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The “exposome” is a term recently used to describe all environmental factors, both exogenous and endoge-
nous, which we are exposed to in a lifetime. It represents an important tool in the study of autoimmunity,
complementing classical immunological research tools and cutting-edge genome wide association studies
(GWAS). Recently, environmental wide association studies (EWAS) investigated the effect of environment
in the development of diseases. Environmental triggers are largely subdivided into infectious and non-
infectious agents. In this review, we introduce the concept of the “infectome”, which is the part of the
exposome referring to the collection of an individual's exposures to infectious agents. The infectome directly
relates to geoepidemiological, serological and molecular evidence of the co-occurrence of several infectious
agents associated with autoimmune diseases that may provide hints for the triggering factors responsible
for the pathogenesis of autoimmunity. We discuss the implications that the investigation of the infectome
may have for the understanding of microbial/host interactions in autoimmune diseases with long,
pre-clinical phases. It may also contribute to the concept of the human body as a superorganism where the
microbiome is part of the whole organism, as can be seen with mitochondria which existed as microbes
prior to becoming organelles in eukaryotic cells of multicellular organisms over time. A similar argument
can now be made in regard to normal intestinal flora, living in symbiosis within the host. We also provide
practical examples as to how we can characterise and measure the totality of a disease-specific infectome,
based on the experimental approaches employed from the “immunome” and “microbiome” projects.

© 2012 Elsevier B.V. All rights reserved.
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Fig. 1. From exposome to infectome via microbiome. “Exposome” describes all envi-
ronmental factors which we are exposed to in a lifetime, both exogenous and endoge-
nous, infectious and non-infectious. Environmental exposures are basically subdivided
into infectious and non-infectious agents. The concept of “infectome” that we intro-
duce, describes the part of the exposome which refers to the collection of an
individual's exposures to infectious agents participating in the pathogenesis of autoim-
mune disease. The infectome can be considered a part of “microbiome”, the collection
of the microbial products which the human body is exposed to at a given time.
1. Introduction

It is widely accepted that the vast majority of diseases develop
from the interaction between genes and the environment [1–3].
This concept has formed the basis for studying the pathogenesis of
many diseases including autoimmune diseases [1,2,4]. There are
now almost 100 categories of autoimmune diseases, both organ spe-
cific or systemic in nature. Although individual autoimmune diseases
are relatively rare in any population that has been investigated so far,
projected data estimate that approximately 5–20% of North Ameri-
cans are affected by at least one autoimmune disease [5]. Some of
the best known autoimmune diseases are type 1 diabetes, rheuma-
toid arthritis, multiple sclerosis, Grave's disease, Hashimoto's thyroid-
itis, myasthenia gravis, systemic lupus erythematosus, Sjögren's
syndrome, scleroderma and autoimmune liver diseases such as auto-
immune hepatitis, primary sclerosing cholangitis, and primary biliary
cirrhosis (PBC) [5]. The observation that many autoimmune diseases
may affect one individual, has led to the concept of the Mosaic of
Autoimmunity [6–13].

The study of genetic and epigenetic factors linking to autoimmuni-
ty is the focus of ongoing research [14]. Also, the exact signalling cas-
cades that govern the perpetuation of inflammatory processes
responsible for tissue destruction are poorly understood [15]. In re-
cent years, genome wide association studies (GWAS) have identified
numerous gene–disease associations, many of which include autoim-
mune diseases [2]. Although these associations are connected to ge-
netic susceptibility, the genetic ‘dosage’ or number of associated
genes required for disease development is not well defined [16]. Al-
though GWAS have been instrumental in unlocking a pathogenetic
starting point, exposure to environmental factors is also likely to con-
tribute to the actual development of most diseases, and work with ge-
netics in the induction of autoimmune disease [1,2,17]. For example,
smoking has been indicated to increase the risk of developing MS in
individuals with HLA-DRB1*1501 [18]. Epidemiological studies using
toxicological, microbiological, biochemical, and immunological test-
ing are important in order to identify these environmental agents,
which include infectious organisms, xenobiotics, chemical com-
pounds, heavy metals from prostheses and dental materials, radia-
tion, vaccines, and foods to name but a few [1,19–22]. Heavy metals
and vaccinations have also been implicated in the pathogenesis of au-
toimmune (auto-inflammatory) syndrome induced by adjuvants
(ASIA) [23–32]. In fact, siliconosis, Gulf war syndrome (GWS), macro-
phagic myofasciitis syndrome (MMF) and post-vaccination phenom-
ena were linked with past exposure to adjuvants.

Since GWAS underlined the view that multiple genes are needed
to induce autoimmunity [2], it is also likely that several environmen-
tal triggers either complement or substitute each other to provoke
immune mediated processes which then lead to autoimmunity. The
additive effects of these triggers, and their interaction with suscepti-
ble genes, remain poorly defined.

In recent years, the concept of an “exposome” has been intro-
duced, as a means of collating, and possibly measuring the effects of
environmental factors. The exposome takes into account all internal
and external stimuli associated with a disease, and provides a poten-
tially quantifiable way for the evaluation of environmental factors
(Fig. 1). This review will examine the role of the exposome in relation
to major exemplary autoimmune disease where genetics and
environment most likely play key roles in pathogenesis. The role of
the “infectome” as the infectious component of the microbiome/
exposome that takes part (directly or indirectly) in the development
of autoimmunity will also be introduced (Fig. 2).

2. The exposome: what is it, and how do we measure it?

The exposome represents the totality of all environmental expo-
sures, both exogenous and endogenous, which begins from concep-
tion, and extends throughout our lives [33–37]. This differs from
previous epidemiological studies, which have largely concentrated
on the external environment, and specifically to air, water, soil and
food [35]. In contrast to approaches limited to external triggers, the
study of the exposome needs to address endogenous factors directly
or indirectly related to the environment [36,37]. Endogenous sources
include by-products of inflammation, lipid peroxidation, as well as
oxidative stress [35]. Some of these components may act as nucleo-
philes or electrophiles, and as such, would be capable of DNA and pro-
tein modification [38]. Indeed, bacterial alterations in glycosylation
patterns of immunoglobulins have been noted in several studies
[39–41]. The collation of all these exposures may provide a finger-
print of a particular disease, which would likely complement data
from GWAS [38].

The predominant problems in examining environmental expo-
sures are the difficulties of quantification and normalisation as well
as the determination of exposure sequences. This information is re-
quired, as alterations induced by one environmental agent may be
necessary for a subsequent exposure to have its effect [2]. Moreover,
environmental exposures within a population, as well as within an in-
dividual, are greatly varied. Given the myriad of causative possibilities
in one individual, it may be useful clinically to look at causes within
an individual in terms of exposure, sequence of exposure, hierarchy
of exposure events, genetic and other risk factors that initiate or pro-
voke exposure to various stimuli. Examined individually, these pieces
may comprise the jigsaw puzzle that is loss of immunological toler-
ance, development of autoimmune disease and progression of

image of Fig.�1


Fig. 2. Tracing infectious triggers of autoimmunity: the infectome from A to Z. Infec-
tious agents participating in a series of events critical for the initiation of autoimmunity
and the development of autoimmune disease can be traced at various time points. The
traces of these infectious agents may help us to understand the extent of their involve-
ment in the loss of immunological breakdown and/or the maintenance of autoreactive
immune responses leading to self destruction. Infections, at times different of those re-
sponsible for the chain reaction of events that led to autoimmune disease, may partic-
ipate in the remission/relapse clinical patterns seen after the onset of the disease.
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clinically over disease and its complications. Although great variabil-
ity may be seen from patient to patient, the overall collation of
well-defined disease-related exposures individually may provide a
picture of disease development in that patient. The exposome pro-
vides a potential platform by which these exposures may be mea-
sured. It has been suggested that their by-products in an individual,
such as DNA and protein modification, can serve as biomarkers that
are potentially measurable [38] in the blood or body fluids of patients
[3,36–38] via technologies such as liquid chromatography–tandem
mass spectrometry (LC–MS/MS) [42], DNA adducts [43], functional
measurements of antioxidant capacity, and breath analysis [34].

Rappaport suggests two methods in which the exposome may be
measured: the ‘bottom-up’ method measures chemicals in air, water
and the external environment, but is limited in that it does not take
into account the actual uptake of those substances nor the internal
environment of a subject [35]. As an alternative, the ‘top-down’meth-
od measures biomarkers in the patient's blood, however, this method
does not indicate a potential source of the toxicant. It is likely that
both complementary methods, in conjunction with refined question-
naires, will define the exposome in individuals, and larger popula-
tions [35–37]. Frequent sampling could demonstrate changes of
these markers over time, especially during critical phases in the
development of a disease [35]. A study by Pleil and colleagues [34]
indicates that breath analysis for particular biomarkers is capable of
identifying whether one has been exposed, what the dosage was,
how rapidly the body is eliminating the toxicant, as well as possibly
identifying the short and long term effects [34]. Finally, a recent
study by Patel and colleagues [44] has provided evidence that the
exposome can indeed be measured and characterised. That study
conducted an environmental-wide association study (EWAS) on
type 2 diabetes mellitus, where epidemiological data was compre-
hensively interpreted in a manner similar to GWAS [44]. Associations
were found with 37 environmental factors, including organochlorine,
pesticides, nutrients/vitamins, polychlorinated biphenyls, and dioxins
[44]. Other studies have shown a potential crossreactivity between
antigens within the pancreatic islet cells and cow's milk casein in sib-
lings of type 1 diabetics [45], and multiple sclerosis's myelin oligo-
dendrocyte glycoprotein with milk butyrophilin [46], highlighting
the potential role for food antigens as triggers of autoimmune disease.
Similar approaches can be used in future studies on the role of the
exposome in the development of autoimmune diseases, especially
those which develop in genetically susceptible individuals several
years or decades following the initial insult.

One major obstacle to the complete analysis of all these triggers is
their heterogeneity. It is unlikely to cover all such components by ho-
mogeneous technology platforms, as all human biomarker measure-
ments are subject to inter- and intra-subject variance. This includes
the composition of the received data into one model, which appears
to be a Sisyphean task even in the age of ultra-fast computing. There-
fore, the break-down of this multiversity of components into easier
accessible, homogeneous realms of markers seems to be a reasonable
next step. Techniques that can be utilised to detect infectious agents
like multi-parametric immunoassays for antibodies of various iso-
types specific to bacterial or viral antigens, urine and stool cultures
and polymerase chain reaction (PCR) can be considered to be robust
and integrateable [36]. Routine screening to detect the presence of
an infectious causative agent is used clinically in a small scale and
for individual microbial agents on an everyday basis [36].

3. Exposome, infectome and autoimmunity

Infectious and non-infectious environmental agents have long
been considered important for the development of autoimmunity
[4,47–51]. The list of non-infectious environmental factors which
can trigger autoimmunity is vast, and includes tobacco smoke, phar-
maceuticals, oestrogens, ultraviolet radiation, silica solvents, dietary
components, heavy metals, dental materials, vaccines, and collagen/
silicone implants (Table 1) [47,52–80]. Infectious triggers implicated
in autoimmunity are also numerous and include bacteria, viruses,
parasites and fungi. An infection burden corresponding to geo-
epidemiological and serological evidence of the co-occurrence of
anti-infectious agents has been observed and it is of interest that
such an infection burden may differ from one autoimmune disease
to another [4,81,82]. An analogous, autoantibody burden in non-
autoimmune individuals during infection with various agents, further
points towards the close relation of exposure to several infectious
agents and the development of autoantibody reactivities [83]. From
our point of view, it is helpful to define this subgroup of triggers as
the “infectome” which is the part of the exposome referring to the
collection of an individual's infectious exposures which are associated
with disease, and in our case specific autoimmune diseases. It may
also demonstrate the alteration in disease states, which are affected
by alterations of the flora within the microbiome. Examples include

image of Fig.�2


Table 1
Non-infectious environmental agents associated with the development of autoimmu-
nity. This table provides examples of several non-infectious agents from a variety of
sources, which have been associated with the development of autoimmune disease.
AIH, autoimmune hepatitis; AiLD, autoimmune liver disease; COPD, chronic obstructive
pulmonary disease; DM, dermatomyositis; MG, myasthenia gravis; rheumatoid arthri-
tis; SLE, systemic lupus erythematosus; SSc, systemic sclerosis.

Non-infectious
environmental
triggers

Disease Reference

Occupational exposures
Silica RA, SLE, SSc, glomerulonephritis,

small vessel vasculitis.
[52–56]

Solvents SLE, AIH [54,55,57,58]
Pesticides Autoimmune thyroid, RA, SLE, SSc [59–65]
Ultraviolet radiation SLE, RA, DM, PM, MS,

type 1 diabetes mellitus
[54,66–69]

Drugs
Allopurinol Immune haemolytic anaemia [70]
Captopril Autoimmune thrombocytopaenia [71]
Chlorpromazine Anti-phospholipid syndrome,

haemolytic anaemia, SLE, AiLD
[72–78]

Estrogens PBC, SLE, RA [155–158,316–320]
Halothane AIH [77,321,322]
Iodine Autoimmune thyroid [62]
Penicillins AiLD, immune haemolytic anaemia [77,323]
Rifampicin AIH, autoimmune thyroid, immune

haemolytic anaemia
[324–326]

Tetracyclines AIH, DM, SLE [79,327–336]

Miscellaneous
Vaccines PBC, AIH, SLE, RA, MS, MG, DM,

polyarteritis nodosa,
[279,337–349]

Cigarette smoke PBC, COPD, RA, autoimmune
thyroid

[155–158,350–355]

Collagen/silicone
implants

SLE, Sjögren's, SSc [353,356–362]
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treatment with antibiotics [84,85], or exposure to toxic metals, sili-
cone or other xenobiotics [30,86,87]. These exposures may very well
alter the disease course or progression, by altering the flora within
the microbiome, or by increasing the likelihood of infection with a
disease causing infection. Theymay also increase the burden of oxida-
tive stress. While the hygiene hypothesis underlines the protective
role played by infections [88–92], clinical and experimental data in
animal models implicate infections in the development of autoimmu-
nity and autoimmune disease [4]. One of the best-studied examples of
infection-induced autoimmunity is that of acute rheumatic fever
presenting several weeks after infection with Streptococcus pyogenes.
It is now well established that molecular mimicry between the bacte-
rial M-protein and human lysoganglioside is responsible for the loss
of immunological tolerance, and the development of autoimmunity
in genetically susceptible individuals [93]. Other examples include
the associations between Helicobacter pylori and autoimmune gastri-
tis [94], as well as between Trypanosoma cruzi and Chagas' cardiomy-
opathy [95], and Mycoplasma with rheumatoid arthritis [96].

Although experimental models of autoimmune diseases and
studies like those mentioned above provide data to support the role
played by a single infectious trigger, the prevailing idea is that a mul-
titude of infections from birth, in our term the infectome, contributes
to the induction of autoimmunity [4]. In fact, Rolf Zinkernagel's hy-
pothesis is that the increasing predisposition to autoimmune disease
in the developing world may be due to the overall host–infection
balance, beginning as early as the transfer of maternal antibodies
via the placenta or via breast milk in the gastrointestinal tract. The
question which then arises is how one can identify those specific
infectious agents responsible for the initiation of an autoimmune
disease. Studies in animals have provided some clues, but their
resemblance to the human setting is poor in most cases.
Ideally, investigations have to be carried out in affected individuals.
However, when work is performed on biological material obtained
from patients with a given autoimmune disease, it is difficult to single
out disease-triggering microbes. Undoubtedly, information from the
collection of the microbial genes in a particular region (such as the
gut or the oral cavity), also known as “microbiome”, can provide im-
portant hints for those potentially involved in the development of or
protection against autoimmunity. However, this by itself cannot differ-
entiate those with a pathogenic potential from the non-harmful ones,
the latter representing the great majority. In fact, most of the isolated
microbes have little to do with the initiation of immune-mediated in-
flammatory processes leading to a given disease. Moreover, induction
of autoimmunity by viruses or bacteria is probably done by a
‘hit-and-run’ mechanism when the causative agent has been cleared
from circulation by the time of diagnosis. Tracking down each
individual's exposure to infectious agents as well as anti-microbial im-
mune responses may be important for the establishment of a causative
link between infection and autoimmunity.

Studies attempting to investigate the role of the “infectome” in the
induction or remission/relapse state of autoimmune disease may
need to focus on autoimmune diseases such as multiple sclerosis or
rheumatoid arthritis, as patients with these diseases experience fre-
quent remissions and relapses as well as fluctuations in disease activ-
ities that are poorly understood. Systemic lupus erythematosus,
multiple sclerosis and rheumatoid arthritis are three of the best stud-
ied diseases so far for which specific viral agents have been consid-
ered to be important for the development of the disease and the
breakdown of immunological tolerance [4]. As well, exposure to
metals and various other chemical components have also been linked
with these two conditions, and it would be interesting to see how
these exposures alter the presence of infectious agents. It may be
the case that exposure to certain xenobiotics increases susceptibility
to disease causing microorganisms, or possibly eliminates organisms
that are determined to be protective.

Arguably, the ideal clinical setting for the study of the role of the
“infectome” in autoimmunity would involve typical autoimmune
diseases with long prodromal stages [97]. Serial testing of biological
material from individuals who progress from an asymptomatic sub-
clinical phase to clinical disease would be optimal for the study of the
“infectome”. Examples of this include systemic lupus erythematosus
(SLE), multiple sclerosis (MS) and primary biliary cirrhosis (PBC) to
name a few. All of those are characterised by highly specific antibodies
that may appear years or even decades before the onset of symptoms
[98–100]. These diseases also have long prodromal stages and their
course highly varies among individuals. Relapse and remission states
can be seen, but the reasons for this remain unknown. The characteristic
features of these diseases and their reported pathogenic relationship
with infectious agents make them ideal candidates for the study of the
infectome.
4. SLE as an infectome model: known infections, stronger links

Systemic lupus erythematosus (SLE) is often characterised by a
prodromal stage of antibody positivity (predominantly anti-Sm and
anti-Ro) with no symptomatology [101,102]. A recent study has also
found that a significant proportion of first degree relatives of SLE pa-
tients are positive for several autoantibodies, namely ANA (mostly
anti-dsDNA), anti-Ro/SSA, and many other specificities [103–105]. In
fact, ANA titre≥1:160, anti-dsDNA, anti-Ro/SSA and anti-chromatin
may have a high predictive value for SLE diagnosis [103]. The reasons
underlying the development of and/or the progression to clinical
disease, as well as the mechanisms underlying disease flares, remain
elusive [19]. However, several infectious agents have been implicated
including EBV, cytomegalovirus (CMV) and parvovirus B19 [48,101,
102,104–110]. These features make SLE an ideal model for the
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infectome, given the strong evidence for an infectious trigger, in addi-
tion to its unpredictable clinical course.

EBV appears to have an association with SLE, with variations and
susceptibility based on demographical and genetic characteristics
[111]. Harley and colleagues [101] propose a progression of EBV in-
fection followed by Epstein–Barr virus nuclear antigen 1 (EBNA-1)
antibody production, which predisposes to the development of
cross-reactive autoantibodies, with progression to clinical SLE. Harley
and James [102] indicated that the first lupus specific antibodies are
directed against EBNA-1, which interestingly also binds lupus specific
antigens such as Sm and Ro. As with many implicated viruses, the
exact mechanisms in which they induce autoimmunity are not yet
clear. However, one group which has indicated molecular mimicry
as a mechanism with regard to EBV and SLE, notes similarities be-
tween the EBV peptide PPPGRRP and the PPPGMRPP peptide of Sm
[109]. That same group tested 196 ANA positive adult SLE patients,
and two age, race, and sex matched controls per patient, for evidence
of previous infection with EBV, CMV, herpes simplex virus-1 (HSV-1),
HSV-2, and varicella zoster virus (VZV) by ELISA [109]. Among the SLE
patients, 195 out of 196 had previous EBV infection compared to 370
controls [109]. No differences were found in regard to the rate of in-
fection with other viruses [109]. A study by Wang et al. [112] found
that the EBV-encoded latent membrane protein 2A induced a height-
ened sensitivity to toll-like receptor (TLR) ligand stimulation, which
increased proliferation of anti-Sm B-cells, and/or increased antibody
secreting cell differentiation.

Parvovirus B19 has also been found to be associated with SLE,
although the evidence is not as clear cut as that of EBV. The group
of Bengtsson [106] tested 99 SLE patients and 99 age and sex matched
controls for parvovirus IgG antibodies. No evidence of parvovirus B19
was found in SLE compared to controls, and in one analysis, the
controls had a higher positivity than the SLE group [106]. As the
symptoms of SLE and parvovirus B19 infection may be similar, a pro-
spective study involving 42 patients with acute parvovirus B19 infec-
tion attempted to determine whether the symptoms persisted, and
whether infection contributed to the development of SLE [110].
Clinical and laboratory investigations were performed at 1, 2, 6, 12,
and 24 months from initial infection. Arthralgias persisted for 2–
6 months in three female patients, for greater than two years in one
female, but resolved in the remaining cases within 2 weeks [110].
One female with persistent arthralgia over two years was ANA posi-
tive and had hypercomplementaemia, but did not fulfil the diagnostic
criteria for SLE or RA [110]. Despite the lack of evidence linking
parvovirus B19 to the induction of SLE, one case report of a 26 year
old female with SLE, who had a disease flare-up following parvovirus
B19 infection, suggests that parvovirus B19 causes disease flares in
SLE patients [107].

As with parvovirus B19, the evidence linking CMV to SLE is scarce.
Hrycek and colleagues found that 100% of female SLE patients have
evidence of CMV infection, compared to 75% of controls [108]. As
well, another study had found that the CMV pp65 antigen triggers
humoral immunity in SLE patients and autoimmune prone mice
[113]. The lack of evidence linking particular viruses to SLE does not
infer non-involvement, but reflects the difficulty of detecting infec-
tious organisms, which may be transient, in these patients. It is likely
that diagnosis of SLE and/or SLE flares occurs after an infection. The
infectome serves as a model in such cases. At-risk patients, such as
first degree relatives of SLE patients, who are found to be positive
for autoantibodies, may be screened at regular intervals. Likewise,
SLE patients may be screened, and changes in clinical course, such
as flares, may be correlated with infection. Several other diseases
with a well defined connection such as that of H. pylori-induced idio-
pathic thrombocytopenic purpura could be explored. These methods
are useful in that they not only indicate the who and when, but also
provide a more narrowed-down list of organisms to evaluate in
regard to the mechanism in which they induce autoimmunity.
5. Multiple sclerosis as an infectome model for relapse remittance
clinical states

Multiple sclerosis (MS) serves as another example in which the
infectomemodel may be applied. MS is a chronic autoimmune neuro-
logical syndrome characterised by chronic inflammation, demyelin-
ation and gliosis in the central nervous system (CNS) [114,115]. It is
characterised by periods of relapse and remission [114,115], the rea-
sons for which are not understood. Current evidence suggests that the
risk for acquiring MS is spread over a long period of time, and is not
limited to childhood or early adult life [116–118].

The most prevalent form of the syndrome is the so called relapsing–
remitting MS, characterised by flares whereby pre-existing symptoms
become more severe, or new symptoms develop [119]. These flares
are followed by phases of complete or partial recovery and their
duration is highly variably among affected individuals. A considerable
proportion of these patients acquire progressive disabilitywith orwith-
out disease relapses (secondary progressive MS). Another form of MS is
characterised by a stable progression of the disease with worsening of
the symptomatology over the course of the disease. This form is also
known as primary progressiveMS (PPMS). Two further forms of the dis-
ease are also found with totally contradictory outcomes. The benign
form of MS usually presents with minimal or mild progression of dis-
ability, and is clinically characterised by full recovery of sporadic senso-
ry episodes [119]. On the other hand, the Marburg variant of MS is
characterised by rapidly progressive disease which leads to accumulat-
ing disability and eventually to death. The mechanisms responsible for
the development of clinically distinct disease phenotypes are poorly
understood [119].

The pathological hallmark of MS is inflammatory lesions (areas of
demyelination) in the CNS composed of mononuclear cell infiltrates
in the perivascular spaces that develop into plaques [114,120].
These mononuclear cells are largely composed of T and B lympho-
cytes, plasma cells, macrophages and microglia [114,120]. Positive
staining for IgG is found in the peripheral regions of the plaques
[114,120]. Additionally, approximately 90% of MS patients show in-
trathecal IgG synthesis in the cerebrospinal fluid (CSF) [114].

Environmental and genetic components are clearly involved in the
aetiology of MS, with geographical and twin data indicating a greater
environmental component [114,115,121,122]. However, identical
twins are 100 times more likely to developMS if their co-twin is affect-
ed, whereas non-twin siblings are 20 times more likely [123,124]. Ge-
netic and GWAS have implicated several alleles, with the strongest
association being with HLA-DRB1*1501 [125]. Seven GWAS studies
have been conducted, which included nearly 10,000 MS patients and
15,000 controls [115]. Implicated genes include IL7R, IL12RA, CLEC16,
and CD226 [126,127]. Nonetheless, implicated genes have only demon-
strated an odds ratio of less than 1.3 [115], and MS twins only demon-
strate a 30% concordance [114], indicating more of an environmental
influence in the disease pathogenesis.

Non-infectious and infectious components have been implicated
to be involved in the development of MS. Within the group of
non-infectious agents, vitamin D is of particular interest, not only in
MS but also in several other autoimmune diseases [115,128–140]. Vi-
tamin D appears to play a role in the modulation of pro-inflammatory
pathways and T cell regulation [115]. Increased distance from the
equator has been correlated with low vitamin D, and interestingly,
MS rates increase as distance from the equator increases [114]. As
well, populations with increased dietary vitamin D intake have
lower rates of MS [115]. An Australian study found a decreased risk
of a first demyelinating event in those with increased sun exposure,
who also had increased levels of serum vitamin D [141]. This has
also been found in other studies [142]. As well, the effect of month
of birth on MS development was more apparent in familial MS group-
ings, suggesting an influence on prenatal vitamin D levels, as well as
an interaction between genes and environment [115]. Like many



Table 3
Examples of infectious agents implicated in primary biliary cirrhosis. This table pro-
vides several examples of infectious organisms which have been implicated in the
pathogenesis of primary biliary cirrhosis (PBC). Strong evidence exists for some organ-
isms such as Escherichia coli, while weaker evidence exists for others. This may be due
to the lack of investigation into the prevalence of some organisms in PBC.

Bacteria Escherichia coli [176,178,265,267,399,400]
Chlamydia pneumoniae [263,401]
Mycobacterium gordonae [402–404]
Novosphingobium aromaticivorans [178,399]
Pseudomonas aeruginosa [257,405]
Lactobacillus delbrueckii subsp bulgaricus [259,279]
Yersinia enterocolitica [260,406]
Salmonella typhimurium [407]
Salmonella minnesota [408]
Haemophilus influenzae [257,260]
Streptococcus intermedius [409]
Paracoccus dentrificans [410]
Borrelia burgdorferi [411]
Propionibacterium acnes [412]
Mycoplasma pneumoniae [413]
Mycoplasma gallisepticum [414]

Viruses Βetaretrovirus [272,276,415,416]
Cytomegalovirus [257]
Epstein Barr virus [417]

Parasites Trypanosomes [418,419]
Ascaridia galli [419]

Other Saccharomyces cerevisiae [420]
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conditions, smoking has also been associated with MS development,
and a recent meta-analysis overwhelmingly associated smoking
with MS [143]. Gene–environment interactions have been suggested
in regard to smoking and the presence of HLA-DRB1*15 with the ab-
sence of HLA-A*02 [144]. Smokers with this genetic combination
appeared to have an increased risk of developing MS [144]. Whether
this is due to the effect of the nitrosamines or the heavy metals in
cigarette smoke is not clear. There is limited evidence for the role of
heavy metals in some patients with MS [145]. Infectious agents inves-
tigated in regard to MS have included bacteria and viruses (Table 3)
[114,115,121,122,146,147], and implicated viruses include EBV
[114,115,121,122] and human herpes virus 6 (HHV6). The relapse–
remittance pattern of the human herpes virus 6 (HHV6) is similar to
the clinical pattern of MS [115] and HHV6 reservoirs have been
found in CNS tissue [148,149], in addition to the CSF and serum of
MS patients [150,151]. Molecular mimicry has been indicated, as se-
quence homology has been found between myelin basic protein and
HHV6 encoded U24, and cross-reactive T cells responding to both
protein types are found to be elevated in MS patients [152]. Varicella
zoster virus, torque teno virus, retroviruses, coronaviruses and JC
virus have also been implicated, but with limited evidence [114,115,
121,122]. Reactivity to several viral peptides was found [153], which
has led to the speculation that continual exposure to a variety of vi-
ruses can lead to T cell expansion reactive against highly conserved
proteins, including self-peptides.

An infectome for the above conditions (and others) may clarify
questions regarding aetiology, but may also identify the cause of
certain disease characteristics, such as variable presentation and
progression among PBC patients, disease flares in patients with SLE,
or relapse–remittance among MS patients. As such, these conditions
serve as models for an infectomal analysis.
6. Primary biliary cirrhosis as an infectome model disease

PBC can be used as a model disease to investigate the role of the
exposome, and indeed of the infectome [154], as A) it is an autoim-
mune disease and it is not as rare as many other such diseases, B) it
has a long silent phase in which well-established biomarkers can be
determined in high-risk populations, C) it presents with subgroups
of patients who have differing disease progressions and/or con-
comitant other autoimmune diseases, D) it is not treated with
immunosuppessive drugs that might deteriorate the immunological
assessment of the infectome, and E) there is growing evidence in sup-
port of genetic, environmental, and infectious factors involved in the
pathogenesis of the disease such as recurrent urinary tract infection
(UTI), cigarette smoke, and oestrogen deficiency [155–163]. A pleth-
ora of experimental and clinical data clearly indicate that the disease
Table 2
Examples of infectious agents implicated in multiple sclerosis. Several organisms have
been implicated in the pathogenesis and clinical course of multiple sclerosis (MS), the
vast majority of which are viruses.

Viruses Bacteria

Epstein Barr virus [363–378] Chlamydia pneumoniae [379]
Human herpes virus 6 [148–152,380,381] Borrelia burgdorferi [382]
Varicella zoster virus [383–385] Mycobacterium tuberculosis [386]
Human cytomegalovirus [387]
Retroviruses [388,389]
Coronavirus [390,391]
Torque teno virus [153]
JC virus [392,393]
Rubella virus [394]
Parainfluenza virus I [395]
Measles virus [396,397]
Mumps virus [398]
is indeed autoimmune in nature [98,159,164–184]. Infectious agents
and xenobiotics mimicking or modifying the core epitopic region of
PDC-E2, the major autoantigen in PBC, appear to induce immune-
mediated destruction of the bile ducts. As PBC affects the liver, access
to the affected organ for research purposes is possible at the time of
diagnosis via liver biopsy, and over the course of the disease from
early to advanced stages. This is not possible in diseases such as
diabetes mellitus type I.

In line with the already discussed ideal situation of a long prodro-
mal period, PBC has a long pre-clinical phase, characterised by an
asymptomatic period with evidence of autoimmune markers in the
form of autoantibodies, followed by biochemical evidence of liver
damage and finally clinically-evident disease. The progression from
asymptomatic to symptomatic PBC may take years or decades. Virtu-
ally, all patients with PBC have high-titre anti-mitochondrial anti-
bodies (AMA) at the time of diagnosis [99,175,184–210]. Also, the
presence of AMA is predictive of eventual disease development
[211]. PBC patients with disease-specific anti-nuclear autoantibodies
(ANA) appear to have more advanced disease and poorer prognosis
[212–227]. Individuals at the highest risk of developing PBC are fam-
ily members of PBC patients. [228–234]. The vast majority of patients
with PBC experience concomitant autoimmune diseases such as Sicca
syndrome, autoimmune thyroiditis, rheumatoid arthritis, autoim-
mune hepatitis and systemic sclerosis. The reasons behind the fast
pace of progression seen in some patients with PBC are unknown,
and attempts to predefine those individuals which will progress
faster than others have been largely unsuccessful.

PBC does not appear to respond to immunosuppressive treatment,
making the disease perfect to study the involvement of infectious
agents over the course of the disease without the need to consider
the effects of immunosuppressive therapy on relapse/remission
states. PBC patients are instead treated with ursodeoxycholic acid
(UDCA) at adequate doses of 13–15 mg/kg/day [235,236]. It is not
clear as to whether UDCA has immunomodulatory properties or not.

A number of environmental factors have been implicated in PBC
by ‘bottom-up’ approaches in various epidemiological studies exam-
ining associated risk factors [155–158] including numerous xenobi-
otics and infectious agents [159–162,237]. Animal models have
further supported this notion [159,238–242]. The genetics of PBC ap-
pear to include HLA [243,244], non-HLA [245–251] and sex-linked
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genes [252–254]. Particular allelic associations may be indirectly rel-
evant to the pathogenesis of the disease, as they may influence the
penetrance of infectious agents. For example HLA-DRB1*11 and
HLA-DRB1*13 have a negative association with PBC, and are protec-
tive for several viruses that affect the liver, such as hepatitis B and
C. The lack of HLA alleles protective for PBC, which are associated
with resistance to specific pathogens, may lead to susceptibility to in-
fection responsible for the induction of the disease [244,255]. These
findings underline the urgent need to investigate the infectome in
parallel with GWAS. An infection burden involving EBV, CMV and
Toxoplasma has been recently reported in patients with PBC.

However, the list of pathogens involved in PBC is vast, with some
such as Escherichia coli, having a relatively strong evidence base
(Table 2) [164,182,252,256–279]. Molecular mimicry has been con-
sidered a likely mechanism that could account for the initiation of
liver autoimmune diseases, including PBC [164,182,256–260,264,
274,275,279–285].

Much as the exposome reflects the collation of all exposures, an
infectome may reflect all those bacterial, viral, or parasitic exposures
which may contribute to the development of an autoimmune disease.

7. How to study the infectome

The study of the infectome needs to be customised taking into
account the disease to be investigated. The type of the sample to be
collected largely depends on the disease under investigation.

A generic, step-wise approach of infectome analysis at presenta-
tion would be the following:

1) Determination of HLA class I and II is performed in all individuals
under investigation. Ideally, this could be performed at birth, or at
the baseline when the individual/patient presents for the first
time in the clinic. This information is important in order to
sub-group the individual into high or low risk.

2) Collect urine, oro-nasal swabs, saliva, faecal material, and blood
(for isolation of plasma, serum, and peripheral blood mononuclear
cells — PBMCs).

3) Regular follow-up (once yearly) with collection of samples;
4) Meticulous recording of clinical data and collection of samples are

needed when anti-infective treatment is applied for incidental/ca-
sual infections at the pre-clinical stages of the disease, as this may
affect the final outcome of the underlying processes.

5) Store samples until patient has laboratory and/or clinical features
related to the disease;

6) Analysis of collected samples for infectious agents with a known
association with the disease, and “out of the box” analysis using
multiplex technology for other infectious agents (see section
“How to screen?” below). The analysis will provide information
regarding the infection burdens at various-time points;

7) Associations are analysed, providing evidence for known/un-
known infectious agents in the development of symptomatic
disease.

8) Continuous analysis over the course of the disease, as it may reveal
a close link between a specific agent and the clinical phenotypes of
the disease.

The study of the role of infectious agents in the development of an
autoimmune disease, whether RA, SLE, MS or PBC, may reveal which
agents are involved in the development of the disease as well as
other concomitant autoimmune diseases. It is likely that the combina-
tion of particular genes and particular infectious exposures is respon-
sible for the development of an autoimmune disease, with or without
a particular concomitant autoimmune disease. In other words, there
may be several infectomes for SLE, some of which define SLE with a
particular concomitant autoimmune disease. This of course applies
to other autoimmune diseases.
8. Lessons that can be learned from the microbiome and
immunome projects

The recently described microbiome concept can be separated from
that of the infectome. Themicrobiome defines the collection ofmicrobial
genes in a particular region, such as the gut, inguinal crease, oral cavity,
or virtually any body site [286–295]. The microbiome may be reflective
of the normal or pathological profile of organisms. For example, the
microbiome of the gut has been analysed in healthy individuals
[288–291,294], which identified three distinct profiles or clusters,
known as enterotypes [287,293]. Similar studies have been performed
for the oral cavity aswell [286,295]. Themicrobiomemay also be applied
to a disease-affected body site, such as the gastrointestinal tract in chil-
dren with irritable bowel syndrome (IBS) [292]. A study by Saulnier
and colleagues [292] obtained 71 faecal samples from 22 children with
IBS and 22 healthy children, all aged 7–12 years. These samples were
analysed by 16S rRNA gene sequencing, which showed an elevated per-
centage of γ-proteobacteria in the gut flora of children with IBS, with
Haemophilus parainfluenza being a prominent component [292].

So how does the infectome differ from this? First, the infectome
relates to those infectious organisms which are associated with the
disease in question, as opposed to a totality of all organisms, both
pathological and non-pathological within the human microbiome.
Second, the infectome reflects all sites of infection, as opposed to
one body site usually represented by the microbiome. As well,
microbiome studies to date have largely concentrated on bacterial
species, whereas the infectome takes into account all pathological bac-
teria, viruses, parasites, and fungi. The infectome is not limited to the
affected site or organ but includes biological fluids as well as sampling
of various body-sites including the oral cavity. Some argue that the or-
ganisms of the human microbiome do not usually induce antigen spe-
cific systemic humoral and cellular immune responses provoking local
or systemic inflammatory response, while others believe that these
organisms may not be directly pathogenic, but create a dysbiosis of
the gut flora and participate in the induction of autoimmunity. This
is a key difference between the microbiome and the infectome as the
former appreciates the direct or indirect effect of immune responses
against infectious agents as pivotal for the initiation of autoaggression
and immune-mediated, self-targeting pathology. For the infectome,
monitoring of the microbial/host immunity is as important as the
isolation of potentially harmful bacterial products, since the host/
microbe immunological interaction is the likely cause of the self-
destruction in the case of non-cytopathic viruses and microbes.

Although the infectome and microbiome are distinct entities, they
may be used symbiotically to provide a micropathological profile (or
profiles) of a particular disease. As well, the microbiome is essential to
define what “normal” actually is. Recent microbiome studies have
been able to provide an idea of what “normal” may be in the gut by
performing metagenomic screens of bacterial populations in these re-
gions [288–291,294]. For example, in the case of PBC it may be perti-
nent to understand the normal microbiome of the urinary bladder
and vagina, as infections in these sites have been associated with
PBC [155–158,296,297]. Other body sites may also need investigation,
as inhalation or consumption of potentially pathogenic organisms has
also been implicated [275,298]. All associated organisms located in all
potential body-sites, would comprise the infectome. The establish-
ment of what is normal as well as infectious may contribute to the un-
derstanding of the network of events or exposures which lead to
disease development. It is possible that a series of exposures leads
to increased susceptibility to further exposures, which could be de-
fined by the infectomal model.

9. Who to screen?

Unlike GWAS and the microbiome, it is unlikely that population
screening of infectomal components could be performed due to the
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lack of integrated analysis platforms. It may be more reasonable to
screen particular groups of individuals who are at risk of developing
autoimmune disease, like family members or individuals with an
HLA profile conferring risk for a given disease. Further monitoring
may reveal whether additional infections play a role in the progres-
sion of the disease to a symptomatic stage. Additionally, particular
exposome/infectome profiles may be found among patients with rap-
idly progressive diseases (as in a subset of PBC patients), or in relapse
remittance states in MS, and flares in SLE. This approach may delin-
eate which infectious agents are responsible for disease development
and/or progression, as well as identifying those that are associated
with rapid versus slow progression, remittance, and flares.

10. How to screen?

The establishment of the infectome would have to rely on the de-
tection of microbiological materials in patients, favourably in
ease-to-sample material like blood, urine or saliva. There are several
methods by which this may be done, and some of those have already
been used for research purposes. Serological detection of IgM, IgA and
IgG antibody responses to microbes, viruses, and fungi is likely to be
the most common, fastest, and most cost effective method and inde-
pendent of the actual presence of a respective infectious agent. Mon-
itoring for seroconversion of antibody responses and isotype class
switching from IgM to IgG is imperative for the identification of
newly acquired infectious triggers over time. To this end, the part of
the immunome which relates to infections is an integral part of the
infectome and its primary goal to identify microbial triggers of auto-
immunity. Immunoassays for the determination of antibodies against
most of them, e.g. ELISA, are broadly available, have a high degree of
robustness and standardisation and are comparably cheap. Further-
more in some diagnostic scenarios, multi-parametric immunoassays,
e.g. lineblots for the detection of antibodies against tick-borne
diseases exist that facilitate the determination of antibodies against
several or even multiple entities at the same time with a limited
amount of sample. The highest complexity up-to-date can be reached
by using protein microarrays that allow for the screening of several
thousand antibody entities at the same time [299,300]. However,
such platforms have so far only been used to screen for immune pro-
files of individuals, and small numbers of similar infectious agents
and commercial solutions with a similar degree of standardisation
as those containing human proteins are not available. A major
breakthrough might result from the development of high-density
peptidome libraries of relevant microbes and viruses similar to
the concepts of peptidome libraries covering human proteins,
e.g. T7-Pep library for the human peptidome [301].

A large German study used a PCR approach to detect a variety of
organisms in archived liver tissues of PBC patients [302]. This ap-
proach has also been adopted in several other studies examining
the role of mycobacteria in PBC [303–305], as well as in another
group which used this method to detect beta-retroviral material in
the liver and lymph node tissue from PBC patients [276,277]. Similar
studies have been conducted in other autoimmune diseases.
Multi-parametric detection of viral and bacterial genetic material in
tissues may be another promising approach. In recent years, DNA se-
quencing technology has undergone an outstanding upgrade, and
the so-called ‘high-throughput DNA sequencers’ can determine hun-
dreds of megabases of DNA sequences per run, enabling the analysis
of a broad range of infectious agents [306–309]. Massive, parallel se-
quencing might be the next step of this approach for that it is the
most sensitive procedure available and allows for the detection of a
multitude of infectious agents at the same time [310]. However, the
considerable costs of this testing limit its wide use. Immunohisto-
chemistry detecting several microbial agents in tissue samples can
be applied [311], though it is likely that tissue based methods are
not ideal in the establishment of the infectome, as they are time
consuming, and tissue of the affected organ may not be readily avail-
able from all patients. The analysis of blood, faecal material, urine, or
saliva is more plausible, and can be used for screening, reflecting the
‘top-down’ approach suggested by other researchers [35]. As men-
tioned, multiplex PCR is a useful tool for evaluating the presence of
microorganisms from a variety of sample types. Microbiome studies
have also highlighted the use of 16S/18S rRNA gene sequencing,
which allows for the mass-analysis of samples [290,292]. However,
one drawback of this approach in comparison to immune profiles is
the risk of missing the right time or site of sampling.

11. Where to screen?

The question also remains as to which body sites should be sam-
pled. In addition to the affected organ, general or systemic infections
should be an indication for sampling. This may include urine and stool
samples in urinary and gastrointestinal tract infections respectively,
or blood cultures in febrile patients. In addition to clinically overt in-
fections, many patients with autoimmunity may have latent infec-
tions such as Lyme disease or Mycoplasma. Examples of this include
hidden chronic low grade infection associated with dental treat-
ments. In fact, the oral cavity is not commonly examined for infection
in patients with autoimmune disease, and it would most likely be
useful to examine and sample the oral cavity for such overt infections
[312–314]. Accumulating evidence indicates that oral hygiene prac-
tices may induce alterations in the flora of the oral mucosa, which
leads to a dysbiosis in the gut microbiome, and thereby contributes
to the pathogenesis of IBD [312]. On the other hand, the increased fre-
quency of dental problems in IBD patients may be due to alterations
in oral flora. Complementing these findings, a study by the group of
Helenius [314] indicates that patients with rheumatic conditions
had various alterations in salivary flow and composition, and oral
health. It remains to be seen whether the increased incidence of bac-
terial infections is common among all autoimmune diseases, and if so,
which oral microorganisms are common among those conditions.

The proposedmodel of screening is not only useful in characterising
the components which lead to autoimmune disease development/
progression, but may also provide further evidence as to preventative
measures. For example, if it is demonstrated that progression of an au-
toimmune disease is dependent upon infectious triggers, the proper use
of antibiotic or even antiviral therapy may be initiated early on in the
management of these patients. Antibiotic treatment for infectious
agents associated with autoimmune disease may slow the progression
of the disease in some individuals, and possibly prevent the develop-
ment of the disease in individuals found to be at risk. If exposure to a
particular microbe is proven to be critical in a particular autoimmune
disease development, measures may be taken to reduce the exposure
to this microbe, regardless of whether it is exogenous or endogenous.
Such treatments can only be incorporated in the routine management
of these diseases through consensus statements and authoritative posi-
tion papers/guidelines; otherwise are potentially dangerous for the
wellbeing of the patient [272,276,277,315].

12. Conclusion

Genetic and environmental components are involved in the patho-
genesis of most diseases. The GWAS have contributed greatly to the un-
derstanding of the genetic basis of disease. The theory of the exposome
complementing GWAS is now evolving. The complexity of the
exposome may require that it be broken down to several sub-
components such as the infectome, which reflects the characterisation
and measurement of all infectious organisms that we are exposed to.
The relationship of the exposome/infectome to the development of a
disease, in individuals with particular genetic characteristics, may also
help us characterise disease initiation and progression.
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Given the growing knowledge of the genetic basis of disease, it may
one day be possible to screen newborns for HLA and genetic character-
istics which infer susceptibility to autoimmune disease, which may be
done as routinely as the current newborn screening. Infants with a par-
ticular susceptibility profile can then bemonitored closely for exposure
to environmental triggers that may contribute to the development of a
particular autoimmune disease. It is therefore essential that we estab-
lish not only the genetic basis of the disease (via GWAS), but also the
environmental component of the disease, which must be established
through an exposomal model. The covalent binding of xenobiotics to
genomic DNA has been extensively explored and should be re-visited
in this context in the light of more recent findings. As there is a clear de-
lineation between organic and inorganicmaterials, the establishment of
the infectomewill represent the infectious component, comprised of all
potential infections that initiate the disease, or alter the disease course.
It is important that the subgroups of the exposome are considered to-
gether alongside the detailed investigation of each component part. It
is likely that the methods used to establish and analyse the infectome
will be simple modifications of technology already in use. It remains
to be seen how this approach may be applied to other potential sub-
groups of the exposome, such as xenobiotics.

Take-home messages

• The infectious/host immunological interactions in autoimmunity
are poorly understood.

• A direct link between infection and autoimmunity is difficult to
obtain.

• Infectome refers to the collection of an individual's exposures to
infectious agents.

• Infectome can be characterised with approaches employed for the
“immunome” and “microbiome” projects.

• The study of the infectome can help us to delineate the triggers of
autoimmunity.
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