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Abstract

Background

VRC01 is an HIV-1 CD4 binding site broadly neutralizing antibody (bnAb) that is active

against a broad range of HIV-1 primary isolates in vitro and protects against simian-human

immunodeficiency virus (SHIV) when delivered parenterally to nonhuman primates. It has

been shown to be safe and well tolerated after short-term administration in humans; how-

ever, its clinical and functional activity after longer-term administration has not been previ-

ously assessed.

Methods and findings

HIV Vaccine Trials Network (HVTN) 104 was designed to evaluate the safety and tolera-

bility of multiple doses of VRC01 administered either subcutaneously or by intravenous

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002435 November 14, 2017 1 / 30

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Mayer KH, Seaton KE, Huang Y,

Grunenberg N, Isaacs A, Allen M, et al. (2017)

Safety, pharmacokinetics, and immunological

activities of multiple intravenous or subcutaneous

doses of an anti-HIV monoclonal antibody, VRC01,

administered to HIV-uninfected adults: Results of a

phase 1 randomized trial. PLoS Med 14(11):

e1002435. https://doi.org/10.1371/journal.

pmed.1002435

Academic Editor: Linda-Gail Bekker, Desmond

Tutu HIV Centre, SOUTH AFRICA

Received: June 9, 2017

Accepted: October 11, 2017

Published: November 14, 2017

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the National

Institute of Allergy and Infectious Diseases (NIAID,

https://www.niaid.nih.gov/), U.S. Public Health

Service Grants UM1 AI068614 [LOC: HIV Vaccine

Trials Network], UM1 AI068635 [SDMC: HIV

https://doi.org/10.1371/journal.pmed.1002435
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002435&domain=pdf&date_stamp=2017-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002435&domain=pdf&date_stamp=2017-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002435&domain=pdf&date_stamp=2017-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002435&domain=pdf&date_stamp=2017-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002435&domain=pdf&date_stamp=2017-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1002435&domain=pdf&date_stamp=2017-11-14
https://doi.org/10.1371/journal.pmed.1002435
https://doi.org/10.1371/journal.pmed.1002435
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.niaid.nih.gov/


(IV) infusion and to assess the pharmacokinetics and in vitro immunologic activity of the

different dosing regimens. Additionally, this study aimed to assess the effect that the

human body has on the functional activities of VRC01 as measured by several in vitro

assays. Eighty-eight healthy, HIV-uninfected, low-risk participants were enrolled in 6

United States clinical research sites affiliated with the HVTN between September 9, 2014,

and July 15, 2015. The median age of enrollees was 27 years (range, 18–50); 52% were

White (non-Hispanic), 25% identified as Black (non-Hispanic), 11% were Hispanic, and

11% were non-Hispanic people of diverse origins. Participants were randomized to

receive the following: a 40 mg/kg IV VRC01 loading dose followed by five 20 mg/kg IV

VRC01 doses every 4 weeks (treatment group 1 [T1], n = 20); eleven 5 mg/kg subcutane-

ous (SC) VRC01 (treatment group 3 [T3], n = 20); placebo (placebo group 3 [P3], n = 4)

doses every 2 weeks; or three 40 mg/kg IV VRC01 doses every 8 weeks (treatment group

2 [T2], n = 20). Treatment groups T4 and T5 (n = 12 each) received three 10 or 30 mg/kg

IV VRC01 doses every 8 weeks, respectively. Participants were followed for 32 weeks

after their first VRC01 administration and received a total of 249 IV infusions and 208 SC

injections, with no serious adverse events, dose-limiting toxicities, nor evidence for anti-

VRC01 antibodies observed. Serum VRC01 levels were detected through 12 weeks after

final administration in all participants who received all scheduled doses. Mean peak

serum VRC01 levels of 1,177 μg/ml (95% CI: 1,033, 1,340) and 420 μg/ml (95% CI: 356,

494) were achieved 1 hour after the IV infusion series of 30 mg/kg and 10 mg/kg doses,

respectively. Mean trough levels at week 24 in the IV infusion series of 30 mg/kg and 10

mg/kg doses, respectively, were 16 μg/ml (95% CI: 10, 27) and 6 μg/ml (95% CI: 5, 9) lev-

els, which neutralize a majority of circulating strains in vitro (50% inhibitory concentration

[IC50] > 5 μg/ml). Post-infusion/injection serum VRC01 retained expected functional activ-

ity (virus neutralization, antibody-dependent cellular cytotoxicity, phagocytosis, and virion

capture). The limitations of this study include the relatively small sample size of each

VRC01 administration regimen and missing data from participants who were unable to

complete all study visits.

Conclusions

VRC01 administered as either an IV infusion (10–40 mg/kg) given monthly or bimonthly,

or as an SC injection (5 mg/kg) every 2 weeks, was found to be safe and well tolerated. In

addition to maintaining drug concentrations consistent with neutralization of the majority of

tested HIV strains, VRC01 concentrations from participants’ sera were found to avidly cap-

ture HIV virions and to mediate antibody-dependent cellular phagocytosis, suggesting a

range of anti-HIV immunological activities, warranting further clinical trials.

Trial registration

Clinical Trials Registration: NCT02165267
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Author summary

Why was this study done?

• Despite improvements in HIV treatment and prevention, there were close to 2 million

new infections worldwide in 2016. There remains hope that the right preventive tool or

combination of tools will eliminate new HIV infections.

• Immunotherapy and vaccines have been responsible for eliminating several major viral

diseases, such as smallpox, and potentially very powerful HIV preventive tools are

under development.

• Researchers have discovered that some antibodies can effectively neutralize many

strains of HIV and protect nonhuman animals from getting infected; these are called

broadly neutralizing antibodies (bnAbs).

• This study was designed to evaluate the safety, pharmacological profile, and immune

functions of one such antibody administered either subcutaneously or intravenously as

a foundation for future efficacy trials of this and other HIV-1 bnAbs.

What did the research do and find?

• VRC01, an anti-HIV antibody, is safe and well tolerated when administered multiple

times either subcutaneously or intravenously.

• The drug levels achieved with the different dosing regimens produced antibody levels

that lasted many weeks at concentrations that could inhibit HIV when tested in vitro.

• The antibody in serum after administration showed evidence of a number of immune

functions that are known to inhibit HIV transmission and replication.

What do these findings mean?

• The safety and tolerability of VRC01, administered multiple times either subcutaneously

or intravenously, support moving forward with larger trials.

• The concentrations achieved when dosed at 10 mg/kg or 30 mg/kg every 8 weeks pro-

duced drug levels that are predicted to protect against the acquisition of HIV infection.

• These data helped inform the development of 2 large efficacy trials of VRC01 in

high-risk people in the US, South America, and southern Africa that will establish

whether intravenous administration is protective against HIV transmission (www.

ampstudy.org, ampstudy.org.za). Importantly, this work establishes the framework

for subsequent analyses of effective levels of VRC01 or other bnAbs as well as the neu-

tralization titers necessary to prevent HIV, which future HIV vaccines must aim to

induce.
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Introduction

Antiretroviral (ARV) therapy for HIV-1 treatment and prevention is increasingly available

globally; nonetheless, about 2 million new HIV-1 infections occurred in 2016 [1]. Although

ARV treatment can decrease HIV transmission [2] and the use of pre-exposure prophylaxis

can decrease acquisition [3], the logistics and costs of scaling up these approaches remain

daunting and expensive. Given the magnitude of ongoing HIV spread, the continued develop-

ment of other novel, safe, and effective preventive strategies is urgently needed [1,4].

Vaccines that induce neutralizing antibodies are a high priority for HIV prevention but,

to be successful, the antibodies will need to overcome the extraordinary genetic plasticity

and antigenic variability of the virus [5–7]. A number of broadly neutralizing antibodies

(bnAbs) have been isolated from HIV-infected individuals, and detailed information about

their epitopes and other features is providing valuable insights for the design of immunogens

that aim to induce similar antibodies by vaccination [8–12]. At least 5 sites on the trimeric

HIV-1 envelope glycoprotein (Env) spike are susceptible to bnAbs [13–15]. The CD4 bind-

ing site (CD4bs) of glycoprotein 120 (gp120) is of particular interest because it is targeted by

some of the most potent and broadly cross-reactive bnAbs described to date. One anti-

CD4bs bnAb (N6) neutralized up to 98% of a large multi-subtype panel of HIV-1 Env-pseu-

dotyped viruses [16].

The Vaccine Research Center (VRC) of the National Institutes of Health (NIH) has devel-

oped VRC01, a bnAb that binds the HIV-1 CD4bs [17–19] from an HIV-1-infected long-term

non-progressor [20]. In vitro, VRC01 neutralizes the majority of a panel of 190 HIV-1 Env-

pseudotyped viruses across multiple genetic subtypes of the virus [18] and protects against

simian-human immunodeficiency virus (SHIV) infection upon passive administration in non-

human primates (NHPs) [21–24]. The ontogeny, structure, and mode of binding of VRC01

have been well characterized [17,19,20,25–28].

The efficacy of passive transfer of monoclonal antibodies (mAbs) to prevent the establish-

ment of serious viral and other infections has been previously demonstrated. Monthly injec-

tions of palivizumab, a mAb that neutralizes entry of respiratory syncytial virus (RSV), were

found to be safe, well tolerated, and effective in protecting infants with underlying pulmonary

disease from developing clinically significant infection [29]. The use of mAbs has also been

found to be safe and well tolerated when used to treat Clostridium difficile colitis [30] and to

prevent hepatitis C rebound in patients who received liver transplants [31,32].

VRC01 is not autoreactive or polyreactive and lacks antiphospholipid antibody activity

[17]. It has been proven to be safe and well tolerated in single- and 2-dose intravenous (IV)

and subcutaneous (SC) regimens up to 40 mg/kg in both HIV-uninfected and HIV-infected

individuals, with no anti-VRC01 antibodies detected after VRC01 administration [33,34].

The bnAb demonstrated expected pharmacokinetics of similar immunoglobulin G1(IgG1)

mAbs, with a terminal half-life of approximately 15 days [33,35]. Eight HIV-infected, treat-

ment-naïve participants received single IV administrations of VRC01 with excellent tolera-

bility and 1.1 to 1.8 log10 reductions in HIV plasma RNA concentrations [34]. Notably, 2

participants with plasma HIV RNA levels <1,000 copies/ml demonstrated virus suppression

to undetectable levels for over 20 days without the use of ARVs after a single administration

of VRC01.

HVTN 104 is an HIV Vaccine Trials Network (HVTN) phase 1 trial designed to evaluate

and provide detailed characterization of the safety, tolerability, and pharmacokinetics of

repeated doses of VRC01 administered via different dosing schedules, frequencies, and deliv-

ery routes in preparation for evaluation of long-term HIV-1 immunoprophylaxis. The current

study also assessed whether VRC01 in participants’ sera maintained expected immunological

Safety, pharmacokinetics, and functional activities of VRC01 in healthy adults
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activities, including its potency and breadth of neutralization against a panel of tier 2 virus ref-

erence strains, antibody-dependent cellular cytotoxicity (ADCC), phagocytic activity, and

virion capture.

Methods

Trial design

HIV-uninfected, low-risk participants (Clinicaltrials.gov NCT02165267) were randomized

in a 1:1 ratio to receive open-label IV VRC01 in treatment groups T1 or T2 (Fig 1A, and S1

CONSORT Checklist). Participants in treatment group T1 (n = 20) received VRC01 at 40 mg/

kg IV at week 0 and then 20 mg/kg at weeks 4, 8, 12, 16, and 20; participants in treatment

group T2 (n = 20) received VRC01 at 40 mg/kg IV at weeks 0, 8, and 16. Participants who con-

sented to a more intensive visit schedule were assigned to a blinded third group in a 5:1 ratio

to receive SC VRC01 (treatment group T3) or placebo (group 3, P3) injections. Participants in

treatment/placebo group T3/P3 received SC injections of VRC01 (n = 20) every 2 weeks at 5

mg/kg or placebo (n = 4), following an IV loading dose of VRC01 at 40 mg/kg or IV placebo.

Two additional dosing regimens were subsequently added via a protocol modification to eval-

uate potential candidate regimens for future efficacy trial testing. Participants in these latter 2

groups were randomized in a 1:1 ratio to open-label treatment groups T4 or T5 (n = 12 each)

to receive IV infusions of VRC01 at 10 mg/kg and 30 mg/kg, respectively, at weeks 0, 8, and

16. Blood samples were collected before product administration and at 3 days, 2, 4 (except

treatment/placebo group T3/P3), and 8 (treatment groups T2, T4, and T5 only) weeks after

each infusion (or injection) as well as at 1 hour post last infusion, and at 10–16 weeks post last

infusion/injection (Fig 1B). Specifically, trough measurements were taken at 4 weeks (for treat-

ment group T1) or 8 weeks (for treatment groups T2, T4, and T5) following infusions and 2

weeks following SC injections (treatment/placebo group T3/P3), immediately prior to the next

infusion or injection; peak measurements were taken at 1 hour post-infusion for IV groups

(treatment groups T1, T2, T4, and T5) and 3 days after injection for the SC group (treatment/

placebo group T3/P3).

Participants

A total of 88 participants were each enrolled into 1 of the 5 treatment groups in HVTN 104.

Eligibility criteria included being low risk, HIV uninfected, aged 18 to 50 years; weighing

between 53 kg and 115 kg; being deemed healthy based upon medical history, physical exami-

nation, and laboratory tests; having access to a participating HVTN clinical research site for

the planned duration of the study; and demonstrating understanding of the study. Volunteers

who were born female and had reproductive potential were screened for pregnancy and

excluded if pregnant, and were required to agree to use effective contraception for the duration

of the study. The Investigational New Drug (IND) application was sponsored by the National

Institute of Allergy and Infectious Diseases (NIAID) Division of AIDS (DAIDS). The study

was conducted in compliance with the principles of GCP (ICH E6) and according to DAIDS

and HVTN policies and procedures. Clinical research site staff completed enrollment proce-

dures and obtained written informed consent from all participants. The study was approved

by the local institutional review boards at all participating sites: Brigham, Partners Human

Research Committee; Fenway, Fenway Health IRB; Cleveland, University Hospitals, Cleveland

Medical Center IRB; New York Blood Center, New York Blood Center IRB; College of Physi-

cians & Surgeons, Columbia University IRB; Philadelphia, University of Pennsylvania IRB

(Clinicaltrials.gov NCT02165267).

Safety, pharmacokinetics, and functional activities of VRC01 in healthy adults
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Fig 1. HVTN 104 CONSORT flow diagram (A) and specimen collection schedule (B). T1: 20 mg/kg IV q 4 weeks with 40 mg/kg IV

loading; T2: 40 mg/kg IV q 8 weeks; T3 (P3): 5 mg/kg SC q 2 weeks with 40 mg/kg IV loading; T4: 10 mg/kg IV q 8 weeks; T5: 30 mg/kg IV

q 8 weeks. ADCC, antibody-dependent cellular cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; CONSORT, Consolidated

Standards of Reporting Trials; HVTN, HIV Vaccine Trials Network; IV, intravenous; P3, placebo group 3; q, quodque; SC, subcutaneous;

T1, treatment group 1; T2, treatment group 2; T3, treatment group 3; T4, treatment group 4; T5, treatment group 5.

https://doi.org/10.1371/journal.pmed.1002435.g001
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Interventions

VRC01 (VRC-HIVMAB060-00-AB) was formulated at a concentration of 100 (±10) mg/ml

suspended in formulation buffer (25 mM sodium citrate, 50 mM sodium chloride, and 150

mM L-arginine hydrochloride at pH 5.8). The placebo for SC administration was VRC-PLA-

MAB068-00-AB, a sterile buffered aqueous solution of 25 mM sodium citrate, 50 mM sodium

chloride, 150 mM L-arginine hydrochloride, 10% dextran 40 (w/w), and 0.005% polysorbate

80 (w/w) at pH 5.8. The purified product vials and the placebo vials were filled and labeled at

the VRC Vaccine Pilot Plant operated by Leidos Biomedical Research, Inc. (Frederick, MD).

The placebo was matched for color and viscosity to mimic the interventional product to avoid

unintentional unblinding. The placebo for IV infusions was sodium chloride for injection

0.9%, USP, obtained locally by the sites. IV infusions were administered via an IV pump over

60 minutes for the first administration, then over at least 30 minutes for subsequent infusions.

For each SC administration, up to 4 injections of 2 mL of the study product could be adminis-

tered, with abdominal sites being used most frequently.

Outcomes

The prespecified primary clinical objectives of the study were to evaluate the safety and tolerabil-

ity of VRC01 administered intravenously and subcutaneously at multiple time points. Primary

endpoints were local and systemic reactogenicity signs and symptoms, laboratory measures of

safety, adverse events (AEs) and serious AEs (SAEs), early discontinuation of infusions and rea-

son(s) for discontinuation, and early study termination. The primary laboratory objective was to

evaluate the serum levels of VRC01 at week 24, following IV and SC administration in 3 different

regimens, with the primary end points being serum concentrations of VRC01 in each group at

week 24. Secondary objectives included the determination of serum levels of VRC01 over time

and whether anti-idiotypic antibodies could be detected. Exploratory objectives included the

evaluation of in vitro functional humoral activities of VRC01 in serum and mucosal compart-

ments. Specimens from participants were also tested for neutralizing activity against a panel of

circulating and laboratory strains of HIV. Assessment of the binding of VRC01 to multiple Env

proteins as well as the determination of VRC01 concentrations and functional activity in genital,

rectal, and oral secretions are still underway and will be reported in a future manuscript.

Sample size

The sample size of the study was determined to provide reasonable precision in the estimation

of safety event rates and the mean trough drug concentration after the administration series

for each active treatment arm. Specifically, for an active arm of n = 12, there is a 90% chance of

observing at least 1 safety event if the true rate of such an event is 17.5% or more, and there is a

90% chance of observing no events if the true rate is 0.88% or less. For each active arm of

n = 20, there is a 90% chance of observing at least 1 event if the true rate of such an event is

10.9% or more, and there is a 90% chance of observing no events if the true rate is 0.52% or

less. In addition, the chosen sample sizes provide reasonable precision for the estimation of

serum concentrations, assuming a normal distribution for the log-transformed trough levels.

Further discussion of the statistical considerations involved in the selection of sample sizes is

provided in the full protocol (S1 Protocol).

Randomization

The randomization sequence was obtained by computer-generated random numbers and pro-

vided to each HVTN clinical research site through the Statistical Data Monitoring Center

Safety, pharmacokinetics, and functional activities of VRC01 in healthy adults
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(SDMC) of the HVTN via a web-based randomization system. The randomization was con-

ducted in blocks to ensure balance between T1 and T2, between T4 and T5, and within T3/P3

treatment groups. At each institution, the pharmacist with primary responsibility for dispens-

ing study products was charged with maintaining security of the treatment assignments.

Blinding

Participants and site staff were unblinded as to participant treatment assignments among treat-

ment groups T1, T2, T4, and T5, but blinded, except for site pharmacists, as to treatment

assignment (active versus placebo) for treatment/placebo group T3/P3. Study product assign-

ments were accessible to study pharmacists, contract monitors, and SDMC staff, who are

required to know this information in order to ensure proper trial conduct.

Clinical assessments

Participants were monitored for type 1 hypersensitivity reactions, cytokine release syndrome

(CRS), and serum sickness during and post infusion. Reactogenicity assessments were per-

formed at baseline (prior to each study product administration) and following each IV infu-

sion/SC injection at the early assessment time point (within 25–120 minutes) and daily for the

subsequent 3 days. Participants were instructed to record symptoms using a postproduct

symptom log and to contact the site daily during the assessment period. Local injection site

reactions of pain, tenderness, erythema, and induration and systemic symptoms of malaise

and/or fatigue, myalgia, headache, nausea, vomiting, chills, arthralgia, and body temperature

were assessed. Following the first study infusion, safety monitoring included the performance

of abbreviated physical exams and the assessment of AEs and concomitant medications at

each study visit. Clinical laboratory testing included the collection of complete blood count

and chemistry panel at 2 weeks (in all groups), then monthly until month 6 (in treatment and

placebo groups T1 and T3/P3) and at month 2, 3, 4, and 6 (treatment groups T2, T4, and T5)

and urine dipstick/urinalyses at 2 weeks and 3 and 6 months in all groups. Pregnancy testing

was performed in female participants and results confirmed as negative prior to each study

product administration. AEs were reported for the duration of the study. Safety reports were

monitored daily by the HVTN Core for events meeting safety pause criteria and prompt Proto-

col Safety Review Team (PSRT) AE review rules. Weekly safety data reviews by the PSRT led

to teleconferences when indicated, and the independent HVTN Safety Monitoring Board

(SMB) reviewed unblinded safety data thrice yearly. Research sites reported clinical safety data

to the Statistical Center for HIV/AIDS Research & Prevention (SCHARP) at the Fred Hutchin-

son Cancer Research Center. The number and percentage of participants experiencing each

type of reactogenicity sign or symptom was tabulated by maximum severity and treatment

arm and the percentages were displayed graphically by arm. Severity of reactogenicity and AEs

was graded using the DAIDS US NIH Table for Grading the Severity of Adult and Pediatric

Adverse Events, Version 1.0, December, 2004; clarification August, 2009 [36].

Pharmacokinetic analysis

VRC01 concentration in participants’ sera was quantified using the murine anti-VRC01 mAb

5C9 as previously described [33]. Briefly, 5C9 was coated onto Immulon-4HXB microtiter

plates overnight at 4˚C. Plates were washed and then blocked with 10% fetal bovine serum in

phosphate-buffered saline. Duplicate serial 3-fold dilutions covering the range of 1:100–

1:24,300 of the test sample were added and incubated for 2 hours at 37˚C, followed by the addi-

tion of horseradish peroxidase-labeled goat antihuman antibody and TMB substrate. Color

development was stopped by the addition of sulfuric acid, and plates were read within 30
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minutes at 450 nm via the Molecular Devices Paradigm plate reader. Four-parameter logistic

curve regression of a standard curve of VRC01 covering the range from 0.98 to 1,000 ng/ml

was utilized to quantitate sample concentrations based upon the average of sample dilutions

within the range of the assay. Concentration values below the limit of quantification (1.10 μg/

ml) were replaced by 0.55 μg/ml in all calculations.

Neutralization assay

Neutralizing activity was measured against HIV Env-pseudotyped viruses as a function of

reductions in Tat-regulated luciferase (Luc) reporter gene expression in TZM-bl cells as

described [37,38]. Assays for measurements of serum VRC01 concentration were performed

with 3 Env-pseudotyped viruses that exhibit either a highly sensitive tier 1A phenotype (clade

B: MN.3, clade C: MW965.26) or a moderately sensitive tier 2 phenotype that is typical of most

circulating strains (clade B: PVO.4). As these 3 strains are highly sensitive to neutralization by

VRC01, they were selected for optimal sensitivity for the assays quantifying levels of the anti-

body. The 50% inhibitory concentration (IC50) and 80% inhibitory concentration (IC80) of

the clinical lot of VRC01 were determined against each virus. The stock concentration of

VRC01 used in this analysis (0.34 mg/ml) was determined by the same ELISA used for phar-

macokinetic (PK) measurements. The concentration of VRC01 in serum samples was calcu-

lated by multiplying the 50% infectious dose (ID50) (or 80% infectious dose [ID80])

neutralization titer (as a dilution factor) of the serum sample against each isolate by the IC50

(or IC80) of the clinical lot VRC01 (in μg/ml) against the corresponding isolate, in which the

IC50 and IC80 of the clinical lot of VRC01 was the geometric mean value obtained in repeated

assays. Additional assays were performed with a global panel of 11 tier 2 Env-pseudotyped ref-

erence strains [39] to assess the magnitude and breadth of serum neutralizing activity in

greater detail. These latter results were expressed as the serum dilution that resulted in either a

50% or 80% reduction in infectivity (ID50 and ID80 neutralization titers). Assays with this

global panel of tier 2 viruses were performed for 6 participants from treatment group T5

(selected based upon sample availability for all time points) at 4 weeks following each infusion

and at 1 hour and 8 weeks following the last infusion.

ADCC assay

ADCC activity against CEM.NKRCCR5 cells infected with the subtype C HIV-1-infected

CH505 transmitted/founder infectious molecular clone (IMC) (provided by Dr. Ochsenbauer,

University of Alabama–Birmingham) was measured in 96-well plates as a function of reduc-

tions in Renilla Luc reporter gene expression as previously described [40,41]. One positive

control in duplicate and 1 standardized negative control in duplicate were used per plate. The

readout was reduction in Relative Luminescence Units (RLU), referred to as percentage spe-

cific killing. For each sample, percent specific killing was measured in 2 wells at a dilution of

1:25. The CD4bs bnAbs 3BNC117 and CH31 (both generated by Duke Human Vaccine Insti-

tute, Protein Production Facility, Dr. Haynes) and the clinical product VRC01-13-123 were

also tested starting at the concentration of 50 μg/ml. The anti-RSV Synagis mAb (MedIm-

mune, LLC, Gaithersburg, MD) was utilized as a negative control. The analyses of plasma

ADCC responses examined peak percent specific killing (%SK), defined as the maximum %SK

across the 6 dilution levels (“peak %SK”) and averaged over the 2 replicates. A positive

response is defined as an increase in peak percentage over baseline greater than or equal to

10%.
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Antibody-dependent cellular phagocytosis assay

Antibody-dependent cellular phagocytosis (ADCP) was measured as previously described

[42,43], with the following modifications. Briefly, biotinylated ConS gp140CF antigen (Duke

Human Vaccine Institute, Protein Production Facility, Dr. Haynes) [44] was conjugated to

neutravidin fluorescent microspheres and 9×105 microspheres equivalent were mixed with

10 μl of 25 μg/ml mAbs or 25 μg/ml purified plasma immunoglobulin G (IgG); VRC01 repre-

sented approximately 1% of the total purified plasma IgG when quantified by Binding Anti-

body Multiplex Assay (BAMA). After incubation, 50,000 (THP-1) or 500,000 (monocyte) cells

were added to each well and spinoculated. Cells were fixed and phagocytosis was analyzed by

flow cytometry from at least 2,000 cell events per sample. A phagocytic score was determined

by the ratio of samples (percent bead positive multiplied by the MFI bead positive values for

samples) to the no-bead antibody controls. Samples were considered positive if the average

phagocytic score was(1) greater than the 95th percentile of the score for all baseline visits tested

(visit 2) and (2) the follow-up visit response value was�3 times the baseline visit response

value. Data presented are representative of 2 independent experiments. Positive controls

included the VRC01 clinical lot, another VRC01-class CD4bs bnAb, VRC-CH31 [27], and the

Env glycan-specific bnAb 2G12 [45] and negative controls included palivizumab (RSV fusion

protein-specific mAb) [46] and CH65 (H1N1-specific mAb) [47].

Infectious virion capture assay

Infectious virion capture assay (IVCA) was measured as previously described [48,49]. Briefly,

25 μg of total purified IgG was mixed with BaL.LucR stock at a final concentration of 20 ug/

mL to form antibody–virion immune complexes (ICs), which were passed through a protein

G column. The infectivity of the flow-through was measured by a TZM-bl infectivity assay.

The percentage of captured infectious virions (iVirion) was calculated as follows: iVirion =

[(100—flow-through infectivity) / (virus no-Ab infectivity)] × 100%. VRC01 clinical lot,

VRC-CH31 [27], and 2G12 [45] were used as positive controls. Negative controls included

CH65 [47] and palivizumab [46] as well as a no-Ab antibody control. Samples were considered

positive if the average IVCA was(1) greater than the 95th percentile of the score for all baseline

visits tested (visit 2) and (2) follow-up visit response value was�3 times the baseline visit

response value.

Antidrug antibody analysis

Anti-VRC01 antibodies were measured by using the Meso Scale Discovery (MSD) platform

via electro-chemiluminescence as described [33]. Specifically, serial dilutions of serum samples

were incubated with optimized concentrations of biotinylated VRC01 and SULFO-TAG

labeled VRC01 at 37˚C for 2 hours. Samples were transferred to a previously blocked Streptavi-

din-coated MSD plate and incubated for 3 hours at room temperature on a plate shaker. Plates

were washed on an automated plate washer, read-buffer was added, and samples were read

with the MSD-2400 plate reader. Mean signals from replicate wells were evaluated and the

endpoint dilution was defined as the greatest sample dilution with a response above the posi-

tivity threshold for the assay. The positivity threshold is the lower limit of the linear range for

VRC01 in the assay. Serial dilutions of the VRC01-specific monoclonal antibody 5C9 were uti-

lized to establish the linear range of 5C9 (0.01221 to 3.5 μg/mL). Samples were initially tested

in quadruplicate wells with an initial dilution of 1:4. Any samples positive at 1:4 were further

tested with 8 serial 4-fold dilutions (covering a dilution range of 4 to 65,536) and reported as

one of the following: <4; 4; 16; 64; 256; 1,024; 4,096; 16,384; or >65,536.
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Antidrug antibody (ADA) assays were performed on randomly selected baseline samples

from 10 VRC01 participants and on select post-infusion/injection time points from all VRC01

participants. The post-IV infusion time points were week 24 (4 weeks after the final IV infu-

sion in T1; 8 weeks after the final IV infusion in T2, T4, and T5; 2 weeks after the final injection

in T3) and week 32 (12 weeks after the final IV infusion in T1; 16 weeks after the final IV infu-

sion in T2, T4, and T5; and 10 weeks after the final SC injection in T3).

Statistical methods

The modified intent-to-treat (MITT) cohort included all enrolled HIV-uninfected participants

receiving the first infusion and was analyzed according to participants’ assigned treatment.

The per-protocol (PP) cohort included participants who received all assigned treatments

within the expected visit windows. Safety evaluation was done in the MITT cohort. The num-

ber and percentage of participants experiencing each AE or reactogenicity symptom and sign

were analyzed by severity and treatment group. VRC01 levels were evaluated in both the

MITT and PP cohorts. Geometric means and associated 95% confidence intervals of VRC01

levels were based on a t distribution. Functional activities and their correlations with VRC01

levels were evaluated in the PP cohort.

Individual-level non-compartmental pharmacokinetics analysis was performed based on

the ELISA-based serum concentration-time data in the PP cohort. Specifically, VRC01 accu-

mulation was computed based on the ratio of trough drug level measurements and the ratio of

the area under the curve (AUC) within the infusion interval for each participant, after the

third and second infusions, as compared to the first in groups T4 and T5. The estimates were

crude due to the relatively sparse time points. The trough levels were either observed or pre-

dicted as the estimated mean concentration at 8 weeks post infusion based on the fitted indi-

vidual-level log-linear line through the observed concentrations at day 28 and day 56 after the

first infusion, at day 84 and day 112 after the second infusion, and at day 140 and day 168 after

the third and last infusion. AUC was calculated using the linear trapezoidal method. The

expected visit dates were used in these calculations. Lastly, the terminal elimination rate and

half-life were calculated based on the log-linear portion (28 to 84 days after the last infusion) of

the time-concentration curve for each participant in groups T4 and T5. The terminal rate

(slope) was determined by fitting a linear regression line to the log-transformed concentra-

tions over time. The half-life was estimated as ln2 (= 0.693) divided by the terminal slope.

Analyses were performed using SAS and R 3.1.1 [50].

Results

Safety and adherence

Eighty-eight healthy, HIV-uninfected, low-risk participants were enrolled in 6 US clinical

research sites affiliated with the HVTN between September 9, 2014, and July 15, 2015. Partici-

pants were followed for 32 weeks after the initial study infusion, and all participants completed

the trial by February 2016. The median age of enrollees was 27 years (range, 18–50); 52% were

White (non-Hispanic), 25% identified as Black (non-Hispanic), 11% were Hispanic, and 11%

were non-Hispanic people of diverse origins (Table 1). Volunteers received the following: T1,

single IV infusion of 40 mg/kg VRC01 followed by 5 IV infusions of 20 mg/kg VRC01 every 4

weeks; T2, 3 IV infusions of 40 mg/kg VRC01 every 8 weeks; T3 (P3), single IV infusion of 40

mg/kg VRC01 (or placebo) followed by 11 SC injections of 5 mg/kg VRC01 (or placebo) every

2 weeks; T4, 3 IV infusions of 10 mg/kg VRC01 every 8 weeks; and T5, 3 IV infusions of 30

mg/kg VRC01 every 8 weeks (Fig 1).
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In the MITT cohort of 88 participants, 249 IV infusions and 208 SC injections were admin-

istered and were generally well tolerated, with 28% (95% CI: 23%, 34%) of infusions and 14%

(95% CI: 10%, 19%) of injections associated with mild pain or tenderness. Fifty-five percent

(95% CI: 44%, 65%) of VRC01 and 50% (95% CI: 15%, 85%) of placebo recipients experienced

mild pain and/or tenderness at the infusion or injection site sometime during the trial, 1 per-

son (in T3) experienced moderate tenderness following one of the SC injections, and no par-

ticipants reported severe pain and/or tenderness. Very few of the erythema/induration

reactions that occurred met the NIH’s DAIDS criteria for mild reactions (>25–81 cm2); these

included 2 participants following receipt of IV VRC01 (1 in T3 and 1 in T5) and 1 participant

following IV placebo administration (P3). Only 2 met the criteria for moderate reactions (>9

cm in diameter or >81 cm2); these included 1 participant following IV VRC01 (T2) and 1 par-

ticipant following an SC injection (T3) (Fig 2). For 76% of the infusions and injections admin-

istered in the trial, no systemic symptoms were reported. Fifty-six percent (95% CI: 45%, 66%)

of VRC01 and 75% (95% CI: 30%, 95%) of placebo recipients experienced systemic reactogeni-

city symptoms following at least 1 study product administration. The symptoms were all

graded as mild in the placebo recipients, while, of those VRC01 recipients who experienced

any systemic symptoms, the maximum severity was mild in 70%, moderate in 23%, and severe

in 6% (3 participants). In the 3 participants with severe reactogenicity symptoms, 2 had

Table 1. Demographics and study product administration frequencies by group in the MITT cohort.

T1

(N = 20)

T2

(N = 20)

T4

(N = 12)

T5

(N = 12)

T3

(N = 20)

P3

(N = 4)

Total

(N = 88)

Sex at birth

Male 11 (55%) 9 (45%) 6 (50%) 6 (50%) 10 (50%) 2 (50%) 44 (50%)

Female 9 (45%) 11 (55%) 6 (50%) 6 (50%) 10 (50%) 2 (50%) 44 (50%)

Race/ethnicity

White–non-Hispanic 12 (60%) 12 (60%) 7 (58%) 5 (42%) 8 (40%) 2 (50%) 46 (52%)

Black–non-Hispanic 5 (25%) 6 (30%) 2 (17%) 3 (25%) 5 (25%) 1 (25%) 22 (25%)

Hispanic 1 (5%) 1 (5%) 3 (25%) 3 (25%) 2 (10%) 0 10 (11%)

All otherA 2 (10%) 1 (5%) 0 1 (8%) 5 (25%) 1 (25%) 10 (11%)

Age (years)

Median 29.5 27.5 26.5 29.0 23.5 42.0 27.0

Range 18–50 18–50 21–43 24–42 18–49 29–44 18–50

SPA frequencies

Day 0 20(100%) 20(100%) 12 (100%) 12(100%) 20 (100%) 4(100%) 88 (100%)

Day 14 N/A N/A N/A N/A 19 (95%) 4(100%) 23 (96%)

Day 28 19 (95%) N/A N/A N/A 18 (90%) 3 (75%) 40 (91%)

Day 42 N/A N/A N/A N/A 17 (85%) 3 (75%) 20 (83%)

Day 56 18 (90%) 19 (95%) 10 (83%) 9 (75%) 17 (85%) 3 (75%) 76 (86%)

Day 70 N/A N/A N/A N/A 16 (80%) 3 (75%) 19 (79%)

Day 84 16 (80%) N/A N/A N/A 14 (70%) 3 (75%) 33 (75%)

Day 98 N/A N/A N/A N/A 14 (70%) 3 (75%) 17 (71%)

Day 112 15 (75%) 18 (90%) 10 (83%) 10 (83%) 16 (80%) 3 (75%) 72 (82%)

Day 126 N/A N/A N/A N/A 17 (85%) 3 (75%) 20 (83%)

Day 140 17 (85%) N/A N/A N/A 15 (75%) 3 (75%) 35 (80%)

Day 154 N/A N/A N/A N/A 12 (60%) 2 (50%) 14 (58%)

AIncludes Asian-Pacific Islander, Native American, those who selected other, and multiracial individuals.

Abbreviations: MITT, modified intent-to-treat; N/A, nonapplicable; SPA, study product administration.

https://doi.org/10.1371/journal.pmed.1002435.t001
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Fig 2. Frequency of maximum severity of systemic (A) and local (B) reactogenicity symptoms by group in the MITT

cohort. T1: 20 mg/kg IV q 4 weeks with 40 mg/kg IV loading; T2: 40 mg/kg IV q 8 weeks; T3 (P3): 5 mg/kg SC q 2 weeks with 40

mg/kg IV loading; T4: 10 mg/kg IV q 8 weeks; T5: 30 mg/kg IV q 8 weeks. Grading per DAIDS Table for Grading the Severity of

Adult and Pediatric Adverse Events, Version 1.0, December 2004; clarification August 2009 [36]. DAIDS, Division of AIDS; MITT,

modified intent-to-treat; P3, placebo group 3; q, quodque; SC, subcutaneous; T1, treatment group 1; T2, treatment group 2; T3,

treatment group 3; T4, treatment group 4; T5, treatment group 5.

https://doi.org/10.1371/journal.pmed.1002435.g002
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concurrent viral infections, while 1 reported severe malaise lasting 1 day, with no sequelae.

The most commonly reported systemic symptoms were malaise/fatigue, headaches, or

myalgias.

There were 235 AEs occurring in 70 participants (79.5%), with similar rates of occurrence

across all treatment groups. Seventy-four percent of AEs were graded as mild, 22.5% moderate,

and 3.4% severe. There were 9 AEs (3.8% of all AEs, 95% CI: 2%, 7%) occurring in 8 partici-

pants that were deemed product related by the investigators; all were mild and transient, and

those occurring following VRC01 administration included elevations of hepatic transaminases

(aspartate transaminase [AST] and alanine transaminase [ALT] elevation in 1 participant), ele-

vated creatinine, neutropenia, localized injection site pruritus, diarrhea, generalized rash, and

varicella zoster virus reactivation. An AE of chest tightness deemed related to study product

occurred in a placebo recipient. No VRC01-related hypersensitivity reactions or CRS symp-

toms were observed during the study.

Study product was discontinued in 8 participants, including 2 participants who relocated

from study sites, 1 participant who became pregnant, 1 who did not adhere to study visits,

and 1 who was unable to be contacted. One participant developed a mild, generalized, pru-

ritic, maculopapular rash 3 days after receiving the first SC injection of VRC01, which

resolved less than 4 hours after applying inert lotion and was deemed related to the study

product. Another participant had a brief syncopal episode several hours after receiving a

VRC01 infusion, deemed not related to the study product. A third participant had mild, brief

chest tightness following the first SC injection that resolved spontaneously; this was deemed

related to the study product; however, this participant was determined after unblinding to be

a placebo recipient.

Regarding adherence, 35 out of 44 (80%) participants in groups T2, T4, and T5 received all

expected 8-weekly infusions, with 90% complete adherence in T2, 75% in T4, and 83% in T5.

Eleven of 20 participants (55%) received all expected 4-weekly infusions in group T1, while 13

out of 24 (54%) participants received all biweekly injections in group T3/P3 (Table 1). Twenty-

nine participants (33%) missed at least 1 infusion or injection during the study. The most com-

monly cited reasons for missed visits were travel, relocation, or loss to follow-up. The study

product was not administered for 11 study visits, affecting 9 participants in the first 3 groups,

due to the observation of frozen study product at the end of a thawing period of less than 1

hour, leading to revision of pharmacy instructions to request a thawing period of greater than

1 hour, without further abnormalities observed. The 59 participants (57 VRC01 recipients and

2 placebo recipients) who received all study product administrations comprise the PP cohort

and, unless otherwise stated, were the focus of PK and immunological assessments.

Pharmacokinetics

Fig 3 and Table 2 depict the group-level geometric mean serum VRC01 concentrations mea-

sured by ELISA and neutralization assays for participants in the PP cohort. Individual-level

VRC01 concentrations measured by ELISA are shown in S1 Fig for participants in the MITT

(S1 Fig, panel A) and PP (S1 Fig, panel B) cohorts; summaries of group-level serum concentra-

tions by time point are provided in S1 Table (MITT cohort) and S2 Table (PP cohort). Detailed

population pharmacokinetics modeling of serum concentration data in the MITT cohort has

been previously described [35]. In the PP cohort (S2 Table), as measured by ELISA, average

(geometric mean) serum VRC01 levels in T1 3 days after the first (40 mg/kg) and second (20

mg/kg) IV infusion were 422 and 260 μg/ml, respectively. Average peak levels 1 hour after the

last infusion were 796 μg/ml. Average trough levels 28 days post infusion were 69 μg/ml after

the first infusion and 51, 46, 45, 43, and 46 μg/ml after infusions 2–6, respectively. VRC01
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Fig 3. VRC01 serum concentrations over time in the PP cohort, measured by ELISA and TZM-bl assays. ELISA measured anti-idiotypic

binding. TZM-bl measured neutralization against 3 Env-pseudotyped virus strains (MN.3, MW965.26, and PVO.4). Each dot (bar) indicates the

geometric mean (± standard error) concentrations across participants in each group. A double tick on the x-axis denotes a time interval of 3

days, representing visit days 3, 17, 31, 59, 115, and/or 157. Peak concentrations were measured at 1 hour after the last IV infusion in treatment

groups T1, T2, T4, and T5 and 3 days after the first and last SC injections in group T3/P3. Concentrations were truncated at the limit of

quantification of the least sensitive assay. T1: 20 mg/kg IV q 4 weeks with 40 mg/kg IV loading; T2: 40 mg/kg IV q 8 weeks; T3 (P3): 5 mg/kg
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remained detectable (�1.1 μg/ml) in 6/9 (67%) of PP participants 12 weeks after the last IV

infusion in T1.

In T2, average serum VRC01 levels 3 days after each of the 3 bimonthly IV infusions of 40

mg/kg were 441, 414, and 486 μg/ml, respectively. The corresponding day 3 post-infusion lev-

els in T5 (3 bimonthly IV infusions of 30 mg/kg) were 153, 183, and 242 μg/ml and in T4 (3

bimonthly IV infusions of 10 mg/kg) were 84, 87, and 113 μg/ml. Average peak levels 1 hour

after the last infusion were 1,549; 1,177; and 420 μg/ml in T2, T5, and T4, respectively. Average

trough levels 56 days after the first, second, and third IV infusion in T2 were 20, 24, and 27 μg/

ml, respectively. In T5, these trough values were 12, 13, and 16 μg/ml. In T4, these trough val-

ues were 4, 4, and 6 μg/ml. VRC01 remained detectable (�1.1 μg/ml) 16 weeks after the last

infusion in 80%, 38%, and 0% of participants in T2, T5, and T4, respectively. The estimated

mean ± standard deviation (SD) serum half-life of VRC01 in T4 and T5 was 11.4 ± 4.3 days

(median = 11.0 days) and 13.7 ± 6.5 days (median = 10.2 days), respectively. Limited levels of

VRC01 accumulation were observed in T4 and T5 (S3 Table). These results are consistent with

previously reported half-life and drug accumulation estimates for VRC01 [33] and are inde-

pendent of dose levels [35].

In T3, the average serum VRC01 level 3 days after IV infusion of 40 mg/kg was 416 μg/ml.

The 3-day levels after the first and last SC injection of 5 mg/kg were 170 and 60 μg/ml, respec-

tively, the latter concentration being a more accurate reflection of levels achieved by low-dose

SC injection, with minimal contribution from the high-dose IV loading. Similarly, average

trough levels measured 14 days after each subsequent 2-weekly SC injection decreased steadily

from 85 μg/ml after the first injection to 34 μg/ml after the final injection. VRC01 remained

detectable (�1.1 mg/ml) in 60% of participants 10 weeks after the last injection. No VRC01

was detected in the placebo group (P3). The relatively stable pharmacokinetics after multiple

SC q 2 weeks with 40 mg/kg IV loading; T4: 10 mg/kg IV q 8 weeks; T5: 30 mg/kg IV q 8 weeks. Env, HIV-1 envelope glycoprotein; PP, per-

protocol; P3, placebo group 3; q, quodque; SC, subcutaneous; T1, treatment group 1; T2, treatment group 2; T3, treatment group 3; T4,

treatment group 4; T5, treatment group 5.

https://doi.org/10.1371/journal.pmed.1002435.g003

Table 2. Summary of serum concentration levels (μg/ml) in the PP cohort. Shown are geometric mean, 95% CI around the mean, and proportion of

observations above the LLoQ of the ELISA assay.

Group PeakA post last dose Week 24 trough Week 32B

Mean (95% CI) Percent above LLoQC mean (95% CI); n % above LLoQC Mean (95% CI) Percent above LLoQC

T1: 20 mg/ kg IV q 4

weeksD
796 (615, 1,030) 7/7 (100%) 46 (38, 56) 10/10 (100%) 2 (<1.1, 4.4) 6/9 (67%)

T2: 40 mg/kg IV q 8 weeks 1549 (1,306, 1,838) 14/14 (100%) 27 (20, 37) 17/17 (100%) 2.4 (1.5, 3.9) 12/15 (80%)

T4: 10 mg/kg IV q 8 weeks 420 (356, 494) 9/9 (100%) 6 (5, 9) 10/10 (100%) <1.1 (NA) 0/9 (0%)

T5: 30 mg/kg IV q 8 weeks 1,177 (1,033,

1,340)

8/8 (100%) 16 (10, 27) 8/8 (100%) 1.2 (<1.1, 3) 3/8 (38%)

T3: 5 mg/kg SC q 2

weeksD
60 (50, 72) 10/10 (100%) 34 (25, 46) 11/11 (100%) 1.8 (<1.1, 3.9) 6/10 (60%)

P3 placebo <1.1 0/2 (0%) <1.1 0/2 (0%) <1.1 0/2 (0%)

APeak was measured at 1 hour after IV infusion in groups T1, T2, T4, and T5 and 3 days after SC injection in group T3/P3.
BWeek 32 is 12 weeks after the final IV infusion in T1, 16 weeks after the final IV infusion in T2, T4, and T5, and 10 weeks after the final SC injection in T3.
CLLoQ of the assay was 1.1 μg/mL.
DA loading dose of 40 mg/kg VRC01 was administered in T1 and T3.

Abbreviations: LLoQ, lower limit of quantification; PP, per-protocol; P3, placebo group 3; q, quodque; SC, subcutaneous; T1, treatment group 1; T2,

treatment group 2; T3, treatment group 3; T4, treatment group 4; T5, treatment group 5.

https://doi.org/10.1371/journal.pmed.1002435.t002
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Fig 4. Serum neutralizing activity against multiple isolates at 4 weeks after the first, second, and third infusions and at 1 hour and 8 weeks

following the third infusion in 6 T5 participants. (A) MB curves based on TZM-bl neutralization assay results against 11 tier 2 viruses for each of

the 6 individuals in T5. Two individuals who missed their second infusion are indicated by an * at the red line (4 weeks post infusion 2). MB curves

based on results with HIV-1 Env-pseudotyped viruses PVO.4, 398F1, CNE8, X2278, 246-F3, TRO.11, CNE55, CH119, 25710, X1632, and Ce0217.

Response rate on the y-axis is the percent of the 11 viruses neutralized at serum dilutions (Log10 ID50 titer) shown on the x-axis. (B) Serum ID50

neutralization titers against the 11 tier 2 and 2 tier 1 isolates. Shown are the geometric mean and standard error of the mean over the ID50 titers of 4 T5

individuals, excluding the 2 individuals who missed their second infusion. (C) VRC01 serum concentration measured by ELISA and TZM-bl against tier

1 and tier 2 isolates. Shown are the geometric mean and standard error of the mean over the estimated concentration of VRC01 in 4 T5 individuals,

excluding the 2 individuals who missed their second infusion. Individual level neutralization data for participants can be found in S5 Table. Env, HIV-1

envelope glycoprotein; ID50, 50% infectious dose; MB, magnitude-breadth; T5, treatment group 5.

https://doi.org/10.1371/journal.pmed.1002435.g004
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IV and SC dosing suggests the absence of anti-VRC01 antibodies, which was confirmed via

ADA assay in a highly sensitive MSD platform (S4 Table).

Immunologic activity of VRC01 post infusion

To test whether VRC01 retained expected neutralizing activity post infusion, serum samples

from the same time points used for the ELISA-based PK analysis were assayed against 3 Env-

pseudotyped viruses (tier 1A: MN.3, MW965.26; tier 2: PVO.4) in the TZM-bl neutralization

assay. As shown in Fig 3, serum concentrations of VRC01 measured by neutralizing activity

closely approximated the concentrations measured by ELISA, with even the lowest IV dose (10

mg/kg) demonstrating expected magnitude and breadth of neutralizing activity, regardless of

whether neutralization was measured with the tier 1 viruses or the tier 2 virus. Similar results

have been reported previously over a shorter duration and lower frequency of VRC01 adminis-

tration [33].

To examine post-infusion neutralizing activity in greater detail, serum samples from 6 T5

(30 mg/kg) participants obtained 4 weeks after each of the 3 IV infusions every 8 weeks and 1

hour and 8 weeks after the third infusion were assessed for neutralizing activity against a mul-

ticlade panel of 11 additional tier 2-circulating strains of HIV-1 that represent globally circulat-

ing strains and exhibit a range of known sensitivities to VRC01. As shown in Fig 4A, very

potent broadly neutralizing activity was seen at 1 hour post infusion in all 6 participants that

subsequently declined in magnitude and breadth by 4 weeks post infusion. Notably, equivalent

magnitude and breadth of neutralizing activity was seen 1 month post each infusion in the 4

participants who received all 3 infusions and at 4 weeks post first and third infusion in the 2

participants (104–27 and 104–88) who missed the second infusion. Results for these latter 2

participants also illustrate that tier 2 virus-neutralizing activity was detectable against >80% of

the viruses 12 weeks after a single infusion. As expected, the level of activity present at 8 weeks

post third infusion in all 6 participants was intermediate between the levels seen after 4 and 12

weeks. Fig 4B shows that the geometric mean serum neutralization ID50 titer against tier 2

viruses was approximately 1:100 at 4 weeks post each infusion and that this titer was

Table 3. Predicted coverage based on in vitro neutralizing activity of VRC01.

Percent breadthA

Clade B Clade C

IC50 IC80 IC50 IC80

High dose (30 mg/kg)

Midpoint (30 μg/ml) 94 93 84 75

Trough (12 μg/ml) 94 93 80 73

Low dose (10 mg/kg)

Midpoint (16 μg/ml) 94 93 80 73

Trough (4 μg/ml) 93 82 75 58

AShown are the percent of clade B (n = 56) and clade C (n = 200) HIV-1 Env-pseudotyped viruses

neutralized at IC50/IC80 that correspond to the approximated midpoint (4 weeks post infusion) and trough (8

weeks post infusion) levels of VRC01 in participants who received IV infusions of either 30 mg/kg or 10 mg/

kg of product. Values for clade B viruses were obtained by using the CATNAP tool in the Los Alamos

National Laboratory HIV Sequence Database (https://www.hiv.lanl.gov/content/index). Values for the clade

C viruses are from Wagh et al. [51].

Abbreviations: Env, HIV-1 envelope glycoprotein; IC50, 50% inhibitory concentration; IC80, 80% inhibitory

concentration.

https://doi.org/10.1371/journal.pmed.1002435.t003
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Fig 5. VRC01 mAb retains nonneutralizing Fc effector functions postintravenous or postsubcutaneous administration

in the PP cohort. (A) ADCC using the Luciferase-HIV CH0505.LucR T2A.ecto/293T/17 assay, (B) average phagocytosis

score, and (C) average virus capture percentage are presented (average of 2 replicate experiments). Grey squares indicate

baseline (preadministration) time points; red circles represent positive responses at postadministration time points; open blue

triangles represent negative responses at postadministration time points. Horizontal dashed lines represent the positivity cutoff

based on the 95th percentile of all baseline visits. Percent responders and the number of positive responders/total number are
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approximately 1:30 at the trough time point (8 weeks post infusion, measured post final infu-

sion only). S5 Table contains the ID50 titer data for each participant. Fig 4C illustrates the con-

sistency of measuring VRC01 concentration in these 6 T5 participants via ELISA or via TZM-

bl ID50 neutralization assay estimation using either tier 1A or a global panel of tier 2 HIV-1

shown above each treatment group. T1: 20 mg/kg IV q 4 weeks with 40 mg/kg IV loading; T2: 40 mg/kg IV q 8 weeks; T3 (P3): 5

mg/kg SC q 2 weeks with 40 mg/kg IV loading; T4: 10 mg/kg IV q 8 weeks; T5: 30 mg/kg IV q 8 weeks. ADCC, antibody-

dependent cellular cytotoxicity; Fc, fragment crystallizable; mAb, monoclonal antibody; PP, per-protocol; P3, placebo group 3;

q, quodque; SC, subcutaneous; T1, treatment group 1; T2, treatment group 2; T3, treatment group 3; T4, treatment group 4; T5,

treatment group 5.

https://doi.org/10.1371/journal.pmed.1002435.g005

Fig 6. Correlations between functional activities and VRC01 level in the PP cohort (all treatment arms). Lower diagonal squares show scatterplots

of each pair of assay variables. A Lowess smoother line using locally weighted polynomial regression with a span of 2/3 was added. Upper diagonal

squares show rank-based Spearman correlation coefficients for each pair of assay variables. Diagonal squares show histograms of each variable. ADCC,

antibody-dependent cellular cytotoxicity; PP, per-protocol.

https://doi.org/10.1371/journal.pmed.1002435.g006
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Env-pseudoviruses. Overall, these results indicate no loss of expected VRC01 neutralizing

activity after multiple IV infusions over a period of at least 24 weeks. Table 3 shows that mid-

point and trough serum VRC01 levels achieved in this study following each group’s final dose

are consistent with concentrations that are known to neutralize a majority of circulating

strains of clade B and clade C HIV-1 in vitro.

Non-neutralizing antibody effector functions were assessed in serum from study partici-

pants. ADCC, ADCP, and virion capture activities were assessed at 3 days post second admin-

istration. ADCC was assessed and found to be weak or absent (Fig 5A), which agrees with the

low ADCC activity exhibited by non-infused VRC01 in this assay (S2 Fig). Despite this low

ADCC effector function, 100% of serum samples from all 5 treatment groups exhibited ADCP

activity against glycoprotein 140 (gp140)-coated microspheres (Fig 5B) and demonstrated

capacity of the fragment crystallizable (Fc) portion of this mAb to engage monocyte effector

cells. All specimens from PP cohort participants also demonstrated capacity to bind infectious

virions (Fig 5C).

Lastly, the correlations between the functional activities and VRC01 serum concentration

measured at 3 days post the second infusion/injection in the PP cohort (Fig 6) were assessed.

The strongest and most significant correlations were observed between ADCP and virion cap-

ture activities (Spearman ρ = 0.78) and between both ADCP and virus capture and VRC01

serum concentration (ρ = 0.72 and 0.76, respectively). Statistically significant but weaker corre-

lations were observed between ADCC activity and ADCP activities (ρ = 0.29), ADCC and

virion capture (ρ = 0.38), and ADCC and VRC01 serum concentration (ρ = 0.36).

Discussion

The current study (HVTN 104) has expanded the safety, pharmacokinetic, and functional

understanding of the bnAb VRC01 by evaluating multiple doses administered either intrave-

nously or subcutaneously over a 16–22-week period of time in a total of 88 HIV-uninfected

participants (including 4 who were randomized to placebo injections), 57 of whom completed

all scheduled doses. Participants were followed for 32 weeks after their first VRC01 administra-

tion. No SAEs, dose-limiting toxicities, nor evidence for anti-VRC01 antibodies were

observed. Serum VRC01 levels were detected through 12 weeks after final administration in all

participants who received all scheduled doses. Mean trough concentrations after 3 IV infusions

of 30 mg/kg and 10 mg/kg doses administered every 8 weeks were above levels known to neu-

tralize a majority of circulating strains in vitro (IC50 > 5 μg/ml). Post-infusion/injection

serum VRC01 retained expected functional activity including virus neutralization, ADCC,

phagocytosis, and virion capture.

The study evaluated 5 different dosing regimens that were selected based upon previous

clinical trials [33,34] as well as prior NHP challenge studies demonstrating efficacy in prevent-

ing SHIV acquisition [21–24] and aimed to achieve trough VRC01 levels well above the range

shown to neutralize the majority of clade B and clade C HIV-1 strains in vitro [18]. The rele-

vance of the current findings are that, although the use of anti-HIV antibodies for immuno-

prophylaxis has been studied in NHP models for more than 20 years [52–59], recent interest

in their use for HIV prevention in humans has increased after studies identified multiple

bnAbs that exhibit potent activity against a majority of HIV-1 strains [13–16]. Such bnAbs,

alone or in combination, could provide a novel approach to anti-HIV-1 immunoprophylaxis,

and insights from clinical trials of bnAbs could inform the development of immunogens and

effective HIV-1 vaccines. VRC01 is among a class of potent bnAbs targeting the functionally

conserved CD4bs region of HIV. VRC01 was previously shown to be safe, well tolerated, and

non-immunogenic in a small dose-escalation trial in 28 HIV-uninfected participants who
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received 1 (20 mg/kg) or 2 IV infusions 4 weeks apart of either 5, 20, or 40 mg/kg or 2 SC injec-

tions of 5 mg/kg [33]. A similar trial was conducted in 23 HIV-infected participants [34].

HVTN 104 found that VRC01 administered subcutaneously and in different IV doses was

safe and well tolerated, with no dose-associated toxicities. There were a limited number of

local site reactions, but patterns of AEs did not differ significantly by route or frequency of

product administration or the dose used. Peak serum VRC01 concentrations 1 hour after the

final IV administration demonstrated dose proportionality, with the highest levels achieved

following the largest dose (40 mg/kg every 8 weeks) and lowest levels after the lowest IV dosing

regimen (10 mg/kg every 8 weeks) (Table 2). The trough following the final VRC01 adminis-

tration for each dosing regimen ranged from 6 to 46 μg/ml (trough based on the interval

between previous administrations). By quantitative assays to measure auto-antibodies and

assessment of VRC01 concentrations and neutralization functionality over time, there was no

evidence of the development of anti-idiotypic or other autoantibodies, nor was there signifi-

cant drug accumulation after repeated dosing.

This trial also examined 2 doses of VRC01 (10mg/kg and 30 mg/kg) administered over a

longer interval between IV infusions (8 weeks) that informed the design of 2 proof-of-concept

efficacy trials (www.ampstudy.org, ampstudy.org.za)[60]. Of note, the range of VRC01 serum

levels of participants receiving either the 10 mg/kg or the 30 mg/kg IV regimens every 8 weeks

overlapped for more than 60% of the time (Fig 3). The evaluation of 11 SC injections received

every 2 weeks is also relevant for the design of studies of post-exposure prophylaxis for infants

born to HIV-infected mothers who were not virologically suppressed on ARV therapy [61].

Serum VRC01 concentrations remained at or above 30 μg/ml when 5 mg/kg was administered

subcutaneously every 2 weeks through the final trough time point, tailing to 1.8 μg/ml by the

final assessment point at week 32.

The viral neutralization activity based on the IC50 potency of trough levels 24 weeks after

IV infusion with either 10 or 30 mg/kg of VRC01 suggests that, of HIV Env-pseudotyped virus

strains evaluated, 93%–94% of tier 2 clade B strains and 75%–84% of tier 2 clade C strains

would be neutralized; while coverage based on a more stringent IC80 potency suggests that

82%–93% of clade B strains and 58%–75% of clade C strains would be neutralized at trough

time points (Table 3). Actual midpoint and trough levels measured were similar to what would

be predicted based on in vitro neutralization assays.

The VRC01 levels present in the serum samples tested in this study demonstrated an ability

to avidly capture virions in vitro and to mediate ADCP, suggesting functionalities in addition

to neutralization, although limited ADCC activity was seen. In addition, the serum VRC01 lev-

els measured by ELISA were found to be correlated with ADCP and virion capture activities

but less with ADCC activity. This lack of correlation with ADCC activity and the overall low

ADCC activity exhibited by VRC01 compared to other CD4bs bnAbs (S2 Fig) suggests differ-

ences in the ability of VRC01 to bind gp140 microspheres or cell surface Env versus infectious

virus and differences in affinity of VRC01 binding to Fc receptor (FcR) expressed on the cell

surface.

The current study has reported an estimated terminal half-life of about 15 days for different

dose levels of VRC01, whether administered intravenously or subcutaneously. Prior studies of

the pharmacokinetics of VRC01 in HIV-uninfected adults have compared multiple doses (5,

20, and 40 mg/kg) given intravenously at 0 and 28 days and a low dose (5 mg/kg) given subcu-

taneously at 0 and 28 days [33]. In those studies, IV infusion of VRC01 resulted in high peak

serum levels (up to 1,000 μg/ml) that fell rapidly over a few days, with further slow decline over

several weeks from catabolism. However, use of smaller SC doses that allowed for a slow diffu-

sion of IgG into the vasculature and lymphatics resulted in stable higher trough IgG serum lev-

els, which remained constant between consecutive SC IgG infusions [33]. Both routes of
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administration displayed similar half-lives. It is possible that trough levels rather than peak lev-

els are of greatest importance for sufficient prevention of HIV acquisition when administering

passive immunotherapy. In HVTN 104, the trough level found after 5 mg/kg SC dosing every

2 weeks was 34 μg/ml and ranged from 6 to 27 μg/ml when VRC01 was administered intrave-

nously every 8 weeks at 10 mg/kg or 40 mg/kg, respectively. It is conceivable that smaller doses

given more frequently via the SC route could have the potential to provide sufficient and con-

sistent trough levels as compared to higher IV doses given less frequently. However, in HVTN

104, almost half of the missed visits occurred among those assigned to receive injections every

2 weeks; hence, the development of bnAbs with longer half-lives is clearly warranted. Recent

studies have suggested that through modification of the Fc portion of the mAb to better bind

the neonatal Fc receptor, bnAbs may be able to have extended half-lives [21,62,63], potentially

allowing for product administration as infrequently as every 6 months.

The less than optimal adherence to the study schedule amongst those assigned to receive

injections every 2 weeks or infusions every 4 weeks helped inform the selection of the every-

8-week dosing frequency for the 2 Antibody Mediated Prevention (AMP) efficacy trials (www.

ampstudy.org, ampstudy.org.za). Other bnAbs that have greater potency and breadth are

under investigation [13–16] and could be more effective than VRC01 for protection against

HIV. Combining bnAbs for prophylaxis could also expand breadth and help prevent viral

escape by inhibiting HIV-1 at multiple sites of vulnerability via complementary mechanisms

of action [51,64]. In addition, the development of synergistic bispecific antibodies [65,66] that

could target more than 1 epitope is another intriguing approach. Finally, if the AMP studies

demonstrate that VRC01 can protect against HIV-1 acquisition when administered either at

10 mg/kg or 30 mg/kg every 8 weeks, then antibody concentrations achieved in HVTN 104

may be able to be used to inform the assessment of the immune responses to new vaccine can-

didates to prevent HIV transmission.

The limitations of this study include the relative small sample size describing 5 different

VRC01 administration regimens, missing data from participants who were not completely

adherent to the study visit schedule, and limitations in the interpretation of the clinical signifi-

cance of the in vitro findings. The pharmacokinetic data from this study must be interpreted

cautiously, because the study windows were narrow and the PP cohort only included values

from participants who received all of their study infusions, providing PK estimates that may

not be generalizable to ongoing efficacy studies of VRC01 that have wider windows and will

evaluate a larger number of infusions and longer periods of product exposure. Because of con-

cerns early in this trial about potential particulate matter that turned out to be frozen product

(resulting in longer thawing periods), some VRC01 infusions and injections were not adminis-

tered, resulting in collecting less data than had initially been planned. The study had relatively

sparse PK sampling immediately after infusion or injection, limiting inferences that can be

drawn regarding early distribution of VRC01 in the blood. Studies of VRC01 concentrations

in mucosal secretions and tissues are currently underway and should help further understand-

ing of the penetration of systemically administered VRC01 in different body compartments.

Conclusions

VRC01 administered intravenously or subcutaneously was safe and well tolerated. Product-

related AEs were uncommon and generally transient and mild. After a 40 mg/kg IV loading

dose, VRC01 levels were maintained at>30 μg/ml for several weeks through either IV or SC

administration every 2 weeks. Trough levels of 4, 16, or 27 μg/ml were maintained with IV

infusions of 10, 30, and 40 mg/kg every 8 weeks, respectively. The trough data support the

rationale that VRC01 administered every 8 weeks intravenously should be evaluated in studies
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of HIV-1 immunoprophylaxis. The first efficacy trials of VRC01 are underway in the AMP

studies (Clinicaltrials.gov NCT02716675 and NCT02568215, and www.ampstudy.org, amp-

study.org.za), evaluating anti-HIV-1 activity among 4,200 at-risk men and transgender people

who have sex with men in North and South America and at-risk young women in sub-Saharan

Africa. The findings should help inform the development of both passive and active immuni-

zation strategies to prevent HIV-1 infection. The trough levels seen after SC administered

VRC01 every 2 weeks suggest that this approach may be particularly appropriate for immuno-

prophylaxis for infants born to HIV-infected mothers. Studies are being developed to test this

hypothesis. In summary, HVTN 104 found that VRC01 delivered via IV or SC routes was safe

and well tolerated, and results from in vitro assays suggest that the levels achieved in clinical

specimens displayed a wide range of functional anti-HIV activities.
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