to properly demonstrate these effects
(Laumann et al., 2016).

Another limitation of the study presented here is that the
behavioral task effect size is small, despite being highly signifi-
cant. Additionally, frequency and dwell time of dynamic sali-
ence state 4 correlated only with eye gaze distance from target
location, not with error rates. A possible explanation might be a
ceiling effect for error rates, with most participants making very
few errors. The eye gaze distance shows more variance and is
sensitive to subtle deviations from task instruction because of
temptation. Additionally, across all measures acquired during
the behavioral task, gaze distance showed the highest effect
size. These findings support the use of the eyetracking data as a
metric of interest.

With a P-value of 0.012, the results presented here do not
survive the conservative Bonferroni correction for multiple
comparisons. A corrected value would be marginally significant
(P¼ 0.06). Therefore, the results presented here should be
regarded with caution and should be replicated in future stud-
ies. With a sample size of 94, we have a relatively large sample
for a combined fMRI and eyetracking study. However, as was
noted by Schönbrodt and Perugini (2013) a sample size of higher
than 150–250 is even more reliable for examining correlations.
Future work with larger sample sizes is needed to further sup-
port the results presented here.

Finally, it should be noted that the analysis presented here is
not sensitive toward general differences in reaction to erotic
stimuli or general activation differences but only assesses
the connectivity profile of the SN and cognitive network.
Processing of erotic pictures has been associated with activity in
ventral striatum, occipital cortex, hippocampus, hypothalamus,
thalamus and the amygdala in univariate analyses (Stark et al.,
2005; Walter et al., 2008). These regions have not been separately
assessed in the study presented here.

Conclusions

Studying SN dynamics might deliver valuable insight into the
origin of individual differences in self-control ability. We show
that participants who spent more time in a brain network con-
figuration in which salience detection systems are decoupled
from visual systems could resist tempting distractors more
effectively. This suggests that individual differences in self-
control in the face of temptation might be driven in part by SN
functional connectivity context.

Supplementary data

Supplementary data are available at SCAN online.
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