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Advantages of deep learning 
with convolutional neural network 
in detecting disc displacement 
of the temporomandibular joint 
in magnetic resonance imaging
Yeon‑Hee Lee1,5*, Jong Hyun Won2, Seunghyeon Kim3, Q.‑Schick Auh1 & 
Yung‑Kyun Noh2,4,5*

This study investigated the usefulness of deep learning‑based automatic detection of anterior disc 
displacement (ADD) from magnetic resonance imaging (MRI) of patients with temporomandibular 
joint disorder (TMD). Sagittal MRI images of 2520 TMJs were collected from 861 men and 399 women 
(average age 37.33 ± 18.83 years). A deep learning algorithm with a convolutional neural network was 
developed. Data augmentation and the Adam optimizer were applied to reduce the risk of overfitting 
the deep‑learning model. The prediction performances were compared between the models and 
human experts based on areas under the curve (AUCs). The fine‑tuning model showed excellent 
prediction performance (AUC = 0.8775) and acceptable accuracy (approximately 77%). Comparing the 
AUC values of the from‑scratch (0.8269) and freeze models (0.5858) showed lower performances of the 
other models compared to the fine‑tuning model. In Grad‑CAM visualizations, the fine‑tuning scheme 
focused more on the TMJ disc when judging ADD, and the sparsity was higher than that of the from‑
scratch scheme (84.69% vs. 55.61%, p < 0.05). The three fine‑tuned ensemble models using different 
data augmentation techniques showed a prediction accuracy of 83%. Moreover, the AUC values of 
ADD were higher when patients with TMD were divided by age (0.8549–0.9275) and sex (male: 0.8483, 
female: 0.9276). While the accuracy of the ensemble model was higher than that of human experts, 
the difference was not significant (p = 0.1987–0.0671). Learning from pre‑trained weights allowed the 
fine‑tuning model to outperform the from‑scratch model. Another benefit of the fine‑tuning model 
for diagnosing ADD of TMJ in Grad‑CAM analysis was the deactivation of unwanted gradient values 
to provide clearer visualizations compared to the from‑scratch model. The Grad‑CAM visualizations 
also agreed with the model learned through important features in the joint disc area. The accuracy 
was further improved by an ensemble of three fine‑tuning models using diversified data. The main 
benefits of this model were the higher specificity compared to human experts, which may be useful for 
preventing true negative cases, and the maintenance of its prediction accuracy across sexes and ages, 
suggesting a generalized prediction.

Temporomandibular disorder (TMD) is an umbrella term for pain and dysfunction of the temporomandibular 
joint (TMJ) and masticatory  muscles1. TMJ noise, limited mouth-opening, tinnitus, ear pain, neck and shoulder 
pain, and headaches may be accompanied by TMD pain in the TMJ and masticatory muscle areas. TMD is highly 
common, with 39% of the world’s population showing at least one sign or symptom of TMD and 25% having 
pain associated with  TMD2. The prevalence of TMD in women is more than double that in  men3. Unlike other 
joint diseases, the prevalence of which increase with age, TMD has a high prevalence in children and adolescents, 
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often occurring in young people aged 20–45  years4,5. TMD has a multifactorial etiology including contributing 
factors such as physical, psychological, genetic, and hormonal factors. The common causes of TMD include 
microtrauma such as clenching and bruising, macrotrauma, mental challenges including anxiety and depression, 
sleep problems, and  malnutrition6. The complex clinical features of TMD require a comprehensive approach.

The TMJ is one of the most complex joints in humans. The TMJ is bilateral and comprises the articular 
surfaces of the mandibular condyle and temporal bone. The TMJ discs between the bones, located between the 
superior and inferior joint spaces, have a high collagen content for durability and rigidity, which helps the man-
dible to rotate and translate and serves as a cushion for occlusal  force7. TMJ displacement, also known as internal 
disc derangement, is an abnormal relationship among the articular disc, mandibular condyle, and mandibular 
 fossa8. While the most frequent displacement of the disc is anterior to the mandibular condyle, it can also occur 
 posteriorly9. Therefore, research has mainly been conducted on anterior disc displacement (ADD) of the TMJ. 
Uniquely, TMJ discs do not have direct nerve distribution or vascularization owing to their complex anatomic 
features. Alternatively, retrodiscal tissue, which is the posterior attachment of the TMJ disc, is characterized by 
various blood vessels and nerves that are critical for pathophysiological  processes7. However, changes in the 
position or shape of the TMJ disc can further promote TMD development.

Individuals with TMJ disc displacement can be symptomatic or asymptomatic. TMJ disc displacement may 
only cause TMJ noises such as clicking or popping, whereas pain may cause limitations in mouth opening or 
restricted mandible  movement10. A previous MRI study observed ADD in 33–41% of asymptomatic  joints11. 
The stomatognathic system adapts to changes in the position of the TMJ disc and undergoes adaptive remod-
eling, resulting in a painless, asymptomatic  state9. However, long-term, TMJ disc displacement ultimately leads 
to TMJ inflammatory response or progression to osteoarthritis. The condylar cartilage is vulnerable to damage 
caused by wear and tear over time. The bony cartilage of the TMJ disc is damaged and can no longer cushion. 
If not properly treated, subjective symptoms not only worsen but also adversely affect the surrounding tissue, 
ultimately progressing to  osteoarthritis7,12. These pathological changes in disc displacement and articular cartilage 
are irreversible, chronic TMD, and may cause sociopsychological problems in patients with TMD.

MRI is considered the gold standard for evaluating the TMJ soft tissue and disc-condylar relationship, as 
well as determining disc displacement. The standard protocol for the MRI diagnosis of ADD uses the superior 
position of the condyle (12 o’clock position) as the reference point for the posterior band of the disc. Wilkes first 
proposed a commonly used classification of TMJ disc  displacement13. This classification describes disc displace-
ment and osseous changes in hard tissues, in which MRI is required to confirm these findings. Rammelsberg 
described an alternative technique for determining TMJ disc displacement using the functional anterior superior 
portion of the condyle as a reference position for a normal disc  position14. However, the evaluation of an MR 
image is generally subjective and the interpretation can change depending on the interpreter’s experience and 
MR sequences. Observers can also make different diagnoses for the same patient, depending on the examination 
conditions and imaging modality. Thus, it is essential to establish a standardized MRI outcome for an appropriate 
diagnosis to ensure the diagnosis repeatability and  reproducibility15. Additionally, MRI interpretations still fall 
short of showing a clear association with reported symptoms. Moreover, the correlations between clinical signs 
and symptoms and imaging findings in all TMD patient groups remain  controversial16.

Machine learning is a subfield of artificial intelligence in which, instead of explicitly programming instruc-
tions, a machine learns to perform a task through mathematical analysis of a given set of data. Deep learning 
using convolutional neural networks (CNNs), a subclass of machine learning, is the most advanced artificial 
intelligence technology, and is increasingly used to automatically detect pathological features in medical  images17. 
CNN algorithms must be trained using large amounts of annotated imaging data to develop predictive models 
to automatically detect specific pathological  images18. Deep learning has several applications in dentistry. Our 
previous study automatically estimated age groups based on CNN and first molar images from panoramic 
 radiography19. A previous study used the area under the curve (AUC) value to automatically detect TMJ osteoar-
thritis using cone-beam computed tomography (CBCT) was 0.8620. A CNN study of TMJ disc evaluation before 
orthodontic treatment reported an AUC ≥ 0.8621. However, no artificial intelligence models are yet available to 
automatically detect ADD in MR images of patients with TMD. We hypothesized that deep learning models 
with good data augmentation might outperform human clinicians in MRI readings when using the same data, 
which will benefit TMD diagnostics.

Methods
The research protocol for this study was reviewed to ensure its compliance with the principles of the Declaration 
of Helsinki and approved by the Institutional Review Board of Kyung Hee University Dental Hospital in Seoul, 
South Korea (KHD IRB, IRB No-KH-DT21022). Informed consent was obtained from all participants.

Study population. Figure 1 shows a flowchart of the present study. The study population comprised 1260 
patients with TMD (861 men and 399 women, mean age = 37.33 ± 18.83 years), who visited Kyung Hee Univer-
sity Dental Hospital with TMD between January 2017 and July 2021. A TMD specialist with > 7 years of experi-
ence in TMD diagnosed TMD based on the criteria for TMD Axis  I22.

The exclusion criteria were serious previous injuries such as unstable multiple traumas and facial fractures; 
systemic diseases potentially affecting the TMJ such as rheumatoid disease and systemic osteoarthritis; psycho-
logical problems; pregnancy; and psychiatric or neurological disorders. Cases in which the TMJ discs were not 
observed on MRI and where neither signal strength nor contour could define the structure as a TMJ disc were 
also excluded.

Among a total of 1260 patients (2520 TMJs), 2051 bilateral MRI images with proton density from 1026 
patients (81.4%) who visited the hospital between January 2017 and January 2021 comprised the training set, 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11352  | https://doi.org/10.1038/s41598-022-15231-5

www.nature.com/scientificreports/

while 468 images from 234 patients (18.6%) who visited the hospital between February 2021 and July 2021 
comprised the evaluation dataset. When training the CNN models, 20% of the training set was used for training 
validation (Fig. 1).

MRI image acquisition. All patients underwent MRI examinations of the bilateral TMJ. The MR images 
were obtained using a 3.0T MRI system (Genesis Signa; GE Medical System) with a 6 cm × 8 cm diameter sur-
face coil. All scans involved sagittal oblique sections of ≤ 3 mm, a 15 cm field of view, and a 256 × 224 matrix. 
T2-weighted images (T2WIs) were obtained using a 2,650/82 TR/TE sequence; T1-weighted images (T1WIs) 
were obtained using a 650/14 TR/TE sequence; and proton density images were obtained using a 2,650/82 TR/
TE sequence. Spin-echo sagittal MR images were obtained using an axial localizer.

Accurate determination of TMJ disc displacement. The left and right sides of one patient with bilat-
eral TMJs and ADD were assessed separately. The MRI image observation indicators for the TMJ in patients 
with TMD  were23:

 (i) Non-ADD: the rear band of the articular disc was located at the 12 o’clock position relative to the condylar 
apex in the closed position. The combination of the rear belt and double-plate area was located between 
10 and 12 o’clock.

Figure 1.  Study flowchart.
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 (ii) ADD: The back strap of the articular disc moved forward beyond the normal range in the closed-mouth 
position (Fig. 2).

The ADD was determined for the right and left sides of each patient. All T1-weighted images (T1WIs), 
T2WIs, and proton density images were referenced to determine the presence or absence of ADD to be learned 
by the deep learning model. All MRI investigations and interpretations were conducted by two investigators 
with > 7 years of experience in head and neck MRI. Internal consistency was represented using Cronbach’s α, 
and test–retest reliability was represented using intraclass correlation coefficient (ICC). The ICC was 0.91. Any 
disagreement in the MRI readings for ADD was resolved through discussion until a consensus was reached. 
Posterior disc displacement was not observed in this study.

Interpretation of ADD with CNN models. As the performance of the CNN model was better when 
targeting proton density MR images compared to T2WIs and T1WIs, we used proton density MR images. The 
input MR images were pre-processed as follows: First, they were resized to 224 × 224 and then converted to 
three-channel images, with each channel having the same grayscale image. As a result, the dimensions of the 
inputs were set to 224 × 224 × 3.

The pre-trained three-dimensional VGG16 models were used for image classification. VGG16 is a CNN archi-
tecture that won the 2014 ILSVR competition and has been evaluated as one of the best vision model architectures 
to date. VGG16 succeeded in training a network that was twice as deep as the existing AlexNet 8-layers model, 
reducing the error rate by  half24. VGG16 comprises a convolutional layer, three fully connected layers, a 3 × 3 
convolutional filter, stride, padding 1, 2 × 2 max pooling, and a rectified linear unit (ReLU)25. We selected this 
model for its simple structure because our interest was not only to achieve high AUC scores but also to analyze 
the learned features and activation maps.

Three different machine learning schemes were tested. The first, “fine-tuning,” trained all layers of the pre-
trained model from the very beginning. The second scheme, “from scratch,” trained a model without applying 
pre-trained weights. The last, “freeze,” trained the last layer of the pre-trained model only, preventing the training 
of the other layers. The evaluation metrics were the AUC and  accuracy26. For the accuracy, specificity and sensi-
tivity of the models were obtained from the optimal operating value earned by the Youden’s index calculated in 
the validation  set27. All three schemes applied the same data augmentation techniques to 32 samples per batch. 
The fine-tuning and from-scratch models used a learning rate of  1e-4 with 15 and 30 epochs, respectively, while 
the freeze model used a rate of  5e-4 with 150 epochs. All three schemes used the Adam optimizer.

Ensemble model with data augmentation. An additional ensemble method was used to test the 
improvement in the prediction performance of the single fine-tuned model. Three different data augmentation 
techniques were applied to train the three fine-tuning models, and the predicted outputs were averaged (Fig. 3). 
This “data” ensemble was derived from the idea that using diversified data helps improve generalization perfor-
mance more than applying a single CNN  model28.

Visual analysis to specify significant regions using Grad‑CAM. For a deeper understanding of the 
learned features of the fine-tuning and from-scratch models, we analyzed their Grad-CAM images. We com-
pared the same sample images that both models correctly predicted as positive images. Grad-CAM shows the 
most significant region for prediction by obtaining the importance weight αc

k , which is equal to the averaged 

Figure 2.  Magnetic resonance imaging (MRI) features of non-anterior disc displacement (non-ADD) (A) and 
ADD (B). Non-ADD: the rear band of the articular disc is located at 12 o’clock relative to the condylar apex at 
the closed position. ADD: the rear band of the articular disc moves forward beyond the normal range in the 
closed-mouth position.
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value ∂y
c

∂Ak  where yc is the logit of class c and Ak is the k-th activation map. The Grad-CAM heat map Lc is then 
obtained as follows:

Because the heat map Lc visualizes the significant pixels that change yc the most, applying the heat map to 
the input image shows the most important region for prediction. For visualization, we present some of the best 
Grad-CAM images.

Validation of MRI findings by human experts. Finally, we compared the prediction results of the 
CNN models to those of two human experts who evaluated the same test set. Under the same conditions as the 
CNN models, given only proton density MR images of the TMJ of patients with TMD, the experts diagnosed 
non-ADD or ADD. The accuracy, specificity, and sensitivity were compared between CNN models and human 
experts. The human experts were blinded to each other and relied on their knowledge and experience in reading 
the MR images. Their ICC was 0.84.

Statistical methods. Descriptive statistics are reported as means ± standard deviation or numbers with 
percentages, as appropriate. To analyze the distribution of discontinuous data, we used χ2 tests for equality of 
proportions, Fisher’s exact tests, and Bonferroni tests. All statistical analyses were performed using IBM SPSS 
Statistics for Windows, Version 22.0 (IBM Corp., Armonk, NY, USA), R Version 4.0.2 (R Foundation for Sta-
tistical Computing, Vienna, Austria), and Python Version 3.9.7 (Python Software Foundation, DE, USA). A 
receiver operating characteristic (ROC) curve was plotted and the AUC was calculated for each model, in which 
AUC = 0.5 indicated no discrimination, 0.6 ≥ AUC > 0.5 indicated poor discrimination, 0.7 ≥ AUC > 0.6 indicated 
acceptable discrimination, 0.8 ≥ AUC > 0.7 indicated excellent discrimination, and AUC > 0.9 indicated out-
standing  discrimination29. McNemar’s test was used to compare the prediction accuracies of the CNN models to 
those of the human experts. Statistical significance was set at a two-tailed p-value of < 0.05.

Institutional review board. The research protocol was reviewed in compliance with the Helsinki Declara-
tion and approved by the Institutional Review Board of Kyung Hee University Dental Hospital in Seoul, South 
Korea (IRB No-KH-DT21022). Informed consent was obtained from all participants.

Informed consent. Informed consent was obtained from all the subjects involved in the study.

Results
Prediction results of the three learning schemes. Figure 4 shows the results of image classification 
using three different learning strategies. Each row represents a ROC curve with its AUC score and confusion 
matrix for the best classification of each model. The best prediction performance was observed in the fine-
tuned model (AUC = 0.8755). The accuracy of this model when using the operating point in validation set was 
acceptable (approximately 77%). For this cutoff value, most errors were false negatives. The second-best model 
was from-scratch, which showed an AUC of approximately 0.83 and 75% accuracy. As this model was trained 
without pre-trained weights; that is, using only training image data itself, the high AUC confirmed that the 
discrimination of ADD from non-ADD was captured in the CNN features. However, a more accurate separa-
tion was obtained using pre-trained learning weights, boosting the AUC score by approximately 4%. The model 
trained using the freeze scheme exhibited the lowest AUC (AUC = 0.59).

Lc = ReLU
(

∑

k
ackA

k
)

.

Figure 3.  Architecture of the convolutional neural network (CNN) ensemble model. Three VGG16 models are 
learned using different data augmentation techniques. Base: randomly flip vertical and affine transform image. 
Contrast changes: randomly changed contrast values and applied histogram equalizations. Brightness changes: 
randomly changed image brightness. CNN, convolutional neural net.
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Grad‑CAM visualization analysis of the fine‑tuning and from‑scratch models. To understand 
and analyze the learned features of the fine-tuning and from-scratch models, we performed Grad-CAM analysis 
of the last channel using the test set images. Figure 5 shows the results of the three samples from the test set, 
where both models were correctly predicted as positive. Although the from-scratch model showed acceptable 
gradient scores according to the regions of interest (ROIs), the heatmaps of the fine-tuning model more consist-
ently highlighted more concentrated areas of the TMJ ADD across the three images. Comparison of the fine-
tuning model outputs showed that the from-scratch model tended to provide small gradient scores (0.2–0.4) to 
the uninteresting areas.

Because the Grad-CAM feature of important weight αk
c  was obtained by averaging the activation map Ak 

element-wise, we further investigated the last channel activation maps of both models to understand the dif-
ferences between their gradient heatmaps. We selected one image and used it to print 100 activation maps (out 
of 512) from the last channels of both models. The results are shown in Fig. 6. The first and second rows show 
the results of the from-scratch and fine-tuning models, respectively. Compared to the from-scratch model, the 
fine-tuning model learned a sparser representation in each activation map. When measuring the mean sparsity 
across all 512 maps, the zero area of each activation map of the fine-tuning model was ≈ 85% (using only ≈ 15% 
of the gradient signals). However, the sparsity of the from-scratch model was ≈ 56%, which was directly related 
to the gradient values of the uninteresting areas.

Applying the ensemble method and prediction results. An ensemble of three fine-tuning models 
using different data augmentation techniques was performed to examine how much accuracy would increase 
with a greater variety of data. The ensemble model receives three prediction probabilities and averages the prob-
abilities to output the final predictions. We then compared the prediction results of the single fine-tuning model 

Figure 4.  Classification results of three convolutional neural network (CNN) models using different learning 
strategies. Fine-tuning (blue), from-scratch (green), and freeze (orange). The fine-tuning model outperforms the 
others (area under the curve [AUC] = 0.8755).
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Figure 5.  Grad-CAM visualizations of the fine-tuning (A) and from-scratch (B) models. The same sample 
images are displayed column-wise. The images from the fine-tuning model are more focused on the regions of 
interest (ROIs).

Figure 6.  Last channel activation maps of both models using the same image. The first and second rows show 
the results of the from-scratch and fine-tuning models, respectively. Highly sparse activations are learned in the 
fine-tuning model, which provides a clearer Grad-CAM image.
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and ensemble model with those of two human experts. Table 1 summarizes the prediction results, and Fig. 7 
shows the confusion matrices for each tester.

First, the ensemble certainly improved the model’s prediction accuracy from 0.7692 to 0.8312. The sensitivity 
significantly improved from 65 to 82%. On the other hand, the specificity values were dropped from 94 to 85%. 
More importantly, the two models’ outputs did not differ statistically significantly from the experts’ discrimina-
tion results. Although the fine-tuning model had lower sensitivity than two experts, the test accuracy was not 
significantly different from that of the expert. However, regarding the specificity, the models showed a > 10% 
higher ability to reject undiagnosed patients compared to human experts. The operating points for the models 
were 0.8375 for the fine-tuning model and 0.7061 for the ensemble model, which was optimized from the valida-
tion set using Youden’s J statistics.

We further analyzed the model predictions by testing data subsets of sexes and various age spans (Table 2). 
We first confirmed that data from women were more accurately discriminated than data from men (AUC = 0.90 
and 0.93 in women vs. 0.81 and 0.85 in men for the single model and the ensemble, respectively). When we 
separated the test set into four 20-year spans, the AUCs did not differ substantially among ages < 20, 21–40, and 
41–60 years (AUCs ≈ 0.90). However, the AUC decreased slightly to 0.85 for age 61–83 years. Overall, the model’s 
discrimination competency maintained high AUCs (> 0.85 for the ensemble), which implied that learning in the 
CNN model was not gravely biased toward specific sex or age ranges.

Table 1.  Prediction comparisons of the single fine-tuning model, the ensemble model, and two human 
experts. The case with the highest value was bolded. Ensemble learning shows improved model accuracy to be 
slightly higher than that of two human experts. P-values: McNemar’s test using the results of the two experts as 
a reference.

Fine-tuning Ensemble Expert 1 Expert 2

Accuracy (%) 0.7692 0.8312 0.8013 0.7906

p-value (with Expert 1) 0.2211 0.1987 – 0.6445

p-value (with Expert 2) 0.3994 0.0671 0.6445 –

Sensitivity (%) 0.6536 0.8214 0.8857 0.8393

Specificity (%) 0.9415 0.8457 0.6755 0.7181

Figure 7.  Confusion matrices of the single fine-tuning model (A), the ensemble model (B), and the two human 
experts (C,D).
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Discussion
We examined the applicability of the CNN model for the automatic prediction of ADD and non-ADD and 
investigated the differences in prediction performance according to the age and sex of patients with TMD as 
well as the scheme of the CNN model. Recently, the deep learning computing paradigm has been regarded as 
the gold standard in machine learning in the artificial intelligence community, with CNNs the most utilized 
deep learning network  type30. We first implemented three different learning schemes of CNN models to confirm 
(1) how much the pre-trained weights improved prediction performance, (2) whether there was a difference in 
prediction performance between humans and CNN models, and (3) whether the discrimination information of 
ADD from non-ADD could be learned through CNN features without the pre-trained weights. The fine-tuning 
model, trained with pre-trained weights, showed the best AUC (approximately 0.88); however, the from-scratch 
model also performed comparably well (AUC > 0.83), which confirmed our hypothesis that ADD information 
was successfully learned in CNN features without using pre-trained weights. The CNN model had a higher 
prediction specificity compared to the human experts. The ensemble of three fine-tuning models using different 
data perturbations also showed an improved accuracy, from 77 to 83%.

TMJ disc displacement is the most common cause of TMJ noise, restricted mandibular motion, and TMD 
 progression31. Thus, accurate diagnosis is important. Joints with ADD with and without reduction were 2.73 and 
8.25 times more likely to have osteoarthritis,  respectively32. Additionally, complete ADD increased the risk of 
osteoarthritis by 10.88-fold33. Thus, disc displacement initially begins with symptoms such as clicking or popping 
in the TMJ area. If this problem is not resolved, there is a potential risk of TMD-related pain, mandibular function 
limitation, headaches, various psychological problems, and sleep  problems6,34. The ADD prediction accuracies 
of the CNN models based on deep learning of artificial intelligence and trained human experts did not differ 
significantly. Although the sensitivity of the fine-tuning model was lower than that of the human experts, the 
ensemble model improved the sensitivity and achieved similar levels of accuracy with human experts. In terms 
of specificity, the CNN models were excellent, with a difference of 10% (94%, 85% vs. 68–72%). High specificity 
indicates a high probability of identifying a true  negative35; this is desirable as the machines more accurately 
identify patients without ADD. The CNN model can make TMD diagnosis more efficient. Because the sensitivity 
for determining the presence or absence of ADD is higher in humans, the appropriate use of these machines by 
human experts could improve the diagnostic accuracy.

Among the three CNN schemes applied in this study, the fine-tuning model performed better than the 
scratch model. The difference between the two models was clear when Grad-CAM was applied to the final layer. 
The Grad-CAM-based color visualization approach is useful for unambiguously interpreting medical  images36. 
The fine-tuning model is a state-of-the-art deep-learning method for disease detection from image  data37. This 
model captured ADD regions more accurately and specifically compared to the from-scratch model, resulting 
in small gradient scores in unwanted areas. Accurately narrowing and recognizing the ROI is important in 
CNN models of deep  learning18,30,38. We found that the fine-tuning model learned sparser activation maps, with 
approximately 85% empty areas for each map. In deep learning, increased sparsity implies that most of the weights 
are zero, with high sparsity potentially leading to increased space and time  efficiency39. Only salient features 
remained when training from pre-trained weights while deactivating  others40, which was directly connected to 
the localization quality of the Grad-CAM image. Although the from-scratch model performed comparably well 
(AUC = approximately 0.83), this result emphasizes the use of ImageNet pre-trained weights when applying CNN 
models in medical image diagnosis.

The tendency of the prediction performance of ADD to increase when the CNN model is applied accord-
ing to sex and age group warrants further study. The prevalence of TMD is twice that in women compared to 
 men41. We previously reported a significantly higher frequency of ADD among female patients with TMD with 
whiplash injury microtrauma compared to  men42. Skeletally, the condylar volume did not differ significantly 
between men and women (691.26 ± 54.52  mm3 vs. 669.65 ± 58.80  mm3)43. Forensic dentistry showed that changes 
in the mandible and mandibular condyle are important for discriminating age and  sex44,45. In the lumbar spine, 
decreased disc volume and disc degeneration are associated with increasing  age46. However, unlike other joint 
problems, TMD is more common in children, adolescents, and young  adults5. The differences by sex or age in the 
degeneration and displacement of the articular disc and ADD diagnosis accuracy remain unclear; furthermore, 

Table 2.  Detailed prediction results (AUCs) of test data sets according to sex and age groups. The ensemble 
model shows improved AUCs compared to one fine-tuning model. The AUC is substantially higher in women 
than in men. The AUCs do not differ significantly for ages 11 (minimum)–60 years, while the AUC for 
age > 61 years is decreased. AUC  area under the curve.

Fine-tuning model (AUC) Ensemble model (AUC)

Sex

Male (n = 144) 0.8104 0.8483

Female (n = 324) 0.8980 0.9276

Age (years)

 < 20 (n = 106) 0.8591 0.9040

21–40 (n = 142) 0.8918 0.9275

41–60 (n = 142) 0.8824 0.9059

over 61 (n = 66) 0.8145 0.8549
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no quantitative in vivo MRI data are available on the factors influencing ADD diagnosis accuracy. The DC/TMD 
criteria, which are the most widely used worldwide for the diagnosis of TMD, indicate a 0.34–0.38 sensitivity 
of disc displacement with and without reduction without medical  imaging22. The CNN model, a subgroup of 
artificial intelligence, automatically and more accurately detected ADD when MR image data are divided by age 
and sex and applied. Thus, ensemble model rather than single CNN models was a promising approach.

Similar studies using CNNs to predict TMJ disorders have been recently reported, which showed high AUCs 
for detecting TMJ  areas20,21. Including our results, this means that CNN models may effectively distinguish 
between TMJs and non-TMJs. Unlike previous studies, this study reports new findings and addresses the possible 
benefits of using CNNs to detect TMJ disc displacement. First, using CNNs, the TMJ disc displacement can be 
discriminated without using pre-trained weights. However, it turned out that using pre-trained weights provides 
not only higher accuracy but also better quality of Grad-CAM visualizations by deactivating the unwanted gradi-
ents in activation maps. It is also notable that the ensemble model revealed its strength in detecting true-negative 
cases and showed consistent prediction accuracy across different sexes and various age groups.

Limitations. Despite the high accuracy of the developed model, our study had some limitations. First, as the 
TMJs of patients with TMD were mostly diagnosed by ADD during data collection, the data labels were imbal-
anced toward positive samples by approximately 1:3 (23%:77%) between non-ADD and ADD, which might dis-
tract the freeze model from learning the discrimination. No specific strategy for class-imbalance in the training 
set was applied when training the CNN model. In fact, further experiments of the training model with weighted 
loss did not significantly improve the predictive performance (AUC was 0.87 for fine-tuning and 0.80 for from-
scratch learning). Other strategies might boost the prediction scores and can be the future work. Second, this 
study was conducted using data from a single center, which may limit the model generalizability. To solve this 
problem, we diversified the data augmentation and developed several models; however, the possibility of overfit-
ting the models remains. Moreover, the developed model could be used to evaluate only one sagittal MRI image 
for each prediction. However, the accurate diagnosis of ADD or TMD requires a comprehensive interpreta-
tion of all sagittal and coronal multilayer planes. Therefore, improving and validating the model performance 
requires the development of a deep learning algorithm to comprehensively recognize multiple layers of MR 
image data, in addition to a larger multicenter study.

Conclusion
The results of this study illustrate the potential advantages of CNNs with pre-trained weights for the detec-
tion of TMJ disc displacement. Using pre-trained weights not only improved the prediction accuracy but also 
clarified Grad-CAM images by deactivating uninteresting gradient values. Grad-CAM visualization analysis 
confirmed that the most informative features were learned from the joint disc area. Moreover, even higher 
prediction accuracy was obtained from the CNN ensemble model using data perturbations. The model showed 
high specificity, which may aid human inspectors in reconsidering true negative diagnoses. Although the input 
MR images were from a single center and had a single sagittal plane, which restricts the use of comprehensive 
information, the model showed the potential generalization ability as it maintained a good performance across 
different sexes and ages.

Data availability
As these are patient data, any request for data disclosure will be discussed by the KHU-IRB before disclosure. 
The datasets generated and/or analyzed during the current study are not publicly available due to the protection 
of patient privacy according to the IRB permission but are available from the corresponding author on reason-
able request.
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