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Head and neck squamous cell carcinoma (HNSCC) is one of the most common

malignant cancers, and patients with HNSCC possess early metastases and poor

prognosis. Systematic therapies (including chemotherapy, targeted therapy, and

immunotherapy) are generally applied in the advanced/late stages of HNSCC,

but primary and acquired resistance eventually occurs. At present, reliable

biomarkers to predict the prognosis of HNSCC have not been completely

identified. Recent studies have shown that neutrophil extracellular traps (NETs)

are implicated in cancer progression, metastasis and cancer immune response,

and NET-related gene signatures are associated with the prognosis of patients

with several human cancers. To explore whether NET-related genes play crucial

roles in HNSCC, we have performed systematic analysis and reported several

findings in the current study. Firstly, we identified seven novel NET-related genes

and developed a NET-score signature, which was highly associated with the

clinicopathological and immune traits of the HNSCC patients. Then, we, for the

first time, found that NIFK was significantly upregulated in HNSCC patient

samples, and its levels were significantly linked to tumor malignancy and

immune status. Moreover, functional experiments confirmed that NIFK was

required for HNSCC cell proliferation and metastasis. Altogether, this study has

identified a novel NET-score signature based on seven novel NET-related genes

to predict the prognosis of HNSCC andNIFK has also explored a newmethod for

personalized chemo-/immuno-therapy of HNSCC.
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Introduction

Head and neck cancer (HNC) ranks sixth in terms of

malignancy worldwide, and about 90% of HNCs are classified

as head and neck squamous cell carcinomas (HNSCC) (1).

HNSCC possesses a high incidence of cervical lymph node

metastases, increased capacities of invasive and recurrence,

and contributes to the poor prognosis (2, 3). The main

treatment options for HNSCC include surgery, chemotherapy,

radiotherapy, molecular targeted therapy, and multimethod in

conjunction with surgical excision of tumor tissue, but the

effectiveness of these approaches is limited due to tumor

heterogeneity (4, 5).

Cancer immunotherapy is based on harnessing the immune

system to detect and eliminate tumor cells, and the field of

cancer immunotherapy has been growing with an increasing rate

in modern oncology since it was first mentioned in 1985 (6–8).

Active immunotherapy, passive immunotherapy, and immune

checkpoint blockade are the major strategies of cancer

immunotherapy (9, 10). For HNSCC immunotherapy, two

immune checkpoint blockade agents, pembrolizumab and

nivolumab, have been applied in clinical trials for patients

with platinum-refractory HNSCC (11, 12). However, most

HNSCC patients are non-responders and have acquired drug

resistance (13–15). Recent studies have indicated that cancer

immunotherapy may be hindered by immunosuppressive cells

of the tumor microenvironment (TME), leading to the failure of

antitumor immunity (16, 17).

Neutrophils are the most abundant immune cells in the TME,

and increased neutrophil infiltration and high neutrophil-to-

lymphocyte ratios were reported to be associated with poor

patient outcomes of the patients with HNSCC (18–20). In

activating neutrophils, DNA fibers decorated with histones and

antimicrobial proteins found originally within neutrophil granules

are released as neutrophil extracellular traps (NETs) (21, 22).

NETs have been found as a new form of innate immunity and

mediate the response of the host as a first line of defense (23). The

development of NETs is a potential mechanism that contributes to

tumor progression. Additionally, tumor cells can also escape

immune surveillance through NETs (24). While the pro-

oncogenic evidence of NETs is growing, the role of NETs in

cancer immunotherapy remains unclear, particularly in HNSCC.

In this study, we have developed a novel NETs-score

signature consisting of seven NETs-related genes, and we have

found that NETs-score could reflect the response of HNSCC

patients to chemotherapy and immunotherapy. Lastly, we have

further identified the NET-related gene NIFK as a potentially

carcinogenic factor for patients with HNSCC.
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Methods and material

HNSCC database handling

HNSCC-related clinical information has been downloaded

and collected from the TCGA database (519 patients, https://

xenabrowser.net/) and GEO database (ID: GSE41613 n = 97,

GSE42743 n = 103, GSE65858 n = 270, https://www.ncbi.nlm.

nih.gov/geo/). Transcriptional profiles of 989 HNSCC patients

were obtained from four cohorts, and the patients with

insufficient OS information were excluded (Table S1).

The Affymetrix and Illumina platforms were used to

generate raw data from the TCGA and GEO databases.

Background correction and normalization are achieved using a

robust multi-chip averaging (RMA) algorithm. The TCGA

database provides RNA sequencing data. The fragment per

kilobase (FPKM) values were converted to transcripts per

kilobase (TPM) values with signal intensities similar to the

RMA treatment.
Establishment of NET enrichment score

According to a recent study, we obtained a list of published

NET gene sets and the descriptions of the gene sets (25–27)

(Tables S2, S3). This NET-related gene set has a total of 69-gene

with NET-initial biomarkers. We first performed univariate cox

analysis to screen out the NET gene set associated with the

prognosis of HNSCC patients for subsequent enrichment score

calculation. NET-enrichment-score was calculated with single

sample Gene Set Enrichment Analysis (ssGSEA) for HNSCC

patients using the NET gene set associated with prognosis for

further analysis.
Establishment of a NET-related signature

We employed Spearman correlation analysis to identify genes

that were significantly positively correlated with NET-enrichment-

score (correlation coefficient >0.4 and P-value <0.05, termed NET-

related genes) and were selected for further analysis. Subsequently,

we performed univariate Cox regression analysis to identify NET-

related genes associated with the prognosis of HNSCC patients (P-

value <0.05). We then screened out more valuable NET-related

genes with prognostic potential by applying machine learning

algorithms through the R “CoxBoost” and “randomForestSRC”

packages. The NET-related signature named NET-score was

constructed from the list of NET-related genes with prognostic
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potential and weighted by their estimated regression coefficients in

the Lasso regression analysis. Finally, we verified the prognostic

evaluation performance of the NET-score. We estimated the NETs-

score of 519 patients in the TCGA–HNSCC dataset, and then

divided the patients into high and low NET-score groups based on

the P value of the best cut-off. Kaplan–Meier curve analysis of the

association between OS and NET-score. Time-ROC was used to

validate the efficiency and accuracy of the NET-score for 1-year, 3-

year, and 5-year prognosis prediction. Univariate and multivariate

cox regression analyses were performed on the NET-score.
Genomic alteration

Somatic mutation and somatic copy number variation

(CNV) data were collected from the TCGA dataset. Genomic

Identification of Important Targets in Cancer (GISTIC) analysis

was used to assess genomic signatures. The CNV landscape and

the copy number gain or loss of amplified or deleted peaks were

assessed by GISTIC 2.0 analysis (https://gatk.broadinstitute.org).
Assessing the immunological
profile of the TME

We first used the ESTIMATE (The Estimation of Stromal

and Immune cells in Malignant Tumor tissues using Expression)

algorithm to estimate the abundance of immune cells and the

infiltration level of stromal cells in HNSCC tumor tissue, which

were reflected by immune score, stromal score, and estimated

score, respectively. The Tumor Immune Estimation Resource2.0

(TIMER2.0, http://timer.cistrome.org/) web server was used to

comprehensively analyze the level of immune-infiltrating cells in

HNSC. Then, the relative proportions of 10 immune cells in the

tumor were estimated using the MCPcounter algorithm. The

infiltration levels of the 28 immune cells were represented by the

enrichment scores based on the corresponding features.

Enrichment scores were calculated using Single-Sample

Genomic Enrichment Analysis (ssGSEA) implemented using

the R Genomic Variation Analysis (GSVA) package. The

response of HNSCs to anti-PD1 and anti-CTLA4 therapy was

assessed by the submap algorithm. Response to anti-immune

checkpoint therapy was assessed by the TIDE algorithm (28).
Functional annotation of differently
expressed NET-related genes

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) gene sets were downloaded from the

MSigDB database (29). Gene Set Enrichment Analysis (GSEA)

and Gene Set Enrichment Analysis (GSEA) and GSVA are

implemented by the clusterProfiler R package and the GSVA R

package (30).
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Prediction of drug response

We first used the Pharmacogenomics Data of Cancer Drug

Sensitivity Genomics (GDSC, https://www.cancerrxgene.org/) to

predict drug susceptibility in the included HNSCC cases (31).

Drug responses were calculated with the oncoPredict R software

package for drug sensitivity (32).
Plate clone formation assay

The Cal27 and SCC25 cells were digested and then

resuspended in serum-free medium, and the cells were seeded

into a 6-well culture plate at a density of 103 cells per well.

Fourteen days later, the cells were continually cultured. Every 3

days, cells and clones were observed microscopically and sub-

cultured. After colony formation was completed, the colonies

formed by cells were photographed under a microscope and

washed three times with PBS. Then, add 1 ml of crystal violet

staining solution to each well and stain for 10–20 min. Finally,

the six-well plate that formed the clones was scanned.
Transwell assay

Cal27 and SCC25 cells were added to the upper chamber with

200 ml of serum-free medium. In the lower chamber, 650 ml of
medium containing 10% fetal serum was added. In the upper

chamber, the rest of the cells were removed with a cotton swab, and

those on the surface of the lower chamber were treated with 4%

paraformaldehyde for 15min at room temperature and stained with

0.1% gentian violet for 30 min. Cells from the lower chamber

(migrated cells) were imaged under an inverted microscope.
RNA interference assay

Short hairpin RNA (sh-RNA) sequences of NIFK were

synthesized by RiboBio (Guangzhou, China), and the target

sequences of sh-NIFK are as follows: sh-NIFK#1: CATCAGT

GAAACGGTATAATC, sh-NIFK#2:CGGATGGAGGA

GCGATTTAAA. Based on our previous study (30), lentivirus

vectors including short hairpin RNA were used for the RNA

interference assay.
Statistical analysis

TheWilcoxon test was used for data that did not conform to a

normal distribution. A t-test was used for normally distributed

data. Kaplan–Meier survival plots were used to estimate OS

between the two groups using the R package “survminer.” Cox
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regression for survival analysis was performed using the R package

“survival.” Time-dependent receiver operating characteristic

(ROC) curves were plotted using the R package “timeROC.” All

heatmaps were performed via the R “pheatmap” package. Data

were primarily visualized using ggplot2 R software (v4.1.2). A P-

value of <0.05 was considered statistically significant.
Results

Identification of NET-enrichment-scores
for the patients with HNSCC

Previous studies have applied 69 genes as the neutrophil

extracellular trap (NET)-initial biomarkers. To identify a NET-

relevant signature for HNSCC, the 69-gene NET-initial

biomarkers were applied in the uniCox regression analysis in

the TCGA-HNSCC training set, and we found 12 NET-

associated genes with prognostic potential in HNSCC,

including KCNJ15, CREB5, MME, F3, IL6, CXCL8, SELP,

VNN3, CTSG, KCNN3, SELPLG, and IL17A, where the

hazard ratio (HR) originated from uniCox regression analysis

for each gene was included (Figure 1A). The ssGSEA was then

applied to the TCGA-HNSCC with the 12 NET-associated

genes, and a NETs-enrichment-score was established on the

basis of their expression levels. Moreover, the correlation

analysis showed that there was a strong correlation between

the 12 NET-related genes (Figure 1B). Furthermore, the Kaplan–

Meier analysis of the 12 NET-related genes showed that the

survival of HNSCC patients was inversely correlated with the

NET-enrichment-score, implying that HNSCC patients with

high levels of the NET-enrichment-score may have a worse

prognosis (Figure 1C). Finally, a heatmap displayed the

correlation between the NET-enrichment-scores and the

clinical characteristics of HNSCC samples, referring to the

clinical stages, grade, gender, and age (Figure 1D). The results

showed that each of the NET-associated genes exhibited a strong

correlation with NET-enrichment-scores, which correlated with

the clinical characteristics of HNSCC patients.
Establishment of a 7-gene NET related
signature for HNSCC

Spearman correlation analysis identified 38 NET-related genes

were positively correlated with NET-enrichment-scores, based on

the criteria with correlation coefficient >0.4 and P-value <0.05.

Heatmap showed that these 38 NET-associated genes correlated

with NET-enrichment-scores and clinical futures of the HNSCC

patients (Figure 2A). To further screen out the more valuable NET-

related genes, univariate Cox regression analysis was performed to

further select out 34 NET-related genes of potential prognostic

value for HNSCC patients (P-value <0.05), and the univariate Cox
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analysis forest plot showed the HR of each single gene of the 34

NET genes for their prognosis (Figure 2B). Moreover, we used

machine learning algorithms by applying the R “CoxBoost” to

further select out nine NET-related genes (Figure 2C). Interestingly,

the randomForestSRC (RFC) enabled us to further screen out seven

NET-related genes, including NIFK, LINC00460, NUTF2,

LINC02454, ITGA5, TNFRSF12a, and PDGFa (Figure 2D).

Finally, the Lasso regression analysis was performed to calculate

new NET-scores using these seven prognostic and NET-related

genes based on their estimated regression coefficients (Figure 2E).

Each estimated regression coefficients of the prognostic-related

NET gene were following, 0.1936 ∗ ITGA5 + 0.4588 ∗
LINC00460 + 0.0361 ∗ LINC02454 + 1.1349 ∗ NIFK + 0.4079 ∗
NUTF2 + 0.4611 ∗ PDGF a + 0.2251 ∗ TNFRSF12 a.
Validation of the NET-scores for clinical
predicting the survival in HNSCC

To test if the 7-gene NET-score signature predicted the

clinical characteristics of the HNSCC patients, Kaplan–Meier

analysis revealed that HNSCC patients with higher NET-scores

had poor survival curves (Figure 3A). Additionally, both

univariate Cox and multivariate Cox regression analysis

showed that the NET-score of HNSCC patients was an

independent risk factor compared with other clinical factors,

such as tumor grade and gender (Figure 3B). As shown in

Figure 3C, the time-dependent ROC curves at 1 year, 3 years,

and 5 years of OS had AUC values of 0.685, 0.712, and 0.746,

respectively, and these results indicated that our NET-score

signature was of prognostic value. Furthermore, we used three

independent cohorts in the GEO database (ID: GSE41613,

GSE42743, and GSE65858) and further verified that HNSCC

patients with higher NET-scores had worse prognosis and

survival disadvantages (Figures 3D–F).
The NET-score was relevant to distinct
genomic alterations of HNSCC patients

To check if somatic mutations are linked to the NET-scores, we

conducted the Genomic Identification of Important Targets in

Cancer (GISTIC) analysis and the results showed that HNSCC

patients with either high or low NET-scores manifested respective

somatic mutations, including TP53, PIK3CA, NOTCH1, and

MUC17 (Figures 4A, B). Nevertheless, HNSCC patients with high

NET-scores appeared to have a higher trend of TP53 mutations as

compared to patients with low NET-scores, i.e., 71% vs. 63%,

respectively (Figures 4A, B). Moreover, analysis of the copy

number alterations showed that HNSCC patients with either high

or low NET scores displayed copy number changes significantly at

multiple chromosome loci (Figure 4C), probably related to the

clinicopathological features of the HNSCC patients.
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B C

D

A

FIGURE 1

Characteristics of NET-enrichment in HNSC (TCGA). (A) Univariate Cox analysis results of 12 prognostic related NET genes in TCGA-HNSCC.
(B) Correlation map of 12 prognosis-related NET gene sets in TCGA-HNSCC. (C) Kaplan–Meier curve showing the correlation of NET-enrichment-
score with OS. (D) Heatmap showing the correlation of the NET-enrichment-score with 12 prognosis-related NET genes and their clinical features.
****,p<0.001.
Frontiers in Immunology frontiersin.org05

https://doi.org/10.3389/fimmu.2022.1019967
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1019967
The NET-scores are conversely related
to immune infiltration for patients with
HNSCC in TCGA cohorts

To examine the relationship between NET-scores and the

immune status in patients with HNSCC in TCGA cohorts, we
Frontiers in Immunology 06
applied the ESTIMATE algorithm and found that HNSCC

patients with low-NET scores had significantly higher

ESTIMATE scores, higher immune scores, and higher stromal

cells than those with high-NET scores (Figure 5A), indicating

that the levels of NET scores are reversely correlated with

immune status in HNSCC patients. To confirm this
B

C

D

A

E

FIGURE 2

Establishment of the NET score signature. (A) Heatmap of 38 NET-related genes significantly positively correlated with NET-enrichment-score.
(B) Univariate Cox analysis forest plot of 34 prognosis-related NET-related genes. (C) The machine learning method CoxBoost further screened
NET-related genes (34 dimensionality reduction to 9). (D) Machine learning method for survival random forest to further screen NET related
genes (reduced from 9 to 7). (E) Lasso regression method to calculate NET scores. ****,p<0.001.
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FIGURE 3

Predictive potential of the NET score for prognosis in HNSCC patients. (A) Kaplan–Meier curves of high and low NET scores in TCGA-HNSCC.
(B) Forest plot of univariate and multivariate Cox regression of NET-score based on TCGA dataset. (C) Time-dependent ROC of NET-score in
TCGA. (D–F) Kaplan–Meier curves of overall survival in HNSCC patients based on an external validation dataset.
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phenotype, the MCPcounter, ssGSEA, and TIMER algorithms

were independently used to reveal the abundance of immune

infiltrating cell populations based on the NET-scores, tumor

stages, tumor grade, gender, and age (Figure 5B). As a result, the

heatmap showed that many immune-infiltrating cells were
Frontiers in Immunology 08
enriched in HNSCC patients with low NET-scores, including

CD8 T cells, cytotoxic lymphocytes, NK cells, and neutrophils

(Figure 5B). Additionally, the correlation analysis implied that

the NET-scores were negatively associated with the abundance

of neutrophils in HNSCC patients (Figures 5C, D). Moreover,
B

C

A

FIGURE 4

Genomic alterations associated with NET scores in HNSCC samples. (A,B) Waterfall plot of somatic mutations in HNSCCs between high and low
NET-score groups. (C) Copy number changes of HNSCCs between NET-score high and low groups.
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FIGURE 5

NET scores in relation to immunity in the TCGA cohort. (A) Changes in ESTIMATE among HNSCC patients with high and low NET scores. (B)
Heatmap showing the abundance of infiltrating immune cell populations for different NET scores according to MCPcounter, ssGSEA, and TIMER
algorithms. (C,D) Correlation of NET scores with Neutrophil_ssGSEA and Neutrophil_TIMER. (E) GSEA showing immune related pathways
potentially related by NET-score. ****,p<0.001.
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GSEA showed that several important immune-related pathways

were more involved in HNSCC patients with low NET-scores,

such as adaptive immune response, immune response, T-cell

receptor signaling pathways, and T-cell activation (Figure 5E).

Thus, our data revealed that the NET-scores for HNSCC patients

may be highly linked to the tumor immune microenvironment.
The potential immunotherapeutic and
chemotherapeutic response associated
with NET-score of HNSCC patients

Recent developments in immunotherapy, particularly PD-1

inhibitors, have led to the outperformance of traditional

chemotherapy in HNSCC at the recurrent and metastatic stages.

Using chemo-immunotherapy, chemotherapy interacts with

immune cell mechanisms to enhance current cancer treatment

strategies (33). To explore the therapeutic responsiveness based on

NET-scores, we first checked the correlation between the NET-

scores and the immune checkpoint levels in HNSCC patients. The

heatmap showed that HNSCC patients with low NET scores

tended to have higher levels of immune checkpoints, including

CD274 and CTLA4 (Figure 6A). Subsequent analysis of drug

sensitivity revealed that HNSCC patients with low NET-scores

were further enriched in the responders, but not in the non-

responders, when immune checkpoint inhibitors were performed

(Figures 6B, C). In contrast, patients with high NET-scores were

probably more non-responders as the immunotherapies were

applied (Figures 6B, C). Moreover, NET-scores were

significantly linked to the targeted therapies, including

afatinib, lapatinib, erlotinib, and ibrutinib, indicating that

patients with low NET-scores had a better response to the

targeted therapies (Figure 6D).
NIFK is a potentially prognostic factor
and oncogene for HNSCC patients

As shown in Figure 2D, NIFK was ranked at the top of the 7-

gene signature as per their variable importance. NIFK, a

nucleolar protein interacting with the fork head associated

(FHA) domain of Ki67, may play a role in cell cycle

progression and mitosis. However, the function of NIFK in

human cancer development is not clear. We therefore examined

the expression of NIFK in HNSCC samples and their matched

benign or normal tissues, and found that NIFK was significantly

expressed in the tumorous samples as compared to their normal

counterparts (Figure 7A). Further Kaplan–Meier analysis

implied that NIFK level is reversely correlated with the

survival of HNSCC patients using TCGA cohorts, showing

that HNSCC patients with high a level of NIFK had a worse

prognosis (Figure 7B). In addition, the GSVA heatmap showed

several NIFK associated pathways, such as GO immune-related
Frontiers in Immunology 10
functions and KEGG tumor-related pathways (Figure 7C). For

example, a high level of NIFK was closely linked to KEGG

pathways regulating cell cycle, DNA replication, and

proteasome, while a low level of NIFK was associated with

immune-related pathways involving natural killer cell

differentiation, leukocyte proliferation, and immune response

(Figure 7C). Subsequent analysis hinted that low levels of NIFK

were pertinent to levels of immune checkpoint in TCGA

(Figure 7D). Additionally, to address the oncogenic role of

NIFK in HNSCC, shRNA was used to knock down the mRNA

expression levels of NIFK in two HNSCC cell lines that are

widely used, such as Cal27 and SCC25. Using Transwell assay in

Cal27/SCC25 control, sh-NIFK#1 and sh-NIFK#2 cells, and the

results revealed that cell metastasis capacity in Cal27 and SCC25

cells was inhibited by NIFK shRNA (Figures 8A–D).

Subsequently, to investigate the effect of NIFK on the

proliferation of HNSCC, we conducted the plate cloning assay

with Cal27/SCC25 control, sh-NIFK#1, and sh-NIFK#2 cells,

and the results revealed that colony formation in Cal27 and

SCC25 cells was inhibited by NIFK shRNA (Figures 8E–H).

Thus, these data demonstrate that NIFK is a promising factor for

predicting the prognosis of HNSCC patients.
Discussion

Head and neck squamous cell carcinomas (HNSCCs) are

one of the most common malignant cancers (1, 34, 35). The

mainstay treatments for HNSCC at the early stage are surgery

and/or radiation, which benefit most patients with a good

prognosis (4, 36, 37). For HNSCC patients at the advanced or

late stages, systematic therapies are recommended, including

chemotherapy, targeted therapy, and immunotherapy (12, 38,

39). Although many HNSCC patients at the advanced/late stages

initially respond well to these treatments, most of them will

eventually fail and progress to recurrent and/or metastatic

diseases (2, 4, 40). For example, a randomized phase III

clinical trial to compare the efficacy between different

strategies of chemotherapy in advanced HNSCC showed that

patients treated by cisplatin and fluorouracil (CF) had a median

survival of 8.7 months, as compared to patients administered by

cisplatin and paclitaxel (CP) with a median survival of 8.1

months (41). Further studies have revealed that cetuximab (a

regimen of targeted therapy) plus platinum-fluorouracil

chemotherapy significantly improved overall survival (OS) of

recurrent or metastatic HNSCC to 10.1 months, as compared to

the OS of patients of 7.4 months treated by platinum-

fluorourac i l chemothe rapy a lone (42 ) . Recen t l y ,

immunotherapy has been widely used in a variety of human

cancers, including the recurrent or metastatic HNSCC (43, 44).

Emerging evidence has demonstrated that the immune

checkpoint targeting agent (such as Pembrolizumab) either

alone or combined with chemotherapy significantly prolongs
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B C

D

A

FIGURE 6

Immunotherapy and chemotherapy of NET scores involved in TCGA-HNSCC. (A) Correlation of NET scores and immune checkpoint levels in
HNSCC. (B) Submap analysis of NET scores in TCGA-HNSCC. (C) TIDE analysis of NETs scores in TCGA-HNSCC. (D) Boxplots of estimated drug
sensitivities for several GDSC chemotherapeutics in the high and low NET scores groups. ****,p<0.001.
Frontiers in Immunology frontiersin.org11

https://doi.org/10.3389/fimmu.2022.1019967
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1019967
OS of the recurrent/metastatic HNSCC with a CPS (the PD-L1

combined positive score) of ≥20, as compared to cetuximab with

chemotherapy (45, 46). Therefore, immunotherapy has been

recommended as the first-line therapy for recurrent,
Frontiers in Immunology 12
unresectable, or metastatic head and neck cancers.

Nevertheless, either primary or acquired resistance will

eventually occur after treatment with immunotherapy. At

present, several mechanisms have been proposed to explain
B

C

D

A

FIGURE 7

NIFK has an important role in TCGA-HNSCC. (A) NIFK levels in HNSCC samples grouped by cancer and para-cancerous status in TCGA. (B)
Kaplan–Meier curves of TCGA high and low NIFK groups. (C) GSVA heatmap showing functional pathways significantly associated with NIFK in
TCGA (GO immune-related functions and KEGG cancer-related pathways). (D) Association analysis showed that NIFK levels were related to
immune checkpoints in TCGA. ***,p<0.001; ****,p<0.0001.
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these resistant phenotypes, including tumors failing to produce

robust T-cell infiltration or tumors excluding T cells. However,

the exact mechanisms for the resistance are not completely

understood, which will continue to be the future direction in

the field (44, 47). Thus, a major hurdle emerging in the field of

cancer immunotherapy is the lack of reliable and predictable

biomarkers for many cancer patients, including HNSCC (48).

Neutrophil extracellular traps (NETs) participate in the

regulation of neutrophil development. They are web-like

structures consisting of chromatin and granule proteins (49,

50). NETs have been demonstrated to be linked with different

conditions via distinct mechanisms, such as inflammation, cell

damage, and vascular thrombosis (27, 51). Recently, increasing
Frontiers in Immunology 13
evidence has shown that neutrophil extracellular traps (NETs)

play vital roles in tumor initiation, progression, recurrence, and

metastasis (27, 44). In particular, NETs may play essential roles

in the tumor microenvironment and are crucial to cancer

immunotherapy (52, 53). Additionally, several prognostic

models based on NETs have been shown in various human

cancers. However, whether NETs are also implicated in HNSCC

development and if NETs offer prognostic and predicative value

for HNSCC is not understood. Li et al. have shown that oral

squamous cell carcinoma (OSCC) patients with late stages (III/

IV) had a higher level of NETs compared to early stages (I/II),

and NETs dictate a procoagulant phenotype that can be partially

dampened by DNase I (54). Moreover, a recent study has
B

C D

E F

G H

A

FIGURE 8

NIFK promotes tumor cell proliferation and metastasis in HNSCC. (A) Transwell migration assay in Cal27 cells silenced with control (sh-NC) or
NIFK sh-RNA (#1 and #2). (B) Quantitative analysis of Transwell assay in Cal27 control and sh-NIFK#1 and sh-NIFK#2 cells. (C) Transwell assay
in SCC25 control and sh-NIFK#1 and sh-NIFK#2 cells. (D) Quantitative analysis of Transwell assay in SCC25 control and sh-NIFK#1 and sh-
NIFK#2 cells. (E) Plate cloning assay in Cal27 control and sh-NIFK#1 and sh-NIFK#2 cells. (F) Quantitative analysis of plate cloning assay in
Cal27 control and sh-NIFK#1 and sh-NIFK#2 cells. (G) Plate cloning assay in SCC25 control and sh-NIFK#1 and sh-NIFK#2 cells.
(H) Quantitative analysis of plate cloning assay in SCC25 control and sh-NIFK#1 and sh-NIFK#2 cells. ***P <0.001.
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identified a 6-gene signature associated with NETs, consisting of

LTF, CYBB, SELPLG, GAPDH, ANXA3, and CSF2, which

contributes to a clinical prognostic model for HNSCC (55).

To explore the prognostic biomarkers for HNSCC, we have

conducted a series of analyses and validations in the current

study, and our findings have novel points. First, we

systematically applied 69 NET-initial biomarkers using TCGA-

HNSCC datasets and identified 12 NET-related genes potentially

predictive of prognosis for HNSCC. Second, further analysis has

identified seven NET-related genes, including NIFK,

LINC00460, NUTF2, and LINC02454, some of which are

potentially predictive biomarkers for human cancers. For

instance, NUTF2 has been reported to be highly expressed in

HNSCC, associated with a poor prognosis and related to

immune cells, which may serve as a potential biomarker and

target for HNSCC (56–58). Additionally, previous studies have

established a 12-gene signature based on the fatty acid

metabolism to predict the prognosis of HNSCC, which contain

the long non-coding RNA, LINC00460, indicating its predictive

role for HNSCC (36, 59, 60). Also, another long non-coding

RNA, LINC02454, is linked to predicting the prognosis of

thyroid cancer (61, 62). In our study, we set up NET scores

based on the seven prognostic-related NET genes, and HNSCC

with low-NET scores was related to better prognosis and survival

of patients. Importantly, our data hinted that the NET scores for

HNSCC patients may be correlated with clinical traits for

prognostic prediction (Figures 3, 4). Third, HNSCC patients

with low-NET scores had higher immune scores, higher stromal

cells, and immune-related pathways, which responded well to

immunotherapy and targeted therapies (such as afatinib and

lapatinib). Thus, our findings suggest that the seven NET-related

gene signatures are predictive of prognosis for HNSCC.

In the current study, we identified that NIFK was highly

upregulated in HNSCC patient samples as compared to normal

tissues, and HNSCC patients with a high level of NIFK had a

worse prognosis and a shortened life span, indicating that NIFK

is a potential prognostic biomarker for HNSCC, although

further functional validation is required. In Figure 7, our

characterizations have found that levels of NIFK were related

to cell cycle and DNA replication as well as WNT and P53

signaling pathways. In support of the previous reports showing

that NIFK is vital for cell cycle progression via RNA recognition

motif dependent pre-rRNA maturation (63). Nevertheless, how

NIFK functions in human cancers is largely unknown. Recent

studies have shown that NIFK is indispensable for lung cancer

development through Ki-67 dependent cell proliferation and

CK1a/b-catenin activated metastasis (64). Whether NIFK plays

a similar role in HNSCC development is not clear, and more

work is needed for its verification. Our present study has also

found that NIFK involvement in HNSCC progression is linked
Frontiers in Immunology 14
with immune response and immune associated pathways

(Figure 7), hinting that NIFK is also a potential therapeutic

target for immunotherapy for HNSCC, although future work is

required to validate this conjecture.

However, our current study has potential limitations. For

instance, detailed experimental studies must be added to explore

the possible mechanisms of NIFK regulation in HNSCC using

cell lines, animal models, and human samples. Furthermore, our

seven NET-related gene signatures and our NET scores must be

validated in the clinics via large-cohort and multicenter studies.

Moreover, there exist several gene signatures (including this

study) to predict the prognosis of HNSCC. Future studies should

be considered to compare the similarities and differences among

these signatures and to select the representative targets for

HNSCC treatment.
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