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Abstract

Hydrogen gas is an attractive alternative fuel as it is carbon neutral and has higher energy content per unit mass than
fossil fuels. The biological enzyme responsible for utilizing molecular hydrogen is hydrogenase, a heteromeric
metalloenzyme requiring a complex maturation process to assemble its O2-sensitive dinuclear-catalytic site containing
nickel and iron atoms. To facilitate their utility in applied processes, it is essential that tools are available to engineer
hydrogenases to tailor catalytic activity and electron carrier specificity, and decrease oxygen sensitivity using standard
molecular biology techniques. As a model system we are using hydrogen-producing Pyrococcus furiosus, which grows
optimally at 100uC. We have taken advantage of a recently developed genetic system that allows markerless chromosomal
integrations via homologous recombination. We have combined a new gene marker system with a highly-expressed
constitutive promoter to enable high-level homologous expression of an engineered form of the cytoplasmic NADP-
dependent hydrogenase (SHI) of P. furiosus. In a step towards obtaining ‘minimal’ hydrogenases, we have successfully
produced the heterodimeric form of SHI that contains only two of the four subunits found in the native heterotetrameric
enzyme. The heterodimeric form is highly active (150 units mg21 in H2 production using the artificial electron donor
methyl viologen) and thermostable (t1/2 ,0.5 hour at 90uC). Moreover, the heterodimer does not use NADPH and instead
can directly utilize reductant supplied by pyruvate ferredoxin oxidoreductase from P. furiosus. The SHI heterodimer and
POR therefore represent a two-enzyme system that oxidizes pyruvate and produces H2 in vitro without the need for an
intermediate electron carrier.
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Introduction

The supply of cost-effective fossil fuels is finite, and for decades a

major focus of research has been renewable energy generation [1].

Energy sources of the future must be abundant and carbon neutral

with minimal impact on the environment. Driven by powerful new

molecular biology tools, biofuel research has dramatically

increased in the past decade, however, significant effort is still

necessary to develop an economically viable, sustainable, and

renewable energy supply [2,3,4]. As an energy carrier, hydrogen is

attractive as it is non-toxic and has three times the energy of

gasoline per unit mass [5]. Currently hydrogen is produced by

steam reforming of natural gas or electrolysis of water, both of

which are either non-renewable or inefficient on a large scale

[5,6,7]. For sustainable and renewable production of hydrogen an

abundant source of energy, such as sunlight, must be utilized.

Photobiological production of hydrogen is an appealing solution

but many problems remain in coupling oxygenic photosynthesis

with the enzymatic production of hydrogen [3].

The ability to metabolize hydrogen is distributed across all three

domains of life and is catalyzed by the hydrogenase enzymes [8].

Regardless of their source, these enzymes are usually highly

regulated on the transcriptional level, require a complicated in vivo

maturation process, and are inactivated by molecular oxygen.

Two major classes of phylogenetically unrelated hydrogenases are

known, nickel-iron (NiFe) and iron-iron (FeFe) [9,10], and these

catalyze the reversible interconversion of hydrogen, two protons

and two electrons (Eqn. 1). These enzymes have been investigated

for almost 80 years [11] but it has only recently become possible to

manipulate or redesign the enzymes using standard molecular

biology approaches [12,13]. The FeFe enzymes have a limited

distribution in the microbial world and although they typically

have high catalytic rates of hydrogen production they are very

sensitive to irreversible inactivation by molecular oxygen [9]. NiFe
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hydrogenases are ubiquitous in bacteria and archaea and function

physiologically in both hydrogen oxidation and evolution [8].

They are much more resistant to molecular oxygen, and as such

may be better targets for engineering, notwithstanding their lower

catalytic turnover rates as compared to FeFe hydroenases (5–10%)

[10,14]. In order to link these enzymes to energetic biological

processes, and exploit their ability to generate molecular

hydrogen, it will be necessary to tailor catalytic activity, further

reduce oxygen sensitivity, and even change coenzyme specificity.

2H+ + 2e2« H2 (1)

As a model organism we are investigating the hyperthermo-

philic archaeaon Pyrococcus furiosus (Pf ), an obligate anaerobe that

ferments simple and complex sugars to produce organic acids,

CO2, and (in the absence of elemental sulfur) H2 [15]. Pf has three

operons that encode NiFe hydrogenases; two cytoplasmic enzymes

consisting of four subunits and a membrane bound hydrogenase

(MBH) with 14 putative subunits [16,17]. The two soluble

enzymes, soluble hydrogenase I (SHI) and soluble hydrogenase

II (SHII), utilize NAD(P)(H) as the physiological electron carrier

[18,19]. Pf SHI is a heterotetrameric enzyme consisting of the

typical large (LSU PF0894) and small (SSU PF0893) subunits

along with two additional subunits predicted to contain FeS

clusters (PF0891) and a flavin in the form of FAD (PF0892)

(Figure 1a). Pf SHI is a remarkably stable enzyme having a t1/2 at

90uC of approximately 12 hours and t1/2 after exposure to air of

about 6 hours [18].

Recently, a genetic system was developed for Pf allowing the

markerless disruption or integration of genes onto the chromo-

some [20]. This system marks a significant turning point in the

ability to use Pf as a model organism. A host strain (COM1) was

generated via the deletion of pyrF (orotidine 59-monophosphate

decarboxylase) which allows subsequent gene knockouts and

marker excision. Using this strategy, knockout mutants of each

of the two cytoplasmic hydrogenases, shIbcda (soluble hydrogenase

I), and shIIbcda (soluble hydrogenase II) were constructed [20].

Expanding on this technique we utilize here a marked knock-in

strategy to introduce an expression cassette into the Pf chromo-

some for homologous overexpression. To drive transcription of

recombinant genes in Pf the promoter region of the gene encoding

the S-layer protein (PF1399) was chosen. Based on microarray

data ([21]) PF1399 is a high level, constitutively-expressed gene

whose promoter will allow universal expression regardless of

growth condition.

As a first step towards the production of ‘minimal’ hydroge-

nases, the goal of this work was to engineer a form of SHI that

contained only two (LSU and SSU) rather than four subunits. This

has been reported for the enzyme from some Ralsonia species but

this was achieved by dissociation of the native tetrameric

hydrogenase using electrophoresis and not by genetic manipula-

tion [22]. In addition, we wished to take advantage of a new

auxotrophic marker system for manipulating chromosomal DNA

in the related organism Thermococcus kodakarensis [23,24]. It was

shown that the deletion of an essential gene pdaD (TK0149

arginine decarboxylase) could be complemented with addition of

the polyamine precursor agmatine, a metabolite not found in

complex growth media. Based on this work, we have devised a

simple method of integrating genes of interest onto the

chromosome of Pf using agmatine prototrophy as a marker and

report herein on the expression and characterization of an active,

stable heterodimeric subcomplex of Pf SHI.

Results

A Pf strain overexpressing the dimeric hydrogenase was

constructed using an agmatine selection approach. It was recently

reported that agmatine is essential for the growth of the

hyperthermophilic archaeaon Thermococcus kodakarensis [23], a close

relative of Pf that grows at a lower temperature (Topt 85uC versus

100uC for Pf ). Agmatine is derived from the decarboxylation of

arginine and is a precursor for polyamine synthesis. In addition, it

was recently discovered to be an essential conjugate of tRNAIle for

AUA decoding in archaea [25]. Disruption of Pf pdaD (PF1623

arginine decarboxylase) with the Pgdh pyrF cassette (Figure 2)

exhibited auxotrophy for agmatine and this allowed selection in

the complex media used for Pf as yeast extract and casein both lack

agmatine. This departure from defined media in growing and

selection of Pf genetic mutants greatly simplifies the process of

transformation.

Figure 1. Pyrococcus furiosus heterotetrameric and dimeric soluble hydrogenase I. (a) Model of predicted cofactor contents of the
heterotetrameric form of Pf SHI (taken without modification from Sun et al. [10]) and of the heterodimeric form of SHI that was produced (PF0893-
PF0894) in this study that lacks PF0891 and PF0892. In the dimeric form, PF0893 is modified with an N-terminal His9 tag. The abbreviations used are:
CO, carbonyl ligand; CN, cyanide ligand; FAD, flavin adenine dinucleotide; NADP, nicotinamide adenine dinucleotide phosphate. (b) SDS-PAGE of
purified heterotetrameric (left lane) and heterodimeric form of SHI (right lane) with molecular masses indicated in kDa.
doi:10.1371/journal.pone.0026569.g001
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A plasmid pSPF300 was designed to allow simple integrations

on the Pf chromosome at the pdaD locus and includes a multiple

cloning site after the Pslp promoter for cloning of genes for

homologous (or heterologous) expression in Pf. To investigate if Pf

SHI can exist as a dimeric enzyme, the LSU and SSU (PF0893-

0894) were cloned into the homologous recombination plasmid

pSPF300 with the addition of an N-terminal His9-tag (on PF0893)

generating plasmid pSPF302 (Figure 3). Linearized pSPF302 was

successfully used to transform Pf and integrate the Pslp shIda
overexpression construct onto the Pf chromosome (Table 1).

Pf cells harboring the Pslp shIda overexpression construct (Pf

strain Pslp Dimer) were used for purification. The overexpressed

(OE-SHI) dimer was purified to homogeneity (Figure 1b) with a

final specific activity of 106 U mg21 (MV-linked hydrogen

evolution) (Table 2), which is comparable to that obtained with

the heterotetrameric enzyme [18]. Although only two subunits are

expected from the purified enzyme complex, a persistent

contaminant of approximately 8 kDa could not be separated

from OE-SHI Dimer (Figure 1b). MALDI-TOF/TOF analysis

revealed this to be PF1542, a gene annotated as snRNP (small

nuclear ribonucleoprotein) that functions to mediate RNA-RNA

interactions [26]. Size exclusion analysis of OE-SHI Dimer using a

calibrated Superdex S200 column indicated the complex migrated

at an apparent Mr of 88,000 daltons, in agreement with the trimer

weight of PF0893-0894 and PF1542 (Table 3). As shown in

Table 3, the OE-SHI Dimer was much less thermostable and

more sensitive to oxygen exposure. As expected in the absence of

the FAD-containing subunit PF0892, the OE-SHI Dimer was

unable to evolve hydrogen from NADPH. Surprisingly, however,

the OE-SHI Dimer was able to accept electrons from pyruvate via

POR (Table 3). It has been previously reported that native Pf SHI

cannot accept electrons from Fdred using the POR-linked electron

transfer system [27] and this was confirmed for our native SHI

enzyme used in this study. Usually electrons derived from pyruvate

are transferred from POR to the membrane bound hydrogenase

via the cytoplasmic redox protein Fd [28]. In the in vitro assay OE-

SHI Dimer was able to accept electrons directly from POR and

the presence of Fd had no significant effect on activity. Native SHI

is predicted to contain one [2Fe-2S] and five [4Fe-4S] clusters in

addition to the NiFe active site (23 Fe total) while OE-SHI Dimer

should only contain three 4Fe4S and the NiFe site (13 Fe total;

Figure 1a). Accordingly, metal analysis showed that native SHI has

a nickel to iron ratio of 1:25 while the OE-SHI Dimer ratio is 1:10

(Table 3).

Discussion

The recent development of a genetic system in Pf [20] enables

the deletion and homologous expression of genes, together with

the tagging of proteins to facilitate purification. Moreover, the

initial method using the pyrF deletion strain was limited by the use

of defined media, as the standard complex media contain

contaminating uracil (which overcomes the selection). The

construction of the pSPF300 homologous recombination vector

for integration at the pdaD locus provides a simple method for

manipulating genes in Pf even in rich media. The pSPF300 vector

includes the 1 kb regions for recombination, pdaD with native

promoter (as marker), a high level, constitutive promoter (Pslp) for

the gene of interest, and a multiple cloning site containing four

unique restriction sites. For routine overexpression of genes in Pf

the agmatine auxotrophy based marker system and pSPF300

recombination vector provides a facile selection method.

Utilizing the pdaD marker system an N-terminal His9 dimeric

version (PF0893-PF0894) of the heterotetrameric SHI (PF0891-

PF0894) was cloned onto the chromosome of Pf to generate strain

Pslp Dimer (Figure 3) in a strain (DSHI) lacking the native enzyme.

The DSHI deletion strain has already been characterized [20] and

this was chosen as the parent strain since it might not be possible to

introduce a dimeric SHI into Pf if the native SHI operon is still

intact. Based on microarray data the promoter (Pslp) for the gene

Figure 2. pdaD disruption with Pgdh pyrF. The 1kbupstream and
downstream regions for the pdaD locus (PF1399) were cloned around
the Pgdh pyrF cassette [20]. Using previously described transformation
methods the Pf chromosome was disrupted at pdaD generating a uracil
prototroph and agmatine auxotroph [20].
doi:10.1371/journal.pone.0026569.g002

Figure 3. OE-SHI Dimer recombination plasmid and Pslp Dimer
strain. Plasmid pSPF302 was constructed for the integration of Pslp

shIda onto the Pf chromosome at the pdaD locus. After homologous
recombination Pslp Dimer strain contains the dimeric SHI construct
under control of the constitutive promoter Pslp and the pdaD with its
native promoter.
doi:10.1371/journal.pone.0026569.g003

Table 1.

Strain Genotype
Originating
Strain Source

DSM Wild Type DSM3638 15

DSHI DpyrF DshIbcda COM1 20

DSHIDpdaD DshIbcda DpdaD::pyrF DSHI This study

Pslp Dimer DshIbcda PslpshIda DSHIDpdaD This study

doi:10.1371/journal.pone.0026569.t001
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(PF1399) encoding the highly expressed S-layer protein was used

to drive transcription of a minimal form of the SHI enzyme. A

phenotype was not observed for the Pslp Dimer strain but this is not

surprising as other hydrogenase deficient mutants of Pf also

exhibited no obvious phenotype [20]. OE-SHI Dimer was able to

accept electrons directly from POR in vitro and the possibility exist

that the dimeric could short-circuit the path of electrons from

POR to the membrane bound hydrogenase. Since this would

bypass the creation of a proton motive force and the conservation

of energy during metabolism one would expect a severe

retardation of growth. Pslp Dimer exhibited similar growth to

wild-type Pf and it appears in vivo the flow of electrons remains

unchanged.

OE-SHI Dimer was purified to near homogeneity utilizing a

two-step ion-exchange and nickel sepharose 6 purification protocol

(Figure 1b; Table 2). The persistent contamination of OE-SHI

Dimer with PF1542 was unexpected as they do not share any

similarity in predicted function. A subsequent size exclusion

column was also unable to separate the proteins but the complex

migrated at the expected Mr for a heterotrimer (Table 3). This

suggests that OE-SHI Dimer and PF1542 form a stable complex

but the reason for this association is not known. In combination

with the N-terminal His tag and high constitutive expression, this

protocol greatly simplifies purification and provides a superior

yield of enzyme. For comparison, the original report of SHI

purification [18] reported 11 mgs of pure enzyme obtained from

450 g Pf cells; OE-SHI Dimer was purified from 330 g cells for a

final yield of 53 mgs, a more than ten-fold increase in yield.

The OE-SHI Dimer was markedly less stable than native SHI,

but this is not unexpected as the absence of two partner subunits of

the normally heterotetrameric enzyme would destabilize the

complex. Although the heterodimeric enzyme appears less stable

than native SHI after exposure to air and incubation at 90uC
(under the same conditions of buffer and protein concentration,

Table 3), the enzyme is still very robust as compared to mesophilic

hydrogenases. The activity of the purified dimer with the redox

dye MV was comparable to that of native SHI. As expected the

OE-SHI Dimer lacked the ability to accept electrons from

NADPH since the FAD-containing subunit PF0892 (and FeS-

cluster containing subunit PF0891) are absent. Surprisingly,

however, the OE-SHI Dimer was able to accept electrons directly

from pyruvate ferredoxin oxidoreductase (POR), a reaction that

native SHI cannot catalyze, and yet interestingly OE-SHI dimer

cannot accept electrons from ferredoxin, the physiological electron

acceptor of POR. Hence we have engineered a form of SHI that

by chance directly interacts with native POR. This results in a two

enzyme system that oxidizes pyruvate and produces H2 without

the need for an intermediate electron carrier, such as ferredoxin or

NAD(P). As shown in Figure 4, POR contains thiamine

pyrophosphate and three [4Fe-4S] clusters and oxidizes pyruvate

to acetyl CoA [29]. Presumably there is direct electron transfer

between the iron-sulfur clusters of the two enzymes (Figure 4).

One of the goals in engineering hydrogenases is to change

coenzyme specificity, and this was achieved in this case by simply

deleting two subunits. Activities with physiological-relevant

electron carriers such as NADPH are usually much less than that

measured with the artificial electron donor MV, as is evident with

native SHI (Table 3). Consequently, while the OE-SHI Dimer and

the native SHI had comparable MV-linked hydrogen evolution

activities, the OE-SHI Dimer exhibited only five-fold less activity

with a physiological electron donor, in this case the enzyme POR,

compared to native SHI and its true physiological partner,

NADPH (Table 3). The expression of an active, dimeric form of

SHI from Pf is a critical step towards engineering minimal

hydrogenases. In conjunction with the genetic tools now available,

the hydrogenase of Pf provides a robust model system for further

engineering enzymes that will have utility in biohydrogen

generating systems.

Table 2.

Step Total Units (mmol min21) Total Protein (mg) Specific Activity (U mg21) Yield (%) Purification (-fold)

Cytoplasm 15300 5110 3 100 1

DEAE Sepharose 14660 2740 5 96 2

Nickel Sepharose 6 5560 53 106 36 35

doi:10.1371/journal.pone.0026569.t002

Table 3.

Property Native SHI [12] OE-SHI Dimer

Activity, MV-Linked (U mg21) 163 145

Activity, NADPH-linked (U mg21) 1 0

Activity, POR-linked (U mg21) 0 0.2

Metal Content (Ni:Fe) 1:25 1:10

Apparent Mr (Daltons) 155,000 88,000

Stability at 90uC (t1/2, hr) 30 0.5

Stability in air (23uC, t1/2, hr) 25 4

doi:10.1371/journal.pone.0026569.t003

Figure 4. Model of the pyruvate-oxidizing, hydrogen produc-
ing POR-SHI Dimer system. The abbreviations are: POR, pyruvate
ferredoxin oxidoreductase; SHI Dimer, heterodimeric form of SHI
(PF0894+PF0893). TPP represents thiamine pyrophosphate.
doi:10.1371/journal.pone.0026569.g004
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Materials and Methods

Molecular biology techniques were performed as previously

described [30]. Pf strains used in this study are listed in Table 1.

Pyrococcus furiosus (DSM 3638) was cultured on liquid and solid

support medium as previously described [20] with the addition of

4 mM agmatine (Sigma Chemical, St. Louis, MO) as necessary for

genetic selections.

Pf strain DSHI [20] was used as the parent for this study. For

markerless deletion of pdaD (PF1623, arginine decarboxylase) 1 kb

DNA flanking regions upstream and downstream of PF1623 were

cloned around the Pgdh pyrF cassette (Figure 2) obtained from

plasmid pGLW021 [20] using overlapping PCR. Transformation

and selection of knockout Pf strains were performed as previously

described [20] to generate strain DSHIDpdaD.

For homologous overexpression of genes in Pf a promoter

region (200 bp upstream PF1399) was selected based on micro-

array data to drive transcription. Across a wide range of conditions

([21]), PF1399 is constitutively expressed at a high level. Strains

with disrupted pdaD were selected with defined medium lacking

uracil and supplemented with 4 mM agmatine. For simple

integrations on the Pf chromosome using agmatine prototrophy

as a marker the plasmid pSPF300 was constructed. An NspI

fragment was deleted from plasmid pSET152 removing the

integrase gene to generate pSET-NS. From this pSPF101 was

constructed by inserting the Pgdh pyrF cassette into PstI/NheI

digested pSET-NS, which removes the OriT region, to produce

pSPF101. The 200 bp upstream region from PF1399 (Pslp,

promoter region for S Layer Protein) and a multiple cloning site

were inserted into SacII/SphI digested pSPF101 to generate

pSPF102. A 1.1 kb upstream region of PF1623 was cloned into

Sal/NheI pSPF102 making pSPF107. A 1.83 kb fragment contain-

ing intact PF1623 operon (0.73 kb) and 1.1 kb of its downstream

regionwas amplified by PCR and cloned into AscI/SphI digested

pSPF107 generating pSPF300. To construct a homologous

recombination vector for the expression of dimeric hydrogenase,

a cassette with 9X His tagged PF0893-0894 fused behind Pslp was

first produced by overlap PCR, SacII/KpnI treated PCR product

was then ligated with same enzymes treated pSPF300 to make

pSPF302 (Figure 3). Transformation of Pf strain DSHI with AscI/

PmeI linearized pSPF302 was performed and recombinant strains

selected as previously described [20] to generate strain Pslp Dimer

(Figure 3).

Native Pf SHI enzyme was purified from wild type P. furiosus

DSM3638 as previously described [16]. Pf strain Pslp Dimer was

grown in a 600L fermenter essentially as previously described [31]

with the addition of 10 mM uracil. Harvested cells were flash

frozen in liquid nitrogen and stored at 280uC. All purification

steps were performed using strict anaerobic technique under an

atmosphere of argon. Cell-free lysate was prepared from the Pslp

Dimer strain (330 g, wet weight) and DEAE (Diethylaminoethyl)

anion exchange chromatography (GE Healthcare, Piscataway, NJ)

performed as previously described [16]. Fractions eluting from

DEAE anion exchange chromatography containing hydrogenase

activity were pooled and loaded onto a 5 mL Ni Sepharose 6 Fast

Flow column (GE Healthcare) equilibrated in 50 mM sodium

phosphate, 300 mM sodium chloride, 2 mM dithiothreitol,

pH 8.0 (Buffer A). A linear 20 column volume gradient of 0-

500 mM imidazole in buffer A was applied to the column and

resulting fractions were analyzed for hydrogenase activity (Table 2).

Apparent Mr was measured using a calibrated Superdex S200

sizing column (GE Healthcare).

Hydrogenase activity was routinely determined by H2 evolution

from methyl viologen (MV) (1 mM) reduced by sodium dithionite

(10 mM) at 80uC as described previously [16], except the buffer

was 100 mM EPPS, pH 8.4. One unit of hydrogenase specific

activity is defined as 1 mmole of H2 evolved min21 mg21. For a

physiologically relevant assay, methyl viologen and sodium

dithionite were replaced by NADPH (1 mM) as described [16].

To investigate altered coenzyme specificity, physiological hydro-

gen evolution assays were performed as previously described [27].

Oxygen sensitivity assays were performed by exposing samples to

air at 25uC. Thermal stability assays were measured by anaerobic

incubation of the hydrogenase samples at 90uC. Residual enzyme

activities were measured using the MV-linked H2-evolution assay.

Metal content of enzyme samples was measured as previously

described [12].
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