

CORRECTION

Correction: The Human *Myotrophin* Variant Attenuates MicroRNA-Let-7 Binding Ability but Not Risk of Left Ventricular Hypertrophy in Human Essential Hypertension

PLOS ONE Staff

Dr. Zhidong Ye is not included in the author byline. He should be listed as the seventh author and affiliated with the Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China. The contributions of this author are as follows: Performed the experiments, analyzed the data, and contributed reagents/materials/analysis tools.

The incorrect version of $\underline{\text{Fig 3}}$ appears in the paper. Please see the correct version of $\underline{\text{Fig 3}}$ here. The publisher apologizes for the error.

Citation: PLOS ONE Staff (2016) Correction: The Human *Myotrophin* Variant Attenuates MicroRNA-Let-7 Binding Ability but Not Risk of Left Ventricular Hypertrophy in Human Essential Hypertension. PLoS ONE 11(1): e0146735. doi:10.1371/journal. pone.0146735

Published: January 5, 2016

Copyright: © 2016 PLOS ONE Staff. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Fig 3. Let-7c suppresses the protein expression level of myotrophin *in vitro* cellular model. Cardiomyocytes were infected with PremiR miRNA precursor or Anti-miR miRNA inhibitor of let-7c (A and B). Myotrophin expression was analyzed by immunoblot 48 h after infection. *p < 0.05.

doi:10.1371/journal.pone.0146735.g001

Reference

 Wang Y, Chen J, Song W, Wang Y, Chen Y, Nie Y, et al. (2015) The Human Myotrophin Variant Attenuates MicroRNA-Let-7 Binding Ability but Not Risk of Left Ventricular Hypertrophy in Human Essential Hypertension. PLoS ONE 10(8): e0135526. doi: <u>10.1371/journal.pone.0135526</u> PMID: <u>26274321</u>