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Abstract: Multi-robot motion and observation generally have nonlinear characteristics; in response
to the problem that the existing extended Kalman filter (EKF) algorithm used in robot position
estimation only considers first-order expansion and ignores the higher-order information, this paper
proposes a multi-robot formation trajectory based on the high-order Kalman filter method. The
joint estimation method uses Taylor expansion of the state equation and observation equation and
introduces remainder variables on this basis, which effectively improves the estimation accuracy.
In addition, the truncation error and rounding error of the filtering algorithm before and after
the introduction of remainder variables, respectively, are compared. Our analysis shows that the
rounding error is much smaller than the truncation error, and the nonlinear estimation performance
is greatly improved.
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1. Introduction

As a typical complex system, swarm dynamics systems have been widely studied since
first being was proposed. A swarm is composed of many simple intelligent individuals.
The interaction between individuals based on basic mechanical rules can stimulate highly
coordinated swarm behavior [1–4]. The dynamic behavior of swarming in nature shows
amazing charm. The system composed of interconnected and constantly moving individu-
als emerges as colorful and highly coordinated swarming behavior, which provides a rich
source of ideas for the cognition and optimization of industrial and social groups. It has
considerable prospects in the fields of multi-agent collaboration [5], UAV formation [6],
multi-robot collaboration [7], and intelligent grids [8].

In a multi-robot formation system, because the robot can detect the external environ-
ment it is a control system with pattern recognition, complex task execution and allocation,
autonomous behavior decision-making, and other functions necessary to operate in a
hostile environment and complete a variety of complex tasks. Therefore, a multi-robot
formation system exhibits the characteristics of high consistency and collaboration with
the outside world. In this relatively complex control system, it is necessary to obtain its
precise state quantity first in order for control to be applied and to achieve the purpose
of completing complex tasks. Therefore, it is necessary to perform more accurate state
estimation for multi-robot motion.

Among the state estimation methods, in 1960 R. E. Kalman et al. [9,10] proposed a
recursive state estimation method suitable for a system in which the model is linear and
the noise obeys a Gaussian distribution. Kalman filtering (KF)is a time domain filtering
method; when the system process noise and measurement noise are mutually independent
Gaussian white noise with zero mean, a Kalman filter is the optimal unbiased estimator in
the sense of minimum variance [11].
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In general, the motion equation of a multi-robot formation and the measurement
equation of its sensor are both nonlinear equations. The motion equation has weak non-
linear characteristics because only simple operations such as turning and going straight
are available. The sensor observes the robot target, which shows strong nonlinear char-
acteristics. For nonlinear state estimation problems, the traditional filtering methods are
mainly extended Kalmanl filter (EKF), unscented Kalman filter (UKF) and cubature Kalman
filter (CKF). EKF uses a Taylor series first-order approximation expansion of the nonlinear
equations, which introduces linearization errors and has low estimation accuracy for esti-
mating systems with strong nonlinearity [12]. Over time, Julier et al. [13] proposed another
nonlinear filtering method, the unscented Kalman filter. The core of the UKF algorithm is
the UT transformation, which uses an ensemble of sigma sampling points to approximate
the nonlinear system model [14–16]. The UKF algorithm is more computationally intensive
than the EKF algorithm, and its filtering accuracy is better, at least to the second-order
accuracy of the Taylor expansion. However, the shortcomings of the UKF algorithm are
obvious in that it can only be applied to Gaussian systems, and a problem with the non-
positive definite error covariance matrix is caused by the emergence of negative weight in
the implementation of the algorithm [17]. The frequency of this problem becomes greater
as the order of the system increases and the nonlinearity grows stronger. In order to better
solve the problem of UKF being non-positive definite when dealing with high-dimensional
covariance matrices, resulting in divergent filtering results, Ienkaram proposed a weight-
selective UKF filtering method called Cubature Kalman Filter (CKF) [18,19]. CKF optimizes
the sigma point sampling method and weight distribution in UKF using a spherical integral
and radial integral. Compared with traditional EKF, it has improved estimation accuracy
and improved stability of filtering methods [20].

In recent years, in the treatment of nonlinear estimation problems, the structure of
the extended Kalman filter (EKF) is used to design recursive estimators as a new idea to
solve the problem.The main idea is to transform the linear error of the nonlinear equation
after doing the first-order Taylor expansion into the form of a product of the scaling matrix
associated with the problem solved and some time-varying positive definite matrix, then
set the upper bound of the covariance matrix [21–23], and get the upper bound of the
minimum covariance matrix by numerically solving the Ricatti equation, and finally use
recursive filtering, which cannot be accurately resolved to get this scaling matrix, and
then the process of solving the inverse matrix in the covariance matrix obtained by the
Ricatti equation is more complicated, which greatly increases the computational burden in
some high-dimensional occasions and cannot meet the real-time requirements [24]. The
method cannot accurately analyze the scaling matrix, and the process of solving the inverse
matrix in the covariance matrix obtained by the Ricatti equation is relatively complicated.
The other is to borrow the Taylor expansion idea, expand the higher-order term with the
original equation, design the new state and measurement equation, and use recursive
filtering to get the required state estimate [25,26]. It can choose the expansion order
reasonably according to the nonlinear strength and weakness of the actual problem, which
is a good balance between the requirements of arithmetic power and estimation accuracy,
and has a good real-time filtering feature [27,28].At the same time, this method has also
been extended to correlation entropy filtering [29] , Kronecker product [30] and lithium
battery life prediction [31] , which all show good estimation performance.

In traditional state estimation for multi-robot operation, the nonlinear state estimation
is performed separately for each robot using methods such as EKF, UKF, or CKF. In addition
to the problems already mentioned in this paper, performing individual state estimation for
each robot reduces the estimation accuracy [32–34]. In recent years, the use of trigger prob-
ability in the multi-robot formation problem as the connection relationship between robots
has gradually become a mainstream idea [24]. The reason for real-time estimation is that
at a certain moment the connection relationship between multiple robots is deterministic,
and there is only a connection or no connection, which is equivalent to a binary connection.



Sensors 2022, 22, 5590 3 of 24

On this basis, this paper addresses the multi-robot formation state estimation problem
by proposing a centerless multi-robot state joint estimation method based on high-order
extended Kalman filter (HEKF). This improves the original multi-robot connection relation-
ship based on trigger probability and improves the multi-robot state estimation accuracy.
The main algorithm of this paper is as follows. In view of the nonlinear characteristics of
multi-robot motion and observation, Taylor’s higher-order expansion of the robot’s state
equation and measurement equation is performed to solve the problem of different nonlin-
ear degrees of the two nonlinear equations. The high-order Kalman filtering algorithm is
improved by expanding the truncation error with the state for dimensional estimation and
fusing the state information of neighboring node robots to improve the multi-robot state
estimation accuracy. A numerical simulation experiment proves the effectiveness of the
algorithm. Therefore, we choose the second method based on high-order Kalman filtering.
The main work of this paper includes:

• After Taylor expansion of the nonlinear state equation and observation equation,
the remainder variable is introduced and the original EKF algorithm and the high-
order Kalman filtering algorithm are changed to discard the truncation error. Only
the first-order and low-order items are retained, reducing the estimation error and
improving the estimation accuracy.

• A dynamic model of the remainder variables is introduced into the state equation and
observation equation as hidden variables, and the changed pseudo-linear state equa-
tion and observation equation are rewritten into higher-order linear forms through
dimension expansion.

• The new high-order linear equation is used to obtain the state estimation value using
the recursive filtering algorithm, and the effectiveness of the algorithm is analyzed.

The rest of this paper is organized as follows. Section 2 proposes state equations
and observation equations for the multi-robot formation operating system and designs
a recursive estimator based on the EKF structure, while Section 3 presents the recursive
estimator form derived from the second section, introduces the remainder variables into
the state equation and the observation equation, and presents a new high-order linear
filter derived through dynamic modeling, then analyzes its performance. In Section 4,
an indoor multi-robot simulation numerical experiment is used to verify the effectiveness
of the algorithm proposed in this paper. Finally, conclusions are provided in Section 5. In
addition, the important mathematical symbols in Appendix A.

2. Problem Description

The movement of the robot is generally carried out by operations such as going
straight and turning, and the observation system is generally composed of radar or visual
sensors. Therefore, both the robot’s motion and the observation system have nonlinear
characteristics. In a multi-robot formation environment, there is a certain degree of motion
consistency between the robots, and thus a certain coupling relationship. The dynamic
equations can be described by the following N node coupling equations:

xi(k + 1) = f (xi(k)) + c
N

∑
j=1

Γxj(k) + wi(k) (1)

yi(k + 1) = h(xi(k + 1)) + vi(k + 1) (2)

where xi(k) ∈ Rn and yi(k + 1) ∈ Rq denote the state vector and the measurement vector,
respectively, i and k denote the node index and the time instant, respectively, f (·) and h(·)
are known nonlinear functions that are assumed to be continuously differentiable, c > 0
is the overall coupling strength, and Γ is the inner-coupling matrix. The process noise,
wi(k),and the measurement noise, vi(k + 1), are assumed to be mutually uncorrelated
zero-mean white Gaussian noise with the covariances Qi(k) and Ri(k + 1), respectively.
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The EKF structure is used to design the recursive estimation of the multi-robot forma-
tion trajectories (1) and (2):

x̂i(k + 1|k) = f (x̂i(k|k)) + c
N

∑
j=1

Γx̂j(k|k) (3)

x̂i(k + 1|k + 1) = x̂i(k + 1|k) + Ki(k + 1)[yi(k + 1)− h(x̂i(k + 1|k))] (4)

where x̂i(k + 1|k) and x̂i(k + 1|k + 1) denote the predicted and updated estimates at time
instant k + 1, respectively., and Ki,k+1 is the gain matrix to be determined

As in the EKF, we define the updated estimation error and the corresponding covari-
ance as follows:

ei(k + 1|k + 1) = xi(k + 1)− x̂i(k + 1|k + 1) (5)

Pi(k + 1|k + 1) = E
{

ei(k + 1|k + 1)eT
i (k + 1|k + 1)

}
(6)

3. Algorithm Description

In the second section, we use the EKF structure to design the recursive filter. This idea
generally expands the nonlinear function to obtain the first-order terms and truncation
errors. The traditional EKF algorithm directly discards the truncation errors and keeps
only the first-order terms. In the transfer function with strong non-linearity a large amount
of information will be lost, which makes the estimation result inaccurate. In recent years,
in the study of nonlinear filtering problems, the following two ideas have mainly been
adopted in the design of recursive filters using the EKF structure. The first is to transform
the truncation error into the form of a product of the scaling matrix and a time-varying
positive definite matrix related to the problem, then set the upper bound of the covariance
matrix, obtain the upper bound of the minimum covariance matrix by numerically solving
the Ricatti equation, and finally use recursive filtering, which cannot accurately analyze
the scaling matrix, before obtaining the covariance matrix through the Ricatti equation.
The inverse matrix process is more complicated, and in occasions with high dimensions
the computational burden is greatly increased to the point that real-time requirements
cannot be met. The second is to use the idea of Taylor expansion to expand the high-order
term while using the original equation to expand the dimension, design new state and
measurement equations, use recursive filtering to obtain the required state estimation
value, and avoid first above method. The “dimension disaster” caused by inversion in the
dimensional situation, as well as the expansion order, can be reasonably selected according
to the nonlinear strong and weak characteristics in the actual problem, which takes into
account the requirements of computing power and estimation accuracy and has a good
real-time filtering feature. A block diagram of the algorithm is shown in Figure 1.

3.1. Taylor Expansion of Nonlinear System and Introduction of Remainder Variables

Among the nonlinear filtering algorithms, the extended Kalman filter (EKF) algorithm
is widely used. Its main idea is perform a first-order Taylor expansion of the nonlinear state
equation around the filter estimated value. The main process is as follows.

Let fi(k) = f (xi(k)) + c
N
∑

j=1
Γxj(k); then, xi(k + 1) is subjected to a first-order Taylor

expansion at the filter estimate x̂i(k|k) to obtain the following expression for xi(k + 1):

xi(k + 1) = fi(k) + wi(k)

= fi(x̂i(k|k)) +
∂ fi
∂x

∣∣∣∣
xi(k)=x̂i(k|k)

(xi(k)− x̂i(k|k)) + T( fi(x̂i(k|k))) + wi(k)

= Ai(x̂i(k|k), k)xi(k) + βi(x̂i(k|k), ξi(k)) + wi(k)

= Ai(x̂i(k|k), k)xi(k) + fi(x̂i(k|k))− Ai(x̂i(k|k), k)x̂i(k|k) + T( f (x̂i(k|k))) + wi(k)

(7)
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where the state transition matrix is Ai(x̂i(k|k), k) = ∂ fi
∂x

∣∣∣
xi(k)=x̂i(k|k)

, and βi(x̂i(k|k), ξi(k)) =

fi(x̂i(k|k))− Ai(x̂i(k|k))x̂i(k|k) + T( fi(x̂i(k|k)) is the state remainder variables.
In the same way, the first-order Taylor expansion of the nonlinear observation function

hi(xi(k + 1)) at the state prediction value x̂i(k + 1|k) can be obtained:

yi(k + 1) = h(xi(k + 1)) + vi(k + 1)

= h(x̂i(k + 1|k)) + ∂hi
∂x

∣∣∣∣
xi(k+1)=x̂i(k+1|k)

(xi(k + 1)− x̂i(k + 1|k))

+ T(h(x̂i(k + 1|k))) + vi(k + 1)

= h(x̂i(k + 1|k)) + Ci(x̂i(k + 1|k), k + 1)(xi(k + 1)− x̂i(k + 1|k))
+ T(x̂i(k + 1|k))) + vi(k + 1)

= Ci(x̂i(k + 1|k), k + 1)xi(k + 1) + γ(x̂i(k + 1|k)) + vi(k + 1)

(8)

where the observation matrix is Ci(x̂i(k + 1|k), k + 1) = ∂hi
∂x

∣∣∣
xi(k+1)=x̂i(k+1|k)

, and γi(x̂i(k +

1|k)) = yi(k + 1)− h(x̂i(k + 1|k))− Ci(x̂i(k + 1|k), k + 1)x̂i(k + 1|k) + T(h(x̂i(k + 1|k))) is
the observation remainder.

From this, we can see that in the original extended Kalman filtering algorithm, which
uses only the first-order term information of the nonlinear function, the high-order term
information and the truncation error are directly discarded, which makes the estimation
accuracy low in occasions with a high degree of nonlinearity and leads to inaccurate es-
timation results. In certain extreme cases, the filtering results may even directly diverge.
Here, we introduce remainder variables into the state equation and observation equa-
tion, respectively, to compensate for the loss of high-order information in the original
filtering algorithm.

Figure 1. Algorithm block diagram.

3.2. Dynamic Modeling of Remainder Variables and Establishment of Higher-Order Linear Systems

The remainder variable is obtained by integrating the constant term with the truncation
error after Taylor expansion of the nonlinear state function and the observation function
around the filter estimation value and the one-step prediction value, respectively. By using
the remainder variable information to improve the estimation accuracy, the original state
equation and observation equation need to be expanded and rewritten to establish a
high-order Kalman filter.

Lemma 1. The n-order Taylor formula of the binary function z = f (x, y) at (x0, y0):
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Assuming that z = f (x, y) is continuous in a neighborhood of (x0, y0) and has continuous
partial derivatives up to order; if (x0 + h, y0 + h) is any point in this neighborhood, there are

f (x0 + h, y0 + k) = f (x0, y0) + (h
∂

∂x
+ k

∂

∂y
) f (x0, y0) +

1
2!
(h

∂

∂x
+ k

∂

∂y
)

2
f (x0, y0)

+ · · ·+ 1
n!
(h

∂

∂x
+ k

∂

∂y
)

n
f (x0, y0) +

1
(n + 1)!

(h
∂

∂x
+ k

∂

∂y
)

n+1
f (x0 + θh, y0 + θk)

(0 < θ < 1)

(9)

where

(h
∂

∂x
+ k

∂

∂y
)

m
f (x0, y0) =

m

∑
p=0

Cp
mhpkm−p ∂m f (x0, y0)

∂xp∂ym−p (10)

Lemma 2. Taylor expansion of a multivariate function at xk:

f (x1, x2, · · · , xn) = f (x1
k , x2

k , · · · , xn
k ) +

n

∑
i=1

(xi − xi
k) f ′xi (x1

k , x2
k , · · · , xn

k )

+
1
2!

n

∑
i=1

n

∑
j=1

(xi − xi
k)(xj − xj

k) f ′′ ij(x1
k , x2

k , · · · , xn
k ) + o( f )

(11)

Assume that X = [x1, x2, · · · , xn]
T

f (X) = f (Xk) + [∇ f (Xk)]
T(X− Xk) +

1
2!
[X− Xk]

T H(Xk)[X− Xk] + T( f ) (12)

where

∇ f (Xk) =

[
∂ f (Xk)

∂x1 ,
∂ f (Xk)

∂x2 , · · · ,
∂ f (Xk)

∂xn

]T
(13)

H(Xk) =



∂2 f (Xk)

∂x12
∂2 f (Xk)
∂x1∂x2 · · · ∂2 f (Xk)

∂x1∂xn

∂2 f (Xk)
∂x2∂x1

∂2 f (Xk)

∂x22 · · · ∂2 f (Xk)
∂x2∂xn

...
...

. . .
...

∂2 f (Xk)
∂xn∂x1

∂2 f (Xk)
∂xn∂x2 · · · ∂2 f (Xk)

∂xn2

 (14)

3.2.1. Pseudo-Linear Representation of State Function fi(xi,k)

According to the above lemma, the state transition function fi(xi,k) in Formula (1) can
be expressed as a polynomial form using Taylor expansion, as follows.

For simplicity, the following derivation takes two state variables, x1 and x2:

fi(x(k)) = ai,0 + (ai,1,0x1(k) + ai,0,1x2(k))

+ (ai,2,0x2
1(k) + ai,1,1x1(k)x2(k) + ai,0,2x2

2(k))

+ (ai,3,0x3
1(k) + ai,2,1x2

1(k)x2(k) + ai,1,2x1(k)x2
2(k) + ai,3,0x3

2(k))

+ · · ·+ ∑
l1+l2=l
l1,l2<l

ai,l1,l2 xl1
1 (k)xl2

2 (k)

+ · · ·+ ∑
r1+r2=r
r1,r2<r

ai,r1,r2 xr1
1 (k)xr2

2 (k)

+ β(x1(k)) + β(x2(k))

(15)
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where ai,0 is a constant, ∑
l1+l2=l
l1,l2<l

ai,l1,l2 xl1
1 (k)xl2

2 (k), 0 < l1, l2 < l(l = 1, 2, · · · , r) are the

weighted sum of all l order tensor terms, ai,l1,l2 , l1 + l2 = l, 0 ≤ l1, l2 ≤ l(l = 1, 2, · · · , r) is
the weight of the corresponding term, and β(x1(k)), β(x2(k)) are the respective remainder
variables of the state.

Theorem 1. Let xl(k) = xl1
1 (k)xl2

2 (k), l1 + l2 = l, 0 < lj < l(l = 1, 2, · · · , r) be a set of l-order
hidden variables corresponding to the original system variable x(k).

Theorem 2. The weight vector corresponding to the l-order latent variable vector is then

a(l)i =
[

a(l)i;1 a(l)i;2 · · · a(l)i;nl

]
=
[
ai;l,0 ai;l−1,1 · · · ai;0,l

]
(i = 1, 2) (16)

We use the following two states as an example:

[
x(1)1 (k + 1)

x(1)2 (k + 1)

]
=

[
a(1)1 a(2)1 · · · a(l)1 · · · a(r)1 a1(β(x1)) a1(β(x2))

a(1)2 a(2)2 · · · a(l)2 · · · a(r)2 a2(β(x1)) a2(β(x2))

]



x(1)(k)

x(2)(k)
...

x(l)(k)
...

x(r)(k)

β(x1(k))

β(x2(k))



+

[
w(1)

1 (k)

w(1)
2 (k)

]
(17)

Donate x(k) = x(1)(k) =

[
x(1)1 (k)
x(1)2 (k)

]
, A(l) =

[
a(l)1

a(l)2

]
, w(k) =

[
w(1)

1 (k)
w(1)

2 (k)

]
Then,

x(1)(k + 1) =
[

A(1) A(2) · · · A(l) · · · A(r) A(β)
]


x(1)(k)
x(2)(k)

...
x(l)(k)

...
x(r)(k)
β(x(k))


+ w(1)(k)

= A(1)x(1)(k) +
r

∑
l=2

A(l)x(l)(k) + A(β)β(x(k)) + w(l)(k)

(18)

Remark 1. Compared with the original state model, x(1)(k) =
[
x1(k) x2(k)

]T , the above equa-
tion is in a pseudo-linear form with higher-order latent variables x(l)(k)(l = 1, 2, · · · , r) and
remainder variables β(x(k)). There is only a change in representation; as there is no essential
difference, this is called pseudo-linearization.

3.2.2. Pseudolinear Representation of the Measurement Function

Similarly, the measurement function in formula (2) is expressed as a polynomial form
by Taylor expansion, as follows:
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hi(x(k + 1)) = hi,0 + (hi,1,0x1(k + 1) + hi,0,1x2(k + 1))

+ (hi,2,0x2
1(k + 1) + hi,1,1x1(k + 1)x2(k + 1) + hi,0,2x2

2(k + 1))

+ (hi,3,0x3
1(k + 1) + hi,2,1x2

1(k + 1)x2(k + 1) + hi,1,2x1(k + 1)x2
2(k + 1) + hi,3,0x3

2(k + 1))

+ · · ·+ ∑
l1+l2=l
l1,l2<l

hi,l1,l2 xl1
1 (k + 1)xl2

2 (k + 1)

+ · · ·+ ∑
r1+r2=r
r1,r2<r

hi,r1,r2 xr1
1 (k + 1)xr2

2 (k + 1)

+ γ(x1(k + 1)) + γ(x2(k + 1))

(19)

where γ(x(k + 1)) denotes the remainder variables of the measurement function:

[
y(1)1 (k + 1)

y(2)2 (k + 1)

]

=

h(1)1 h(2)1 · · · h(l)1 · · · h(r)1 h1(γ(x1)) h1(γ(x2))

h(1)2 h(2)2 · · · h(l)2 · · · h(r)2 h2(γ(x1)) h2(γ(x2))





x(1)(k + 1)

x(2)(k + 1)
...

x(l)(k + 1)
...

x(r)(k + 1)

γ(x1(k + 1))

γ(x2(k + 1))



+

[
v(1)1 (k + 1)

v(1)2 (k + 1)

]

=
[

H(1) H(2) · · · H(l) · · · H(r) H(γ)
]



x(1)(k + 1)

x(2)(k + 1)
...

x(l)(k + 1)
...

x(r)(k + 1)

γ(x(k + 1))


+ v(1)(k + 1)

=H(1)x(1)(k + 1) +
r

∑
l=2

H(l)x(l)(k + 1) + H(γ)γ(x(k + 1)) + v(1)(k + 1)

(20)

3.2.3. Dynamic Modeling and Higher-Order Linearization of Remainder Variables Based
on Taylor Expansion

In order to convert the pseudo-linearized model established above into a real high-
order linearized form, it is necessary to expand the dimension and model using the high-
order latent variables and remainder variables as new variables of the system.

In order to solve the problem in Remark 1, the high-order latent variable x(l)(k) and
the remainder variables β(x(k)) and γ(x(k + 1)) are used as time-varying parameters and
the linear coupling relationship between the l-order latent variable x(l)(k + 1) and the
u-order latent variable x(u)(k) is established, along with the dynamic model relationship of
the remainder variables β(x(k)) and γ(x(k + 1)):

x(l)(k + 1) = A(u)
l (k)x(u)(k)(l, u = 2, 3, · · · , r) (21)

β(x(k + 1)) = A(β)β(x(k)) (22)

γ(x(k + 1)) = A(γ)γ(x(k)) (23)

Then, the latent variables and remainder variables are used as the extension of the
original state vector to realize the linear representation of the state model. Here, A(u)

l (k)
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and β(x(k + 1)) can be identified according to the input information of the original state
model; when there is no prior information, the settings are as follows:

A(u)
l (k) =

{
I, l = u
0, l 6= u

A(β) = I, A(γ) = I (24)

Then,

x(1)(k + 1)
x(2)(k + 1)

...
x(l)(k + 1)

...
x(r)(k + 1)
β(x(k + 1))
γ(x(k + 1))


=

Au(k + 1, k) A(β) 0
0 A(β) 0
0 0 A(γ)





x(1)(k)
x(2)(k)

...
x(l)(k + 1)

...
x(r)(k)
β(x(k))
γ(x(k))


+



w(1)(k)
w(2)(k)

...
w(l)(k)

...
w(r)(k)
wβ(k)
wγ(k)


(25)

Denote X(k) =
[
(x(1)(k))

T
(x(2)(k))

T · · · (x(r)(k))
T

(β(x(k)))T (γ(x(k)))T
]T

A(k + 1, k) =

Au(k + 1, k) A(β) 0
0 A(β) 0
0 0 A(γ)

, (26)

Au(k + 1, k) =



A(1)
1 (k + 1, k) A(2)

1 (k + 1, k) · · · A(u)
1 (k + 1, k) · · · A(r)

1 (k + 1, k)

A(1)
2 (k + 1, k) A(2)

2 (k + 1, k) · · · A(u)
2 (k + 1, k) · · · A(r)

2 (k + 1, k)
...

...
. . .

...
. . .

...
A(1)

l (k + 1, k) A(2)
l (k + 1, k) · · · A(u)

l (k + 1, k) · · · A(r)
l (k + 1, k)

...
...

. . .
...

. . .
...

A(1)
r (k + 1, k) A(2)

r (k + 1, k) · · · A(u)
r (k + 1, k) · · · A(r)

r (k + 1, k)


(27)

W(k) =
[
(w(1)(k))

T
(w(2)(k))

T · · · (w(l)(k))
T · · · (w(r)(k))

T
(wβ(k))

T (wγ(k))
T
]T

(28)

The argmented state equation can be described as

X(k + 1) = A(k + 1, k)X(k) + W(k) (29)

Based on the above-mentioned argmented state variables, the linearized description
model of the observation equation is similarly described as follows:
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[
y(1)1 (k + 1)

y(2)2 (k + 1)

]

=

h(1)1 h(2)1 · · · h(l)1 · · · h(r)1 h1(β(x)) h1(γ(x))

h(1)2 h(2)2 · · · h(l)2 · · · h(r)2 h2(β(x))) h2(γ(x))





x(1)(k + 1)
x(2)(k + 1)

...
x(l)(k + 1)

...
x(r)(k + 1)
β(x(k + 1))
γ(x(k + 1))


+

[
v(1)1 (k + 1)

v(1)2 (k + 1)

]

=
[

H(1) H(2) · · · H(l) · · · H(r) H(β) H(γ)
]



x(1)(k + 1)
x(2)(k + 1)

...
x(l)(k + 1)

...
x(r)(k + 1)
β(x(k + 1))
γ(x(k + 1))


+ v(1)(k + 1)

(30)

Denote H(k + 1) =
[
Hu(k + 1) H(β) H(γ)

]
,

Hu(k + 1) =
[

H(1) H(2) · · · H(u) · · · H(r)
]
,V(k + 1) =

[
v1(k + 1)
v2(k + 1)

]
where,

H(β) = 0, H(γ) = I.
Then, the linearized representation of the nonlinear measurement model equation is

as follows:
Y(k + 1) = H(k + 1)X(k + 1) + V(k + 1) (31)

3.3. Recursive Filtering Algorithm

Considering the linearized state model and measurement model Equations (30) and
(32) shown above, its statistical characteristics are as follows:

E{W(k)WT(k)} = Qw(k) (32)

E{V(k + 1)VT(k + 1)} = RV(k + 1) (33)

E{W(k)VT(k + 1)} = 0 (34)

Step 1: Set the initial values of the new system; then,
according to the initial value x(k) of x(0), the following formula is satisfied:

E{x(0)} = x̂0 (35)

E{[x(0)− x0][x(0)− x0]
T} = P0 (36)

Then, X0 satisfies the following characteristics:

X(0) =
[
(x(1)(0))

T
(x(2)(0))

T · · · (x(r)(0))
T

(β(x(0)))T (γ(x(0)))T
]T

(37)

P̄0 = diag{
[

P(1)
0 P(2)

0 · · · P(r)
0 P0(β0) P0(γ0)

]
} (38)

E{[X(0)− X̂0][X(0)− X̂0]
T} = P̄0 (39)
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where P̄0 = diag{
[

P(1)
0 P(2)

0 · · · P(r)
0 P0(β0) P0(γ0)

]
} ≥ 0 is a positive semi-definite

matrix.
Step 2: Recursive filtering
Assuming that y(1), y(2), · · · , y(k) has been obtained, that is, X̂(k|k) and P̄(k|k)are

known, the new higher-order Kalman filter is designed as follows:

X̂(k + 1|k + 1) = E{X(k + 1)|X̂0, y(1), y(2), · · · , y(k), y(k + 1)}
= E{X(k + 1)|X̂(k|k), y(k + 1)}

(40)

The corresponding covariance matrix is as follows:

P̄(k + 1|k + 1) = E{[X(k + 1)− X̂(k + 1|k + 1)][X(k + 1)− X̂(k + 1|k + 1)]T} (41)

Step 3: Time Update
(1) Obtain the following based on X̂(k|k) and A(k + 1, k):

X̂(k + 1|k) = A(k + 1, k)X̂(k|k) (42)

(2) Obtain P̄(k + 1|k) based on P̄(k|k) and QW(k):

P̄(k + 1|k) = A(k + 1|k)P̄(k|k)AT(k + 1|k) + QW(k) (43)

Step 4: Observe Update
(3) According to the relevant information of P̄(k+ 1|k) and the observed value, the gain

matrix K(k + 1) is obtained:

Ŷ(k + 1|k) = H(k + 1)X̂(k + 1|k) (44)

K(k + 1) = P̄(k + 1|k)HT(k + 1) ∗ [H(k + 1)P̄(k + 1|k)HT(k + 1) + RV(k + 1)]
−1

(45)

(4) A higher-order Kalman filter is obtained from the remainders of the actual and
predicted observations of X̂(k + 1|k) and K(k + 1):

X̂(k + 1|k + 1) = X̂(k + 1|k) + K(k + 1)[Y(k + 1)− H(k + 1)X̂(k + 1|k)] (46)

(5) Calculate the update error covariance matrix:

P̄(k + 1|k + 1) = (I − K(k + 1)H(k + 1))P̄(k + 1|k) (47)

X̂(k + 1|k + 1) is the obtained state estimate.

4. Performance Analysis
4.1. Projection Matrix Analysis

Rewrite the expanded state variables in Equation (46) as the original state variables
and all higher-order variables and remainder variables in the following form:[

x̂(k + 1|k + 1)
β(x̂(k + 1|k + 1))

]
=

[
x̂(k + 1|k)

β(x̂(k + 1|k))

]

+

[
Kx(k + 1)
Kβ(k + 1)

]
∗ (
[

hx(k + 1) γ(hx(k + 1))
][ e(k + 1|k)

β(x̂(k + 1|k))

]
+ v(k + 1))

(48)

where Kx(k + 1) and Kβ(k + 1) are the gain matrices corresponding to the original variables
and the remainder augmented-dimensional variables, respectively, and hx(k + 1) and
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γ(hx(k + 1)) are the observation matrices corresponding to the original variables and the
remaining augmented-dimensional variables, respectively. Let the projection operator be

Pe =
[
Ix Oβ

]
(49)

where Ix and Oβ are matrices that match the dimensions of the original and remainder
augmented variables, respectively.

Then,

x̂(k + 1|k + 1) = Pe ∗ X̂(k + 1|k + 1) =
[
Ix Oβ

]
∗
[

x̂(k + 1|k + 1)
β(x̂(k + 1|k + 1))

]
(50)

Substituting Equation (48) into Equation (50), we obtain

x̂(k + 1|k + 1) = x̂(k + 1|k) + Kx(k + 1) ∗ [hx(k + 1)e(k + 1|k)
+ γ(hx(k + 1))β(x̂(k + 1|k)) + v(k + 1)]

= x̂(k + 1|k) + Kx(k + 1) ∗ hx(k + 1)e(k + 1|k)
+ Kx(k + 1) ∗ γ(hx(k + 1))β(x̂(k + 1|k)) + Kx(k + 1)v(k + 1)

(51)

It is found that after projection through the projection matrix, only the original system
state estimation value is retained, which reduces the complexity of the algorithm and the
actual computational burden, and includes more information from the model, improving
the estimation accuracy.

4.2. Covariance Matrix Analysis

Bring Equation (48) into Equation (47) and at the same time divide the covariance ma-
trix into blocks according to the original variables and the remaining dimension expansion
variables, then write as follows:

[
Px(k + 1|k + 1) Pxβ(k + 1|k + 1)
Pβx(k + 1|k + 1) Pβ(k + 1|k + 1)

]

=

([
Ix O
O Iβ

]
−
[

Kx(k + 1)
Kβ(k + 1)

][
hx(k + 1) γ(hx(k + 1))

])
∗
[

Px(k + 1|k) Pxβ(k + 1|k)
Pβx(k + 1|k) Pβ(k + 1|k)

] (52)

where Px(k + 1|k + 1) is the covariance matrix of the original variable,
Pxβ(k + 1|k + 1) is the covariance matrix of the original variable and the remainder variable,
Pβx(k + 1|k + 1) is the covariance matrix of the remainder variable and the original variable,
and Pβ(k + 1|k + 1) is the covariance matrix of the remainder variable.

Then, the original variable covariance matrix can be calculated by the projection matrix
as follows:

Px(k + 1|k + 1)

= Pe ∗ P̄(k + 1|k + 1) ∗ PT
e

=
[

Ix Oβ

]
∗
[

Px(k + 1|k + 1) Pxβ(k + 1|k + 1)
Pβx(k + 1|k + 1) Pβ(k + 1|k + 1)

]
∗
[

Ix

Oβ

]

=
[

Ix Oβ

]
∗
(

I −
[

Kx(k + 1)
Kβ(k + 1)

]
∗
[

hx(k + 1) γ(hx(k + 1))
])

∗
[

Px(k + 1|k) Pxβ(k + 1|k)
Pβx(k + 1|k) Pβ(k + 1|k)

]
∗
[

Ix

Oβ

]
= (Ix − Kx(k + 1) ∗ hx(k + 1)) ∗ Px(k + 1|k)− Kx(k + 1) ∗ γ(hx(k + 1)) ∗ Pxβ(k + 1|k)

(53)
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In the experiment, it was found that Kx(k+ 1) ∗γ(hx(k+ 1)) ∗ Pxβ(k+ 1|k) is a positive-
definite matrix. Compared with the original EKF algorithm, the posterior covariance
matrix becomes smaller with the application of higher-order residual information, and the
algorithm makes full use of the higher-order information of the model. Theoretically,
the state estimation accuracy will be higher.

5. Simulation Experiments

For multi-robot formation systems , the state equation is as follows [24,35]:

ξi(k + 1) = ξi(k) + φi(k) cos θi(k) + c
N

∑
j=1

Γξ j(k) + ωx
i (k) (54)

ψi(k + 1) = ψi(k) + φi(k) sin θi(k) + c
N

∑
j=1

Γψj(k) + ω
y
i (k) (55)

θi(k + 1) = θi(k) + δi(k) + c
N

∑
j=1

Γθj(k) + ωθ
i (k) (56)

where (ξi(k), ψi(k)) and θi(k) represent the position and direction of the i-th robot, respec-
tively, and φi(k) and δi(k) represent the linear velocity and angular velocity, respectively.
Suppose that φi(k) = 0.15, δi(k) = 0.3, ωi(k) = (ωx

i (k), ω
y
i (k), ωθ

i (k)) are Gaussian white
noise with zero mean variance Qi(k).

In a multi-robot formation, Γ is a time-varying matrix related to the formation and
Γ is the formation; if Γ is an upper triangular matrix, it means that the formation has a
fixed movement formation, as shown in Figure 2. If Γ = Γ(k), it means that the formation
is time-varying and has a random switching topology, as shown in Figure 3. We use the
extended Kalman filter (EKF) and high-order Kalman filter methods to estimate the second-
order Kalman filter algorithm (SOKF), including the remainder extended Kalman filter
algorithm (REKF), as well as the second-order remainder Kalman filter algorithm(SEORKF)
for comparison.

Figure 2. Multi-robot formation with fixed formation.

Figure 3. Multi-robot formation in a random topology formation.
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As can be seen from the above figure, in a robot formation with a fixed formation,
the robot maintains the formation at the first moment and continues to move with a
unique nonlinear model. However, in a formation with a random switching topology,
at the first moment it maintains a fixed formation structure. With the constraints of
different communication or task division, the formation at each moment will be different.
There are arbitrary formations or individual formations, and they maintain their own
nonlinear motion.

The visual measurement is provided by the following equation:

pi(k) =
γu

zc
f
[−(sx − ξi(k)) sin θi(k) + (sx − ψi(k)) cos θi(k)− d2] + p0 + vp

i (k) (57)

qi(k) =
γv

zc
f
[−(sy − ξi(k)) cos θi(k)− (sy − ψi(k)) sin θi(k)− d1] + q0 + vq

i (k) (58)

where (pi(k), qi(k)) defines the coordinates of the robot in the image plane, (d1, d2) are its
frame coordinates, zc

f is the distance from the optical center of the camera to the robot,
and γu and γv are variable pixel magnification factors; for a visual tracking system,
the feature points are placed on the ceiling, (sx, sy) are the coordinates of the feature
points in the world frame, and (p0, q0) is the camera image coordinate principal point;
vi(k) = (vp

i (k), vq
i (k)) is white Gaussian noise with zero mean variance Ri(k).

In the simulation, the following parameters of the visual tracking system are adopted:
d1 = −0.0668,d2 = 0.0536,zc

f = 2.1050,γu = 902.13283,γv = 902.50141,p0 = 347.20436,
q0 = 284.34705. The process noise covariance matrix isQi(k + 1) = diag{0.01, 0.01, 0.01} ,
and the measurement noise covariance matrix is Ri(k) = diag{252, 252} (i = 1,2,3).

To illustrate the tracking performance of the proposed filter, we use the root mean
square error (MSE) of the three robots. Over 50 Monte-Carlo runs were obtained, and the
table below shows the mean squared error for each robot position:

MSEξ(k) =
1
3

3

∑
i=1

1
50

50

∑
m=1

(ξi(k)− ξ̂
(m)
i (k))

2

MSEψ(k) =
1
3

3

∑
i=1

1
50

50

∑
m=1

(ψi(k)− ψ̂
(m)
i (k))

2
(59)

where (ξ̂(m)
i (k), ψ̂

(m)
i (k)) represents the position estimate of the i-th robot at the m-th Monte

Carlo run.

5.1. Trajectory Estimation of Multi-Robot in Fixed Formation

In a multi-robot formation, Γ is a time-varying matrix related to the formation, Γ is
the formation, and when Γ is an upper triangular matrix, it means that the formation has
a fixed movement formation to complete a certain task. Table 1 shows the multi-robot
trajectory estimation MSE with fixed formation, where ’Improved’ refers to the improved
estimation accuracy compared with EKF method.

The original nonlinear filtering algorithms based on Taylor expansion, such as ex-
tended Kalman filtering and high-order Kalman filtering methods, directly discard the
truncation error. The estimation accuracy has a great influence. Table 2 shows the trunca-
tion errors generated by the EKF and second-order Kalman filtering methods for estimating
the fixed formation trajectories of multi-robot. It can be seen from the table below that both
methods have considerable truncation errors.

In the high-order Kalman filtering method, the remainder variables are introduced into
the algorithm to make full use of the nonlinear model information, which can effectively
avoid the influence of the truncation error on the estimation results; however, there will
always be rounding errors. Here, the rounding error results generated by the first-order
remainder extended Kalman filtering algorithm and the second-order remainder Kalman
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filtering algorithm with a fixed formation of robots are compared and analyzed, as show in
Table 3, with the result that the rounding error is much smaller than the truncation error.

Table 1. MSE for multi-robot trajectory estimation in fixed formation.

R MSE of R1 MSE of R2 MSE of R3

Method x y x y x y
EKF 1.9042 1.9836 0.1045 0.2788 1.0844 1.0605
UKF 0.4113 1.1985 0.0642 0.1266 0.4825 0.9536

(Improved) (78.40%) (39.58%) (38.56%) (54.59%) (55.51%) (10.08%)
CKF 0.6523 1.3720 0.0857 0.1382 0.5028 0.9783

(Improved) (65.74%) (30.83%) (17.99%) (50.43%) (53.63%) (7.75%)
REKF 0.7566 0.7721 0.0638 0.0625 0.3927 0.9391

(Improved) (60.27%) (61.08%) (38.94%) (77.58%) (63.79%) (11.45%)
SOKF 0.8428 1.7616 0.0793 0.2597 0.7113 1.0198

(Improved) (55.74%) (11.19%) (24.11%) (6.85%) (34.41%) (3.84%)
SORKF 0.2473 0.4087 0.0480 0.0597 0.0457 0.1956

(Improved) (87.01%) (78.98%) (54.07%) (78.59%) (95.79%) (81.56%)

Table 2. Truncation error of trajectory estimation in fixed-formation multi-robot.

R Truncation Error of R1 Truncation Error of R2 Truncation Error of R3

Method x y x y x y
EKF 1.9536 1.9243 0.1085 0.3117 1.0726 1.0734

SOKF 0.8729 1.7157 0.0905 0.2391 0.6910 0.9819
(Reduced) (55.32%) (10.84%) (16.59%) (23.29%) (35.58%) (8.52%)

Table 3. Rounding error of trajectory estimation in fixed-formation multi-robot swarm.

R Rounding Error of R1 Rounding Error of R2 Rounding Error of R3

Method x y x y x y
REKF 0.0818 0.0847 0.0179 0.0138 0.0445 0.1845

SORKF 0.0333 0.0487 0.0142 0.0125 0.0130 0.0320
(Reduced) (59.29%) (10.84%) (20.67%) (9.42%) (70.79%) (82.66%)

As follows, in the fixed formation, Figure 4 shows the real trajectory of the fixed
multi-robot formation; Figure 5a,b shows the R1 estimation error in X-Coordinate and
Y-Coordinate respectively; Figure 6 shows the histogram of R1 estimation error; Figure 7a,b
shows the R2 estimation error in X-Coordinate and Y-Coordinate respectively; Figure 8
shows the histogram of R2 estimation error; Figure 9a,b shows the R3 estimation error
in X-Coordinate and Y-Coordinate respectively; Figure 10 shows the histogram of R3
estimation error.
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Figure 4. The real trajectory of the fixed multi-robot formation.
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Figure 5. R1 estimation error of multi-robot in fixed formation. (a) X-Coordinate estimation error;
(b) Y-Coordinate estimation error.
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Figure 6. Histogram of R1 positioning estimation error in fixed formation.
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Figure 7. R2 estimation error of multi-robot in fixed formation. (a) X-Coordinate estimation error;
(b) Y-Coordinate estimation error.

Figure 8. Histogram of R2 positioning estimation error in fixed formation.
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Figure 9. R3 estimation error of multi-robot in fixed formation. (a) X-Coordinate estimation error;
(b) Y-Coordinate estimation error.

Figure 10. Histogram of R3 positioning estimation error in fixed formation.

5.2. Multi-Robot Formation Trajectory Estimation with Random Topology Structure

In the multi-robot formation, Γ is the time-varying matrix related to the formation,
that is, Γ = Γ(k), indicating that the formation has a random switching topology. Table 4
shows MSE for multi-robot trajectory estimation and Table 5 shows the truncation error of
trajectory estimation. The truncation error of the trajectory estimation extended Kalman
algorithm and the second-order Kalman filtering algorithm in Table 6 shows the rounding
error when the trajectory estimation is performed by introducing the remainder variables
into the above two algorithms, and the results are similar to the trajectory estimation under
the fixed formation.

As follows, in random topology formation, Figure 11 shows the real trajectory;
Figure 12a,b shows the R1 estimation error in X-Coordinate and Y-Coordinate respec-
tively; Figure 13 shows the histogram of R1 estimation error; Figure 14a,b shows the R2
estimation error in X-Coordinate and Y-Coordinate respectively; Figure 15 shows the his-
togram of R2 estimation error; Figure 16a,b shows the R3 estimation error in X-Coordinate
and Y-Coordinate respectively; Figure 17 shows the histogram of R3 estimation error.
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Table 4. MSE for multi-robot trajectory estimation in random topology formation.

R MSE of R1 MSE of R2 MSE of R3

Method x y x y x y
EKF 0.0458 0.0886 0.1895 0.9687 0.1523 0.3874
UKF 0.0431 0.0632 0.1382 0.4635 0.0757 0.0877

(Improved) (5.90%) (28.67%) (27.07%) (52.15%) (50.29%) (77.36%)
CKF 0.0362 0.0649 0.0825 0.2875 0.0586 0.0732

(Improved) (20.96%) (26.75%) (56.46%) (70.51%) (61.52%) (81.10%)
REKF 0.0390 0.0426 0.1391 0.2143 0.0061 0.0338

(Improved) (14.85%) (51.92%) (26.60%) (77.88%) (95.99%) (91.28%)
SOKF 0.0433 0.0451 0.1497 0.4809 0.0412 0.0850

(Improved) (5.46%) (49.10%) (21.00%) (50.36%) (72.95%) (66.75%)
SORKF 0.0340 0.0366 0.0191 0.0433 0.0044 0.0325

(Improved) (25.76%) (62.08%) (89.92%) (95.53%) (97.11%) (91.61%)

Table 5. Truncation error of trajectory estimation in random topology formation.

R Truncation Error of R1 Truncation Error of R2 Truncation Error of R3

Method x y x y x y
EKF 0.0629 0.0905 0.2299 1.0499 0.1919 0.4147

SOKF 0.0408 0.0492 0.1579 0.4622 0.0606 0.1625
(Reduced) (35.14%) (45.64%) (29.16%) (55.98%) (68.42%) (60.82%)

Table 6. Rounding error of trajectory estimation in random topology formation.

R Rounding Error of R1 Rounding Error of R2 Rounding Error of R3

Method x y x y x y
REKF 0.0165 0.0136 0.0543 0.0861 0.0124 0.0235

SORKF 0.0126 0.0121 0.0111 0.0110 0.0117 0.0169
(Reduced) (23.64%) (11.03%) (79.56%) (87.22%) (5.65%) (28.09%)
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Figure 11. The real trajectory of the multi-robot swarm in random topology formation.
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Figure 12. R1 estimation error of multi-robot swarm in random topology formation. (a) X-Coordinate
estimation error; (b) Y-Coordinate estimation error.

Figure 13. Histogram of R1 positioning estimation error in random topology formation.
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Figure 14. R2 estimation error of multi-robot swarm in random topology formation. (a) X-Coordinate
estimation error; (b) Y-Coordinate estimation error.
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Figure 15. Histogram of R2 positioning estimation error in random topology formation.
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Figure 16. R3 estimation error of multi-robot swarm in random topology formation. (a) X-Coordinate
estimation error; (b) Y-Coordinate estimation error.

Figure 17. Histogram of R3 positioning estimation error in random topology formation.

As shown in the figure above, we use a fixed formation formation and a random
topology formation to respectively estimate the actual trajectories of the three robots,
use the estimation error of each robot in the x–y direction of the two-dimensional plane
as a measure, and use the EKF and the second-order Kalman filtering(SOKF) methods,
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respectively, to introduce the residual term variable in each of these two methods. From the
results, it can be concluded that the estimation accuracy of EKF is the lowest, followed
by the second-order Kalman filtering algorithm (SOKF), the remainder extended Kalman
filtering Algorithm (REKF), and the remainder second-order Kalman filtering algorithm
(SORKF). The other three filtering methods designed according to EKF structure, excepting
EKF, significantly improve the estimation accuracy of EKF. Thus, we can see that for the
robot in the motion model, the degree of non-linearity of the turning characteristics is
relatively high. If first-order Taylor expansion is performed, the information contained in
it cannot be completely extracted, which inevitably leads to a decrease in the estimation
accuracy. The higher the degree of expansion performed, the higher the robot position
estimation accuracy, and the more accurate the robot estimation estimation. In addition,
we analyzed the truncation error of the EKF and second-order Kalman filtering(SOKF)
algorithms. The truncation error has a great influence on the estimation accuracy. When the
nonlinearity is strong, the model information cannot be fully utilized by directly discarding
the truncation error, resulting in low estimation accuracy. After the variables are introduced,
the rounding error of the estimation results is analyzed, and it is found that the rounding
error is much smaller than the truncation error. The Taylor expansion of the nonlinear
model and the use of remainder variables can make full use of the model information to
improve the estimation accuracy and make the estimation more accurate.

6. Conclusions and Future Work

This paper studies the multi-robot trajectory estimation problem, and proposes a
fusion estimation method based on the high-order Kalman filter algorithm. The extended
Kalman filter (EKF) algorithm used in the existing robot position estimation only consid-
ers first-order expansion and ignores the high-order information. To solve the problem,
a joint trajectory estimation method with a multi-robot formation based on the high-order
Kalman filtering method was adopted, the Taylor expansion of the state equation and the
observation equation was carried out, and the remainder variables were introduced on this
basis, effectively improving the estimation accuracy. Through a simulation, we found that
for robot fixed formations and random topology formations the introduction of remainder
variables improves the accuracy of position estimation by more than 50%, and in certain
cases even more, compared to the EKF algorithm. At the same time, the truncation error in
the estimation process of the EKF and the high-order Kalman filter algorithms was analyzed
and compared with the rounding error of the estimation algorithm after the introduction
of the remainder variable. We found that the rounding error is much smaller than the
truncation error. After the remainder variable is introduced during filtering, the algorithm
makes full use of the model information, and the estimation accuracy is greatly improved.

In future research, we may encounter more complex models. If the state model
has strong nonlinear characteristics, the observation model has super strong nonlinear
characteristics, and the modeling error is non Gaussian white noise, our method will be
difficult to achieve, and will be completed with the help of the characteristic function
filtering method [36,37]; At the same time, for the neural network model, we can also
introduce the high-order Kalman filtering method to update the real-time parameters [38];
Finally, for the state estimation of non-cooperative targets, there must be multiple targets
and sensors. We can extend the method in this paper to distributed filtering. Similarly, for
the distributed model of Federated learning, we will also applicable [39,40].
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Appendix A. Mathematical Symbols

The important mathematical symbols used in the text are described as follows:

Table A1. Mathematical Symbols.

Mathematical Symbols Description

x X State vector
y Y Observation vector
x̂ X̂ State estimation
ŷ Ŷ Observation estimation

f (·) h(·) Nonlinear continuous function
P Covariance matrix
K Kalman gain
A State transfer matrix
H Observation matrix

β(·) State remainder variable
γ(·) Observation remainder variable
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