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Abstract

Background: Metabolomics has the promise to transform the area of personalized medicine with the rapid
development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use,
analytic tools that are broadly accessible to the biological community need to be developed. While technology
used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access
platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving
histories and enabling the sharing workflows among scientists.

Results: SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are
available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality
control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques
(hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis
methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test),
advanced classification methods (random forest, support vector machines), and advanced variable selection tools
(least absolute shrinkage and selection operator LASSO and Elastic Net).

Conclusions: SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data
analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of
utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables
future data integration for metabolomics studies with other omics data.

Background
Metabolomics is the large-scale identification and quan-
tification of small molecules across multiple biological
samples [1]. These small molecules, predominantly less
than 1500 Da, include primary and secondary metabo-
lites, hormones, and metabolic intermediates. Their
analyses can reveal the chemical processes and cellular
physiology occurring within a biological sample at a
given time [2].
The vast diversity of biochemical reactions and experi-

mental goals requires the implementation of different
technology in metabolic profiling. Unlike gene expres-
sion profiling, there is no single platform or technology

that can capture the entire metabolome. Like expression
profiling, the standard workflow can be divided into
sample preparation, data acquisition, data preprocessing,
and data analysis. Platform development is a focus of
metabolomics research [3] with platform specific sample
preparation and data acquisition. Each of technology has
unique properties and different methods that are used to
convert raw data into potential metabolites [4]. Thus,
data preprocessing is platform specific. The feature
identification, or “peak picking” is particular to the
technological properties of each platform, and has its
own literature [5, 6].
Targeted metabolite quantification is common in

everything from drug tests [7, 8] and cholesterol meas-
urement [9] to industrial scale safety testing [10]. The
success of such measurements of metabolism has led to
interest in unbiased assays of the metabolome. Untar-
geted metabolomics is a relatively new field, and there
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are few tools developed for the analysis of these data.
Features are the starting point for MetaboAnalyst, a
standalone, and state of the art, tool developed at the
University of Alberta for data pre-processing and statis-
tical analysis [11]. MetaboAnalyst has a user-friendly
interface with a set of point and click menu options that
guide the user through the analysis.
Galaxy is a web based platform with an intuitive inter-

face [12]. Galaxy is an ecosystem for the development of
analytical tools. As such, it is not focused on any single
technology but rather enables analysis across a broad
range of technological platforms. The platform is open
source, allowing developers to share code and work in
concert. Workflows can be created using a user-friendly
workflow visualization tool and executed by scientists
without a programming background. Workflows can be
saved and shared, allowing reproducible data analysis.
Each step is documented in the history. Histories can be
saved, shared, and converted into new workflows. Using
the Galaxy platform, developers can make tools access-
ible to a broad audience. Scientists can customize and
integrate different tools from a variety of programmers
into a single workflow. Galaxy can be installed on a ser-
ver or on a local machine, and it can take advantage of a
cluster environments.
Recently, two Galaxy toolkits for metabolomics data

analysis have been developed. Galaxy-M was introduced
for peak-picking/feature identification and data pre-
processing [13]. Workflow4Metabolomics is a frame-
work that focuses on feature annotation and includes
analysis of variance (ANOVA), principal component
analysis (PCA), and hierarchical clustering analysis [14].
SECIMTools (SouthEast Center for Integrated Metabo-
lomics) are designed to complement both efforts.
SECIMTools start with features and the suite enables
comprehensive quality assessment and sophisticated
statistical analysis. The data format for input to individ-
ual tools is similar among all three Galaxy platforms.
There is some overlap among the tools. For example sin-
gle factor fixed ANOVA analysis and PCA are included
in all three. However, the emphasis of each suite is dis-
tinct and SECIMTools includes several new QC tools as
well as variable selection tools not available in their
toolkits, or in Galaxy.
While some of the components in SECIMTools are fo-

cused solely on metabolomics data, others can be applied
more broadly to omics data. Most of the QC and statis-
tical tools are new to the Galaxy platform. New function-
ality includes: blank feature filtering [15]; retention time
diagnostics; run order evaluation; advanced imputation
methods [16–19]; LASSO [20]; Elastic Net [21]; random
forests [22]; support vector machine [23–25]; and Modu-
lated Modularity Clustering [26]. To connect the tools
into workflows utilities and graphing tools have been

developed. The current set of tools is a balance between
having familiar existing tools reprogrammed in the
SECIMTools color palate and to enable a very straightfor-
ward workflow construction, with the addition of new to
Galaxy features (e.g. Elastic Net) and new metabolomics
specific QC tools. SECIMTools is an integrated suite for
sophisticated statistical analysis of metabolomics data.
Many of the tools can be used more broadly for analysis
of omics data.

Implementation
SECIMTools has standardized tool inputs and outputs
and allows scientists to develop of novel workflows.
SECIMTools is accompanied by a comprehensive user
guide (Additional file 1), a set of workflow examples and
example datasets. The user guide provides detailed de-
scriptions of expected inputs, functionality, and outputs.
Additional file 2 has examples to illustrate graphical out-
put from each tool. SECIMTools is open source, the
code, is available on GitHub using the MIT license [27].
SECIMTools consists of four main types of tools: data

pre-processing, quality control (QC), data analysis, and
utilities (Fig. 1). The individual tools are organized using
a modular structure. The input data, data processing
interface, visualization manager and outputs are stan-
dardized (Fig. 2). Metabolomics Workbench is an online
repository for metabolomics data as is Metabolites. Both
of these databases use a file format with samples as col-
umns and features as rows. The files available in both
public repositories can be imported into Galaxy and
used in SECIMTools. Scientists can also upload their
own data into Galaxy and Galaxy can be installed on a
local workstation. SECIMTools uses two main input
files. The experimental data are represented in a data
table in which samples are in columns and metabolo-
mics features (or genes) are in rows. The table should
contain feature identifiers that are unique for each row.
This format is referred to as a “wide formatted file” or
“wide format dataset”. Missing values can be imputed or
features with missing values can be removed. The design
file is used to relate sample data with sample character-
istics (e.g. treatment group, batch ID, sample weight, run
order). In the Metabolomics workbench [28] the design
file is referred to as the meta-data file. Readers are re-
ferred to the user guide (Additional file 1) for more de-
tails on the input formats.

Individual tool structure
Data pre-processing
Metabolomics specific data pre-processing tools Blank
Feature Filtering (BFF) Flags and Threshold Based Flags
are included in SECIMTools. The Threshold Based Flags
tool identifies features below a user specified threshold
in more than 50% of samples within a given group. The
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Fig. 2 Individual tool structure: The input data have the same standard format, and a common visualization manager which generates outputs in
a standard format

Fig. 1 The SECIMTools structure: The outside cloud represents the Galaxy environment. The inside circle represents the set of SECIMTools. A
common data handling and input/output architecture for all the SECIMTools, enables the development of analytical workflows without continual
data manipulation and reformatting. Most tools expects two files describing the data, one giving information about each sample and the
experimental design (design formatted file), and one giving the estimated feature intensities for each sample (wide formatted files). Galaxy
expects files in a tab separated format (tsv). Tools that convert to tsv format from other common formats exist as a part of Galaxy. The output
files are result files (e.g. -values from an ANOVA) and figures (e.g. Scatterplots). The result tables are returned to the user in a Galaxy compatible
tsv format. Plots have a common color scheme with a customizable color palate that will apply the same coloring scheme to all results. A
detailed description of the data formats is given in the user guide
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Blank Feature Filtering (BFF) tool calculates a limit of
detection based upon values for a feature [15].
Additional omics data pre-processing tools are: Data

Normalization and Re-Scaling, Imputation, and Log/G-
log Transformation. The Log/G-log Transformation tool
was developed to perform a log or a generalized log (g-
log) [29] transformation with different bases (2, 10 and
natural). The Data Normalization and Re-Scaling tool
includes the sample mean, median and sum of all
features as scaling factors used to divide by the selected
sample specific factor. Data centering, autoscaling,
Pareto scaling, range scaling, level scaling, and variable
stability (VAST) scaling are available [30]. Normaliza-
tions for raw NMR data such as probabilistic quotient
normalization (PQN) are available in other tools such as
Galaxy-M [13].
The Imputation tool includes the use of the group

mean or group median in place of any missing values as
well as K-nearest neighbor (KNN) [16, 17] and stochas-
tic imputation [19]. KNN imputation method is an ad-
vanced, sensitive and robust method [16, 17]. KNN is
deterministic and produces the same result for a given
dataset. In contrast, stochastic imputation provides an
estimate based on a model that includes random noise
and will produce a different result every time the tool is
invoked. The parameters of the distribution (Poisson or
Normal) are estimated from the available data, and miss-
ing values are drawn from a distribution where the pa-
rameters match the values estimated from the non-
missing data. The KNN python code is distributed under
the GNU license [17]. KNN should be considered care-
fully before use [31, 32].

Quality control (QC) analysis tools
Quality control (QC) is an important and often over-
looked part of an analysis workflow. The QC tools in
the suite can be used not only for metabolomics but
also for other types of -omics data. The tools pre-
sented here are not in place of the quality metrics
that are used during data acquisition and initial pro-
cessing to generate quantified features. The focus of
the QC tools is to identify potential feature artefacts,
and/or aberrant samples.
SECIMTools includes several unique QC elements as

well as standard QC approaches. Inspection and remov-
ing (filtering) of features and samples is a critical part of
any “omics” data QC analysis. Each QC tool creates a set
of 0/1 indicator variables (flags) that the user can inter-
pret using graphical output and determine which sam-
ples or features (if any) to filter from further analysis.
The decision to filter features from further analysis is left
to the discretion of the individual scientist and each tool
outputs indicators that may or may not be used for
downstream filtering. A separate tool that allows filtering

of features and samples is part of the utilities suite. Sam-
ples can also be filtered using design files.
Metabolomics specific QC tools are Retention Time (RT)

Flags and Run Order Regression (ROR). The Retention
Time (RT) Flags tool is specific for mass spectroscopy
(MS) analysis. Variation in retention time can indicate
technical problems in the injection, issues in feature iden-
tification (e.g. alignment) and chromatographic artifacts.
The Retention Time (RT) tool uses two criteria: the
tool identifies features with the largest coefficients of
variation by percentile using a threshold (10% by de-
fault) and features that exceed an absolute threshold.
Flags are saved and output. AN example of the Re-
tention Time tool graphic output is provided in the
Additional file 2: Figure S1.
Run Order Regression (ROR) is designed to investigate

potential problems due to carry over effects. In other
words, intensities of a feature should not be associated
with run order. The ROR tool uses linear regression to
evaluate the relationship between feature intensity and
the run order. In a feature with no carry over effects
there should be no association between the run order
and the estimated feature intensity, a slope of 0. Features
are identified if there is an indication that regression
slope is different from 0 for nominal type I error α = 0.
05 or α = 0.01. Regression plots and a summary file with
flags are produced. The example of the Run Order
Regression tool graphic output is provided in the
Additional file 2: Figure S2.
General QC tools that can be applied for any types of

–omics data are: Bland-Altman (BA), Coefficient of
Variation (CV) Flags, Distribution of Features across
Samples, Distribution of Features within Samples, Mag-
nitude Difference, and Standardized Euclidean Distance
(SED).
The Bland-Altman (BA) plot [33] provides a visualization

of pairwise agreement. Initially developed to compare mea-
surements of the same samples, it has been adapted to
compare replicates of the same type in microarray data
[34] and for RNA-seq [35]. The difference between features
from two samples is the value on the y-axis and the mean
of the features is the value on the x-axis. A “good” Bland-
Altman plot will have a cigar shape centered on a differ-
ence of 0. The tool can be used on a set of technical reps
for pooled samples, where no differences among the pools
are expected. Not all metabolomics experiments include
such pools. Features with low repeatability will appear as
distinct points separate from the main cluster of points.
The Bland-Altman (BA) tool deploys a novel approach
to automatically identify problematic features. The BA
tool quantifies the relationship between the difference
and the mean using a linear regression fit. A “good”
plot has with the expectation of a slope equal to 0. The
estimated slope, is reported on the plots. The features
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with large standardized residuals and leverage statistics
(DFFITS and Cook’s D) [36–38] are identified. On the
plots, those features identified by at least one of the
three methods are colored in red. In the absence of
technical replicates for pooled samples, comparisons
within a group can be made, and corresponding
unstable features identified. The examples of the Bland-
Altman tool graphic outputs are provided in the
Additional file 2: Figures S3 and S4.
The Coefficient of Variation (CV) is a common

method for identification of measurements with par-
ticularly large variance relative to the mean [39].
Large CV values can indicate problems with specific
features. By default, the Coefficient of Variation (CV)
Flags tool identifies the top X% of features, with the
user specifying X (default value is 10%). The example
of the Coefficient of Variation tool graphic output is
provided in the Additional file 2: Figure S5.
Within a treatment group feature intensities may be

expected to be the same order of magnitude. The
Magnitude Difference Flags tool counts the number of
digits prior to the decimal point for each group and
generates a report. The goal is to identify the differ-
ences in the order of magnitude. Large differences in
magnitude for many features for an individual sample
may be caused by a variety of technical problems.
Large differences across samples for a feature may in-
dicate and chromatographic artifact. The output for
the tool includes a count of the number of order of
magnitude differences for features with the most
differences for a user defined number of features
(default is 50). For each sample, the number of
features with an order of magnitude difference is
counted and a plot of all the samples is generated.
Output files for each feature and each sample are
created. The example of the Magnitude Difference
Flags tool graphic output is provided in the
Additional file 2: Figure S6.
Distribution of Features across Samples provides box-

plots for 50 random features. Density plots for samples
that show the distribution across features are also
displayed. Distribution of Features within Samples
provides the distribution boxplots and density plots
for all features within each sample. The two tools are
designed to identify consistent anomalies. The example of
the Distribution of Features across Samples tool graphic
output is provided in the Additional file 2: Figure S7. The
examples of the Distribution of Features within Samples
tool graphic outputs are provided in the Additional file 2:
Figures S8 and S9.
The Standardized Euclidean Distance (SED) tool can

be used to compare samples within a group. The group
center is calculated as the mean of each feature across
samples in the group.

SED x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i

xi−yið Þ2
σ2i

s

Where xi is the value of feature i and yi is the mean of
feature i across all samples within the group [25]. The
SED per feature is then normalized using the estimated
variance of feature i. SED can also be calculated for each
pairwise comparison within the group. In this case, in-
stead of using yi as the mean of feature i it is another
sample within the group. By examining the distance be-
tween the sample and the group center or other mem-
bers of the group, it is possible to identify potential
problematic samples. If the SED exceeds a threshold,
then the sample is identified as a possible outlier. The
distances between samples are presented in terms of box
and whiskers plots. The examples of the Standardized
Euclidean Distance tool graphic outputs are provided in
the Additional file 2: Figures S10 and S11.
The SED relies solely on geometric distance and ig-

nores the dependency structure between features. The
Mahalanobis distance (MD) is a more general distance
which can incorporate the correlation structure. MD re-
lies on the estimate of the inverse of the variance-
covariance matrix [40].
The Mahalanobis distance (MD) is a more general dis-

tance which can incorporate the correlation structure.
MD relies on the estimate of the inverse of the variance-
covariance matrix ∑−1 [29]. For sample vector x and y
where each vector has n elements the Mahalanobis
distance has the form:

MD x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x−yð ÞT
X−1

x−yð Þ
q

:

When the dependency between metabolites is ignored
the inverse variance-covariance matrix ∑−1 simplifies to
diagonal matrix with diagonal values 1=σ2

i for i = 1, 2, …,
n and the MD simplifies to the SED. Since the inverse
variance-covariance matrix used in MD is not defined
when the number of features is bigger than the number
or samples a penalized inverse variance-covariance
matrix was used instead. The penalized version includes
a common regularization [41] that is well described in
the literature [42]. The details are provided in Additional
file 3 for completeness. PMD provides output in the
same format as SED. An example of the Penalized
Mahalanobis Distance tool graphic outputs are provided
in the Additional file 2: Figures S12 and S13.

Data analysis tools
The data analysis tools include the following: Single Group
t-test, t-test, Group Comparison by Permutation, Analysis of
Variance (ANOVA), Kruskal-Wallis, Hierarchical Cluster,
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LASSO/Elastic Net, Modulated Modularity Clustering
(MMC), Multiple Testing Adjustment (MTA), Partial Least
Squares Discriminant Analysis (PLS-DA), Principal Com-
ponent Analysis (PCA), Linear Discriminant Analysis
(LDA), Random Forest (RF), and Support Vector Machine
(SVM).
The Single Group t-Test, t-test, Group Comparison by

Permutation, Kruskal-Wallis, and Analysis of Variance
(ANOVA) tools compare the means of the data in differ-
ent group(s) feature by feature [43, 44]. SECIMTools im-
plements a fully fixed ANOVA framework that allows
covariates in the model, an additional feature compared
to many of the existing Galaxy ANOVA tools. All pair-
wise contrasts are calculated and for each contrast
-values are produced. The model is based on the stand-
ard assumptions of normal and identically distributed
random errors. There is an option to include an inter-
action effect between variables if more than one categor-
ical variable is present. Output includes raw -values for
each contrast, model diagnostics and volcano plots for
each contrast (log base 10 -value against the difference
between the group means) [45]. The examples of the
Analysis of Variance tool graphic outputs are provided
in the Additional file 2: Figures S14 and S15. The Single
group t-test compares mean feature values against a fixed
value (default,zero) and can be used to test differences
between paired samples. The output includes raw
-values, flags, and volcano plots. The t-test compares
two groups with both paired and unpaired options.
Paired samples are identified in the design file. Output
includes raw -values, flags, and volcano plots. The exam-
ples of the Single Group t-test and t-test tools graphic
outputs are provided in the Additional file 2: Figures S26
and S27. Group Comparison by Permutation calcu-
lates a t-statistic as in the t-test tool but determines
the probability under the null of the t-statistic using
permutation of the data. Output includes raw -values,
flags, and volcano plots. Kruskal-Wallis is a non-
parametric test [44] and takes the same input files as
ANOVA, and provides -values, significance flags, and
volcano plots as output files. The example of the
graphic outputs for the Kruskal-Wallis tool are pro-
vided in the Additional file 2: Figure S28.
The Multiple Testing Adjustment (MTA) takes as input

the raw -values. Three adjustment methods based on the
false discovery rate (FDR) have been implemented;
Bonferroni [46], Benjamini/Hochberg (BH) [47] and
Benjamini/Yekutieli (BY) [48]. The tool produces a table
containing columns with the -values for each adjustment
method used.
Hierarchical Clustering [49, 50] is implemented using

a centroid distance. The method relies on the assump-
tion and properties of the multivariate normal distribu-
tion (MVN). This tool outputs a hierarchical clustering

heatmap plot. The examples of the Hierarchical
Clustering tool plot outputs are provided in the
Additional file 2: Figures S16 and S17.
The Modulated Modularity Clustering (MMC) tool vi-

sualizes the latent structure in the data from weighted
graphs [26, 51]. The method relies on the assumption
and properties of the multivariate normal distribution
(MVN). Pairwise correlations are calculated for all pos-
sible metabolite pairs. Then the correlations are sorted
to identify groups of correlated metabolites. This tool is
a wrapper for the python code developed by the algo-
rithm developers [26] and made available via the GNU
license. Output from the tool includes an estimate of the
number of distinct correlated clusters and the metabo-
lites in each cluster as well as unsorted, sorted, and
sorted and smoothed dependency heatmaps. The ex-
ample of the Modulated Modularity Clustering tool plot
output is provided in the Additional file 2: Figure S18.
The Principal Component Analysis (PCA) calculates

principal components (PCs) [49, 52]. The method relies
on the assumption and properties of the multivariate
normal distribution (MVN). All the PCs are orthogonal
and are placed in the descending order based on the
variability in the data that each PC explains. Multiple
algorithms can be used to conduct PCA, SECIMTools
utilizes the singular value decomposition (SVD) ap-
proach [53]. Visual summaries are provided in the
form of 2D and 3D scatter plots using the first three
principal components. The samples in the scatter
plots are colored based on the group provided in the
design file. The examples of the Principal Component
Analysis tool plot outputs are provided in the
Additional file 2: Figures S19 and S20.
The Partial Least Squares Discriminant Analysis (PLS-

DA) is a tool based on partial least squares regression
and binary response [54]. The method is applied to two
groups. The tool produces 2D plots for comparison be-
tween the treatment groups and a file containing scores
and weights of the model. Pairwise 2D plots are pro-
duced by default for the first two components only.
Additional plots can be made using the plotting tools.
Cross validation and double cross validation options are
available to determine the best number of components
for sample sizes larger than 100. The example of the
Partial Least Squares Discriminant Analysis tool plot
output is provided in the Additional file 2: Figure S21.
The Linear Discriminant Analysis (LDA) tool is a su-

pervised method based on the underlying assumption of
normality for each group under consideration and the
same variance-covariance structure between the groups
[49, 55]. The goal of the LDA is to find a linear partition
(hyperplane) in multidimensional subspace that maxi-
mizes the separation between the groups under consid-
eration. The dimension of the considered subspace has
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to be smaller than the number of groups. The method is
well described in the literature [49, 42]. Cross validation
and double cross validation options are available to de-
termine the best number of components used for the
subspace for sample sizes larger than 100. Visual
summaries are provided pairwise for each two dimen-
sions where the points for each treatment group are
colored differently. The example of the Linear Dis-
criminant Analysis tool graphic output is provided in
the Additional file 2: Figure S22.
The Random Forest (RF) tool uses the random forest

algorithm [22], to assign an importance score to every
feature and rank order them. The importance score is a
measure of how differentiating that feature is in a classi-
fication task, where the classes are the treatments group
or any other feature that indicates the class labels. In the
former case, the tool can be used to identify the most
differentiating factors between treatment groups, where
it provides variable importance plot (VIF) for the most
important features. Unlike PCA, where the transformed
features are rank-ordered by the level variance they con-
tain, rank-ordering of the features in RF is directly mea-
sured by a “usefulness” score in an ensemble of decision
trees. The ensemble is created by randomly choosing
both the samples and features used to create and train a
decision tree. This random ensemble approach has
proven to be a useful regularizer, hedge against over fit-
ting when sample sizes are adequate but is not a panacea
[56]. The example of the Random Forest tool plot out-
put is provided in the Additional file 2: Figure S23.
The Support Vector Machine (SVM) tool is a machine

learning classifier for high dimensional data [23–25].
Using a set of labeled data (the label identifies which
class the sample belongs to) as a training set, the SVM
algorithm builds a model that can be used to predict the
class label for the new and unclassified samples. The

method performance depends on the sample size and
the effect size [57]. Since high-dimensional data points
are likely not separable by a linear hyperplane, SVM al-
lows one to use non-linear kernel functions to separate
the data points better in a non-linear space. To use the
SVM tool, user must have both a training dataset with
known categories in the design file and a target dataset.
The tool then predicts the category for each sample in
the target set. It also reports the accuracy of the trained
model on the original training dataset. Cross validation
and double cross validation options are available to de-
termine the value of the regularization parameter for
sample sizes larger than 100.
The LASSO/Elastic Net tool performs a selection of

features that are different for each pairwise comparison
between the groups in the grouping variable specified by
the user. The selection is performed based on the logis-
tic regression with Elastic Net shrinkage [21]. LASSO
which stands for least absolute shrinkage and selection
operator [20] is a special case of Elastic Net and is also
included in the tool. The selection method is defined by
shrinkage parameter α (defined within [0;1] range) speci-
fied by the user (default value α = 0.5). The value α = 1
corresponds to the least number of variables and the
strictest selection criterion (LASSO), while α = 0 corre-
sponds only to the estimated shrinkage without variable
selection (ridge regression) [41]. The best subset of vari-
ables for a given α are selected. The examples of the
LASSO/Elastic Net tool graphic outputs are provided in
the Additional file 2: Figures S24 and S25. This tool is a
wrapper for the R code developed by the inventors of
the statistical approach and distributed under the GNU
license [58].
The summary comparison between ANOVA, Random

Forrest and LASSO/Elastic Net methods is provided in
Figs. 3.

Fig. 3 Summary of ANOVA, Random Forrest and LASSO/Elastic Net methods with their advantages and disadvantages
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Utilities
Utilities are the auxiliary tools designed to facilitate users
handling and processing of data. They are used to
merge, filter, summarize and plot. The utilities included
on the suite are Compare Flags, Compound Identifica-
tion Merge Flags, Modify Design File, Mass to Charge
Ratio/Retention Time (m/z/RT) Matching, Remove Se-
lected Features or Samples, Scatter Plot 2D, Scatter Plot
3D and Summary of the Flags.
The Compare Flags tool compares two flags from a

single flag files and produces a comparison table. When
used with output from classification methods such as
LDA, this tool can be used to produce the confusion
matrix. Flags from multiple files can by compared after
they are merged using the Merge Flags tool.
The Compounds Identification tool was designed to

link a user’s library of compounds with the features
identified in the analysis. The matching between the
compound names and dataset feature ID-s is performed
by comparing m/z and RT values within an error win-
dow (user specified). The users of this tool must have
their own library of compound names and correspond-
ing m/z and RT values in the wide format to be able to
use the Compounds Identification tool.
The Remove Selected Features or Samples, Merge

Flags, and Summary of the Flags tools were designed
to work with the output files containing binary indi-
cators for each feature. The Merge flags and Summary
of the flags tools combine binary indicator files and
produce summaries of indicators. The Remove Se-
lected Features or Samples tool creates a new wide
dataset where user identified column from the flag
file is used to remove features. The Modify Design
File tool allows the user to remove samples from the
design file and to create a subset of the design file.
The output is a new design file where specified
group(s) of samples are removed.
The Scatter Plot 2D and Scatter Plot 3D tools were de-

signed for plotting. The user has an option to select a
coloring scheme using a grouping variable from the de-
sign file and a customizable color palate.
The Mass to Charge Ratio/Retention Time (m/z/RT)

Matching can be used to match features from different
parameter settings of peak calling programs. Each fea-
ture is characterized by mass to charge ratio and reten-
tion time (m/z and RT). Features are linked using mass
to charge ratio and retention time for each feature, with
a small interval window (user defined). Input files must
contain at least three columns: mass to charge ratio
(m/z), retention time (RT) and identifier (feature ID).
The example of the Mass to Charge Ratio/Retention
Time (m/z/RT) Matching tool graphic summaries out-
puts are provided in the Additional file 2: Figures S29,
S30 and S31.

Results
Workflows and tool availability
The Galaxy platform provides a framework for the easy
construction and implementation of workflows. The user
has complete flexibility to choose the tools to be in-
cluded into the workflow and the order of their execu-
tion. All the intermediate steps of the workflow remain
in the history, allowing the user to track every step and
potential discrepancies in the data. Some examples of
the workflows are presented in Figs. 4 and 5.

Installation
Installation of SECIMTools and their dependencies into
Galaxy instances can be done in multiple ways depending
on the local environment and the dependency resolution
mechanism used in an instance. In general, any galaxy tool
consists of the interface definition written in xml and the
underlying tools and tool dependencies needed to run a
Biocomputing analysis. SECIMTools can be installed ei-
ther from the Galaxy Toolshed [41] or manually with the
tool dependencies handled either automatically via one of
the tool dependency resolvers or via a manual installation.
Most SECIMTools consist of a tool definition xml file that
describes the tool interface in the galaxy, a wrapper script
written in python that drives the analysis, and underlying
python module (Python 2.7 compatible) or third party
executable dependencies that encompass the low-level
functionality required for the analysis.
To simplify the installation we packaged all tools as a

python package available from https://pypi.python.org/
pypi/secimtools. The python package can be used with a
modern tool dependency resolution approach of using
environmental modules, docker, or the ‘conda’ package
manager [59] via the bioconda project [60]. For instance,
a Conda package manager has been available in Galaxy
since the 16.01 release and is recommended for all in-
stances running 16.07 release or newer code. We will
provide a ‘secimtools’ conda package as a reference tool
dependency (pending). For an older, developmental, or
customized instance of Galaxy, which may either require
rapid tool updates, preclude the use of a Conda package
manager, or use a different resolver, a clone of the
SECIMTools master branch from the SECIMTools Git
repository [27] and a resolver configuration [61]; or a
manual installation of specified dependencies into the
Galaxy virtual environment; or via the environment
modules mechanism are required. A list of all the spe-
cific libraries and functions used by SECIMTools is
available by examining the dependencies for each tool.

Conclusions
Untargeted metabolomics is a relatively new field. Ana-
lysis development has been primarily in self-contained
web or Java-based standalone toolkits [11, 62]. The
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Galaxy platform has a modular structure and has been
successfully used to bring bioinformatics to individual
scientists with minimal computational background.
Galaxy was designed to run via web browser providing a
user-friendly, cross-platform setting that can be config-
ured on global servers available in large universities [63]
or locally oriented for small research groups and individ-
ual researchers. SECIMTools suite takes advantage of

the Galaxy interface and its code is available to the com-
munity under the terms of MIT license on GitHub [27].
Source code for the Galaxy is open and supported by

the developer community, which means it is constantly
improved and enhanced. Modern research is characterized
by its interdisciplinary nature and cooperation among sci-
entists. Data analysis may be shared across groups and
performed by people with different backgrounds at

Fig. 5 Workflow for ANOVA and Variable Selection. This workflow compares α = 0 Ridge Regression, α = 0.5 Elastic Net and α = 1 for LASSO to
results from an ANOVA

Fig. 4 An example of data preprocessing and Quality Control for MS data. The workflow begins with the Blank Feature Filtering, and removal of
the features below the level of detection. The Standardized Euclidian Distance, the Principal Component Analysis, the Run Order Regression, The
Magnitude Difference, the Coefficient of Variation, and the Retention Time tools are used for the diagnostics at the next step. Some tools require
log transformed data for the input, and the Log/G-Log Transformation tool is included into the workflow to address that. Multiple summary flags
are produced by each tool. The tool’s flags are merged and summarized with the option to delete flagged features
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different locations. Reproducibility has recently become a
focus in the scientific community and is a crucial compo-
nent of the success of the scientific method [64–66]. Gal-
axy addresses reproducibility requirements by allowing
tracking histories and allowing scientists to create repro-
ducible workflows. Histories and workflows are easily
shared amongst users, facilitating collaborative research.
SECIMTools compliments other metabolomics toolk-

its developed for Galaxy [13, 14]. The sophisticated QC
and statistical techniques are currently not widely avail-
able to scientists working with metabolomics data with-
out in depth knowledge of programming. Many of the
modern statistical approaches in SECIMTools are not
available in the stand-alone metabolomics analysis plat-
forms, and have not previously been incorporated in the
Galaxy platform. Having a potential wider applicability
to other omics data and other novel tools that enhance
metabolomics analysis (RT, BFF) is a distinct advantage
of SECIMTools. The choice of Galaxy will allow for fu-
ture integration of metabolomics analysis with other
omics analysis and brings metabolomics forward.

Additional files

Additional file 1: User Guide. (PDF 3648 kb)

Additional file 2: Example input and output. (DOCX 3818 kb)

Additional file 3: Mahalanobis Distance calculation. (PDF 102 kb)
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