
1 3

DOI 10.1007/s00018-012-1238-4 Cellular and Molecular Life Sciences
Cell. Mol. Life Sci. (2013) 70:3341–3353

REVIEW

Regulation of osteoclasts by membrane-derived lipid mediators

Tsukasa Oikawa · Yukiko Kuroda · Koichi Matsuo 

Received: 11 October 2012 / Revised: 5 December 2012 / Accepted: 10 December 2012 / Published online: 8 January 2013 
© The Author(s) 2013. This article is published with open access at Springerlink.com

Introduction

Osteoclasts are a unique cell type highly specialized for 
resorbing bone matrix. Hyperactivation of osteoclasts can 
result in bone-degenerative disorders such as osteoporo-
sis and osteolytic bone metastasis, while lack or hypo-
activation causes osteopetrosis. Active osteoclasts are 
polykaryons formed by cell–cell fusion of highly motile  
progenitors of the monocyte–macrophage lineage. For 
bone resorption, osteoclasts attach firmly to the bone 
surface by forming stable actin rings. Through the area 
enclosed by actin rings, osteoclasts secrete digestive acids 
and proteases and transport degraded matrix components 
by endocytosis/transcytosis into the cell and to the apical 
surface. In this way, osteoclasts facilitate bone remodeling 
and the recycling of bone nutrients, particularly calcium 
and phosphates.

Osteoclast precursors on the bone surface are stimulated 
by macrophage colony-stimulating factor (M-CSF) and 
receptor activator of NF-κB ligand (RANKL) produced by 
osteoblast lineage cells, resulting in the activation of the 
immediate early transcription factors NF-κB and c-Fos. 
These transcription factors are essential for the activation 
of signaling cascades that drive osteoclastogenesis [1]. 
Activation of RANK is an early event in osteoclastogen-
esis, leading to phospholipase C (PLC) activation, mem-
brane hydrolysis of phosphatidylinositol 4,5-bisphosphate 
(PIP2) to form diacylglycerol and inositol-1,4,5-trisphos-
phate (IP3), IP3-mediated Ca2+ release and the activation 
of the Ca2+-dependent phosphatase calcineurin. Activated 
calcineurin dephosphorylates and thereby activates nuclear 
factor of activated T cells cytoplasmic 1 (NFATc1) [2–4], a 
transcription factor that activates the expression of multiple 
osteoclastogenic genes, including the membrane fusion pro-
moter (fusogen) DC-STAMP, the actin ring component β3 
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integrin and the bone degrading hydrolases tartrate-resistant 
acid phosphatase (TRAP) and cathepsin K [5].

In addition, osteoclast differentiation depends on dra-
matic changes in cytoskeletal dynamics. Activated osteo-
clast precursors develop columnar actin puncta, known as 
podosomes, at the ventral surface [6, 7]. In the early phase 
of osteoclast differentiation, these actin puncta organize 
into dynamic rings, and as the cells fuse, these circumferen-
tial podosomes eventually mature into stabilized structures 
known as actin rings that adhere to the bone and isolate the 
contact site between the osteoclast ruffled membrane and 
the bone surface from the extracellular fluid [6]. Efficient 
bone resorption is then achieved through the secretion of 
protons and hydrolases, including TRAP and protease cath-
epsin K, at the ruffled border formed inside these belts [8], 
and concomitant incorporation of the degraded materials by 
endocytosis.

Cell–cell fusion and vesicle-ruffled border fusion both 
require intricate orchestration of the plasma membrane 
and vesicular membranes, involving signaling cascades 
mediated by membrane lipids. Membrane lipids, including 
phosphoinositides (PIs), contribute to a wide range of basic 
biological processes, such as polarity formation, chemo-
taxis, intercellular trafficking, and cytokinesis [9]. PIs are 
essential not only as membrane constituents in Eukaryotes 
and as precursors of second messengers like IP3 but also 
serve as specialized membrane docking sites for effectors of 
various signaling cascades [9]. Accumulating evidence sug-
gests that PIs and PI-interacting proteins such as Rho, Arf, 
and Rab small GTPases function as modulators of osteoclast 
differentiation [10, 11]. In this review, we focus on recent 
advances in understanding the regulation of osteoclastogen-
esis by membrane-derived lipid mediators.

Upregulation of intracellular Ca2+ concentration  
by IP3 activates NFATc1, a master transcription factor 
for osteoclastogenesis

Sustained activation of transcription factor NFATc1 is a cru-
cial step in osteoclast differentiation and maturation. Forced 
expression of NFATc1 in bone marrow macrophages induces 
osteoclast differentiation, while NFATc1-deficient embry-
onic stem cells fail to differentiate into osteoclasts following  
stimulation with RANKL [3, 12]. The canonical mechanism 
of NFATc1 activation is through dephosphorylation by cal-
cineurin, a Ca2+/calmodulin-dependent phosphatase, and 
subsequent nuclear translocation [13]. During osteoclas-
togenesis, intracellular Ca2+ levels oscillate in response to 
RANKL stimulation, which is thought to cause long-term 
activation of NFATc1. Since RANKL-induced Ca2+ oscil-
lations are abolished in IP3 receptor (IP3R) knockout cells, 
Ca2+ release from the endoplasmic reticulum (ER) through 

IP3R channels is required to generate or sustain these Ca2+ 
oscillations [14]. Both the IP3R ligand IP3 and the protein 
kinase C activator diacylglycerol (DAG) are produced from 
the membrane phospholipid phosphatidylinositol 4,5-bis-
phosphate [PI(4,5)P2] by PLC. Therefore, metabolism of 
membrane phospholipids by PLC activation is critical for 
RANKL-induced Ca2+ signaling and subsequent NFATc1 
activation during osteoclastogenesis.

In concert with RANK signaling, immunoglobulin-like 
receptors such as osteoclast-associated receptor (OSCAR) 
and the triggering receptor expressed in myeloid cells 2 
(TREM-2) transduce Nfatc1 induction signals [15, 16]. 
Both receptors are associated with adaptor proteins such 
as DNAX-activation protein (DAP) 12 or the Fc receptor 
common γ subunit (FcRg) that possess the immunorecep-
tor tyrosine-based activation motif (ITAM) [17]. After 
ITAM tyrosine phosphorylation, a complex containing  
Bruton’s tyrosine kinase (Btk), tyrosine kinase expressed in  
hepatocellular carcinoma (Tec), the adaptor molecules B 
cell linker protein (BLNK) and Src homology 2 domain-
containing leukocyte protein of 76 kD (SLP76) is formed 
that facilitates cooperation between RANK and ITAM sign-
aling [18]. This combined signal leads to sustained PLCγ2 
phosphorylation, suggesting that integration of RANK and 
ITAM signaling is required for the efficient activation of 
PLCγ2 and subsequent Ca2+ oscillations (Fig. 1). Further-
more, following elevation of intracellular Ca2+ but prior to 
calcium oscillations, Nfatc1 transcription is enhanced by 
Ca2+/calmodulin-dependent kinase IV (CaMK IV). In turn, 
CaMK IV phosphorylates the cAMP response element-
binding protein (CREB), inducing Fos expression [19].

The PLCγ family consists of the widely distributed 
PLCγ1 and the more restricted PLCγ2, which is primarily 
expressed by hematopoietic cells [20]. While Plcg1−/− mice 
cannot develop normally beyond embryonic day 8.5 [21], 
Plcg2−/− mice are viable but exhibit an osteopetrotic phe-
notype [22], indicating that PLCγ2 is required for osteoclas-
togenesis (Table 1). At a highly conserved region (HCR) in 
the RANK C-terminal tail, PLCγ2 forms a stimulus-depend-
ent complex with the TRAF6 and Gab2 adapter proteins 
[23] (Fig. 1). An HCR deletion mutant of the CD40/RANK 
chimeric receptor does not alter NF-κB or MAPK activa-
tion but abolishes Ca2+ oscillations, indicating that HCR-
mediated signaling is indispensable for sustained PLCγ2 
activation and that sustained PLCγ2 activation is required to 
maintain Ca2+ oscillations [23].

Calcium signaling during osteoclastogenesis is also con-
trolled by PI-binding proteins. The regulator of G-protein 
signaling 10 (RGS10) competitively binds to phosphati-
dylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and this bind-
ing is required for RGS10 membrane localization and the 
subsequent activation of PLCγ2 and Ca2+ oscillations. The 
intracellular Ca2+ concentration shifts the balance between 
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RGS10–PI(3,4,5)P3 and RGS10–Ca2+/CaM complexes and 
this may allow for self-sustaining Ca2+ oscillations through 
oscillatory regulation of PLCγ2 activation [24] (Fig.  1). 
Mice lacking RGS10 exhibit severe osteopetrosis due to 
defects in Ca2+ oscillations and reduced osteoclastogenesis 
in vivo, underscoring the importance of Ca2+ oscillations 
for NFATc1 activation and amplification during osteo-
clast differentiation [24] (Table 1). Inositol polyphosphate 
4-phosphatase type IIα (Inpp4bα) can also modulate IP3-
triggered Ca2+ signaling and subsequent osteoclastogen-
esis as suggested by the decreased bone mass observed in 
Inpp4b−/− mice [25] (Table 1). However, Inpp4bα efficiently 
hydrolyzes Ins(1,3,4)P3 but not IP3 in vitro [25]. Since 
Ins(1,3,4)P3 does not open purified IP3 receptors [26], the 
precise molecular mechanisms by which Inpp4bα ablation 
enhances Ca2+ signaling remains unknown. Nevertheless, 
as the human INPP4B was also identified as a susceptibility 

locus for osteoporosis [25], the balance among these dif-
ferent membrane inositol phospholipids could be a critical 
regulator of Ca2+ signaling and osteoclastogenesis.

In addition to Ca2+ oscillations, NFATc1 is also activated 
by an osteoblast-induced, Ca2+-independent pathway. When 
co-cultured with osteoblasts, cell–cell interactions increase 
NFATc1 protein levels even in osteoclast precursors derived 
from IP3R type2 and type3 (IP3R2/3) double knockout 
mice. Furthermore, osteoblasts promote osteoclast differen-
tiation in the absence of detectable RANKL-induced Ca2+ 
oscillations [14] (Table 1). Phosphorylation-dependent pro-
tein stabilization of NFATc1 by Cot (Cancer Osaka thyroid) 
serine/threonine kinase, also known as tumor progression 
locus 2 (Tpl-2), partially explains Ca2+- and calcineurin-
independent osteoclastogenesis [27]. Whether membrane 
phospholipids also contribute to Ca2+ oscillation-independ-
ent NFATc1 activation is unknown at present.

Fig. 1   IP3 instigates the 
activation and amplification 
of NFATc1. Depicted above 
is a schematic illustrating the 
stages of osteoclast differentia-
tion, including recruitment of 
progenitors to the bone surface, 
cell–cell fusion, formation of 
the actin ring and ruffled border 
and bone resorption. In the 
early phase of differentiation 
(red-boxed), osteoclastogenesis 
is triggered by RANKL–RANK 
signaling, which activates 
PLCγ2 to generate IP3 from 
PI(4,5)P2 in the plasma 
membrane. IP3 then stimulates 
calcium oscillations, which are 
required for subsequent activa-
tion of NFATc1. Knockout 
of the molecules in red have 
bone-related phenotypes largely 
because of impaired osteoclast 
differentiation (see the text for 
details). Red dotted lines indi-
cate interactions between PIs 
and proteins. The dotted arrow 
indicates the Ca2+ oscillation-
independent pathway to 
NFATc1 activation. This figure 
is modified from Kuroda et al., 
World Journal of Orthopedics 
(in press)
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PI3-kinases and their lipid products regulate osteoclast 
function

PI3-kinase is activated downstream of osteoclastogenic 
stimuli

Once primed for differentiation into osteoclasts by IP3-trig-
gered Ca2+ signaling and activation of NFATc1, a number 
of additional signaling molecules are activated that regulate 
osteoclast function. The PI3-kinase is one of the central 
downstream effectors of the M-CSF receptor c-fms [28, 
29], RANK [30], and αvβ3 integrin [31] in osteoclasts. PI3-
kinases can be classified into three groups: class I, which 
consists of regulatory and catalytic subunits such as p85 
and p110; class II kinases that do not require adaptor subu-
nits; and class III kinases with a catalytic subunit p110 that 
shares homology with the yeast PI3-kinase Vps34p. Acti-
vation of class I PI3-kinase downstream of RANK leads 
to the production of PI(3,4,5)P3 from PI(4,5)P2. Class I 
and II PI3-kinases produce PI(3,4)P2 from PI(4)P; alter-
natively, PI(3,4)P2 can be generated by dephosphorylation 
of PI(3,4,5)P3 by PI(3,4,5)P3 5-phosphatases such as Src 
homology 2-containing inositol-5-phosphatase 1 (SHIP1) 
[32] (Fig.  2). In general, PI(3,4,5)P3 and PI(3,4)P2 serve 
as stimulants of cell proliferation, survival, and directional 
migration by anchoring effectors like Akt [32]. PI3-kinase 
activity can be quenched by generation of PI(4,5)P2 from 
PI(3,4,5)P3 through hydrolysis by a tumor suppressor gene 

product, phosphatase and tensin homolog deleted from 
chromosome 10 (PTEN) [33] (Fig. 2). Thus, PI3-kinase is 
bidirectionally regulated by a number of proteins.

The PI3-kinase is required for activation of Akt and 
MAPK [34], so it is not surprising that mice lacking the p85α 
subunit of class I PI3-kinase exhibit impaired osteoclast pro-
liferation and maturation [35] (Table 1) as well as of impaired 
B cell development and activation [36, 37]. A study using 
osteoclast-specific p85α/β double knockout mice demon-
strates that PI3-kinase-dependent activation of Akt is essen-
tial for ruffled border formation and vesicle transport [38] 
(Table 1). Knockouts of the p110α or p110β catalytic subunit 
(Pik3ca−/− or Pik3cb−/−, respectively) result in embryonic 
lethality [39, 40], while p110γ knockouts (Pik3cg−/−) are 
viable but exhibit defects in T cell proliferation and function 
as well as reduced neutrophil migration and chemotaxis [41]. 
Although a study using a specific inhibitor suggests a domi-
nant role for p110α in osteoclast differentiation [42], detailed 
skeletal analysis of conditional knock out of these class I 
catalytic subunits and deletion of other classes of PI3-kinase 
genes will be required to clarify the role of each PI3-kinase 
class and isoform in osteoclastogenesis. In contrast to mice 
lacking the p85α PI3-kinase subunit, Inpp5d−/− mice lacking 
SHIP1 exhibit the reverse phenotype, with more numerous 
and larger osteoclasts that are hypersensitive to M-CSF and 
RANKL, as well as less apoptotic and hyper-resorptive, result-
ing in osteoporosis [43] (Table 1). Another study found that 
the granulocyte–macrophage progenitors of Inpp5d−/− mice 

Fig. 2   PI(3,4,5)P3 regulates 
osteoclast adhesion, motility, 
and ruffled border function. 
In the later phase of differ-
entiation (red-boxed phase in 
the top schematic), signaling 
downstream of c-fms, RANK 
and αvβ3 integrin activates 
PI3-kinase, triggering the 
production of PI(3,4,5)P3 in the 
plasma membrane. PI(3,4,5)P3 
then recruits and/or activates 
cytosolic proteins, which are 
important for cytoskeletal rear-
rangement. Knockouts of the 
molecules in red have bone-
related phenotypes because of 
functional defects in osteoclasts 
(see the text for details). Blue 
arrows indicate phosphoryla-
tion. Red dotted lines indicate 
interactions between PIs and 
proteins. Small GTPases are 
encircled in green, GEF/GAP in 
blue, and kinases/phosphatases 
in yellow
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show enhanced proliferative potential [44]. Similarly, PTEN 
negatively regulates osteoclast differentiation [45] (Table 1). 
These results strongly suggest that PI(3,4,5)P3 is a primary 
inducer of osteoclastogenesis (Figs. 1 and 2). It would be of 
great interest to test if direct addition of liposomes containing  
PI(3,4,5)P3 to osteoclast precursors accelerates osteoclas-
togenesis. However, it is possible that the spatiotemporal  
production of PI(3,4,5)P3 must be tightly controlled to prop-
erly drive osteoclastogenesis, given the role of PI(3,4,5)
P3 as an anchor and the functional segregation of different  
membrane compartments of the multinuclear osteoclast.

PI- and raft-dependent c-Src activity is required  
for osteoclastogenesis

Locally produced PI(3,4,5)P3 and PI(3,4)P2 recruit cyto-
solic proteins to the plasma membrane. For example, direct 
interaction between PI(3,4,5)P3 and the Src-homology 2 
(SH2) domains of PI3-kinase or the ubiquitous tyrosine 
kinase c-Src stimulates the formation of a protein complex 
containing PI3-kinase or c-Src and gelsolin [46]. Membrane 
targeting of c-Src is also aided by covalent binding of the 
14-carbon fatty acid myristate and by the basic amino acid 
residues at the c-Src N-terminal [47]. In addition, special-
ized membrane microdomains enriched with cholesterol and 
sphingolipids (called lipid rafts) are platforms for enrichment 
of c-Src activity [48]. Membrane-associated c-Src is indis-
pensable for osteoclast functions, as evidenced by the obser-
vation that osteoclasts from Src−/− mice manifest impaired 
formation of actin rings and reduced bone resorption activ-
ity, leading to severe osteopetrosis [49, 50] (Table 1). More-
over, this phenotype was not mimicked by deletion of other 
Src-family kinases [51], indicating the importance of c-Src 
and its specific binding proteins and substrates in osteoclas-
togenesis although Hck partially compensates for c-Src as 
revealed by Hck−/−Src−/−mice [52]. Indeed, c-Src has been 
shown to regulate cytoskeletal dynamics [53] as well as cell 
spreading, cell–cell fusion and ruffled border formation 
[54, 55], seminal early events in osteoclastogenesis vital 
for subsequent bone resorption. Among these c-Src binding 
partners are FAK [56, 57], p130Cas [58], WASP [59], Tks5 
[60], cortactin [61–63] and GIT2 [64] proteins that mediate 
adhesion, podosome/fusion-competent protrusion and actin 
ring formation in osteoclasts (Fig. 2; Table 1). Furthermore, 
c-Src is also localized at the intercellular vesicular mem-
branes and ruffled border, where it contributes to the secre-
tion of bone-degrading acids and enzymes [65–68].

Cytoskeletal reorganization by small GTPases is controlled 
by PI(4,5)P2 and PI(3,4,5)P3

The coalescence and fusion of osteoclasts requires the acti-
vation of Rho-family GTPases and molecules that rearrange 

the actin cytoskeleton [69, 70]. A membrane-type 1 matrix 
metalloproteinase (MT1-MMP)—p130Cas—Rac signaling 
pathway was recently shown to be indispensable for this 
process [71](Fig.  2). Bone marrow cells from Mmp14−/− 
mice lacking MT1-MMP are still committed to the osteo-
clast lineage as they express osteoclast genes like Nfatc1 
and the TRAP gene Acp5 but exhibit defects in migration 
and cell–cell fusion [71] (Table 1). Small GTPases of the 
Rho and Arf family, such as Rho, Rac, Cdc42 and Arf6, 
are also recruited and activated/inactivated by PIs on the 
membrane to regulate osteoclast differentiation and bone 
resorption [64, 72–74] (Table  1). Indeed, these proteins 
are central regulators of cytoskeletal remodeling, protru-
sion formation, and membrane trafficking [75, 76]. Activ-
ity is stimulated by guanine nucleotide exchange factors 
(GEFs) such as the Rac activating Vav family proteins and 
decreased by GTPase-activating proteins (GAPs), such as 
Arf6 inhibitors GIT2 or centaurin. These GEFs and GAPs 
often possess pleckstrin homology (PH) domains through 
which they directly interact with PI(4,5)P2, PI(3,4)P2 and/
or PI(3,4,5)P3 [77, 78]. The GEF Vav3 is crucial for Rac 
activation and subsequent cytoskeletal rearrangement in 
osteoclasts as evidenced by osteopetrosis in Vav3−/− or 
Vav1−/−Vav3−/− mice [79] (Table  1). Osteoclasts from 
these mice do express osteoclast gene products in response 
to M-CSF and RANKL, but circumferential podosome for-
mation, cell–cell fusion and bone resorption are impaired 
[79]. Osteoclasts with reduced expression of the c-Src sub-
strate and Arf6 inhibitor GIT2 induced by RNA interference 
(RNAi) appear to differentiate normally but lack actin rings 
[64] (Table  1). While GIT2 lacks the PH domain allow-
ing direct interaction with PIs, it is activated by PI(3,4,5)
P3 [80], and this interaction suppresses Arf6 activity. The 
GTPase Arf6 is required for the formation of membrane 
protrusions such as invadopodia in cancer cells by promot-
ing endosomal recycling and Rac-mediated cytoskeletal 
remodeling [76, 81]. Therefore, excessive Arf6 activity in 
GIT2 knockdown osteoclasts may allow for the formation 
of circumferential podosomes, which are structures analo-
gous to invadopodia, but obstruct later actin ring formation. 
Analogous to GIT2 function in osteoclast differentiation, 
previous studies reported that GIT2 regulates the direc-
tional chemotaxis of neutrophils and that the loss of GIT2 
in vivo leads to immunodeficiency [82]. Centaurin-α2, 
another GAP for Arf6 with a PH domain, is also essential 
for Arf6-dependent cytoskeletal remodeling [78], thereby 
supporting the importance of the PI(3,4,5)P3-Arf6 pathway 
in osteoclast maturation (Fig. 2).

The cytoskeletal proteins gelsolin, villin, cofilin, and 
profilin, which sever or depolymerize actin filaments in 
vitro, are inactivated by PI(4,5)P2, a PI synthesized by 
phosphatidylinositol 4-phosphate 5-kinase (PI4P-5 kinase). 
Conversely, several cytoskeletal proteins that bundle actin 
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filaments or link them to the plasma membrane, includ-
ing vinculin, talin, ezrin/radixin/moesin (ERM) proteins, 
WASP/N-WASP and α-actinin, are activated by PI(4,5)P2 
and/or PI(3,4,5)P3. Consequently, membrane PIs also con-
trol cytoskeletal dynamics and osteoclast functions by regu-
lating the activities of these cytoskeletal proteins. Whole 
animal knockout of gelsolin (Gsn−/−) [83] or Wasp (Was−/−) 
[84], or osteoclast-specific knockout of Talin (Tln−/−) [85] 
increases mouse bone mass or attenuates bone loss follow-
ing ovariectomy (Table 1). WAS deletion also eliminates the 
formation of podosome clusters in human primary mac-
rophages [86], thus explaining the impaired migration and 
invasion of macrophages in patients with Wiskott–Aldrich 
syndrome (WAS). On the other hand, Was−/− osteoclasts 
exhibit a greater number of nuclei per cell [84], indicat-
ing that cell–cell fusion is enhanced. Both podosomes and 
fusion-competent protrusions (see below) require cytoskel-
etal remodeling and membrane deformation. However, 
according to the knockout phenotype, WASP is exclusively 
required for podosomes but not for fusion-competent protru-
sions. In the absence of WASP, additional quantities of actin-
regulatory and membrane-deforming molecules interacting 
with WASP, e.g., Arp2/3 complex and Cdc42, are thought to 
be used for fusion-competent protrusions, instead of being 
used for podosomes. This may explain the enhanced cell–
cell fusion in Was−/− osteoclasts [84]. It is plausible that the 
formation of perpendicular actin-rich membrane protrusions 
like podosomes or horizontal fusion-competent protrusions 
depends on a balance between PI-regulated complementary 
cytoskeletal GTPases that either promote actin polymeriza-
tion or bundling and membrane association. Tropomyosin 
(Tm) stabilizes actin filaments by functionally antagoniz-
ing depolymerization or severing factors such as gelsolin 
and cofilin [87]. Expression of Tm-2 and Tm-3 is induced 
in the late phase of osteoclastogenesis and reduced expres-
sion or overexpression results in altered spreading, motility, 
and resorption of osteoclasts [88]. Therefore, a balance of 
activity among cytoskeletal proteins described above may 
explain osteoclasts’ resorptive/migratory cycle (polariza-
tion/depolarization cycle).

Cell–cell fusion is achieved by fusion-competent  
protrusions downstream of PI3-kinase

Osteoclasts must overcome a significant energy barrier 
for the fusion of apposing lipid bilayers given that plasma 
membranes do not spontaneously fuse. In vitro protein-free 
experiments indicate that lipid bilayer fusion involves the 
following steps: establishment of close contact between the 
bilayers so that they become at least partially dehydrated, 
formation of highly curved protrusions between bilayers to 
expose an unstable outer leaflet, resulting in hemifusion, and 
final formation of a fusion pore, a process that requires the 

lateral tension concomitant with local or global membrane 
expansion [89–92]. Osteoclast-specific fusogens such as DC-
STAMP [93], OC-STAMP [94], macrophage fusion receptor 
(MFR) [95], v-ATPase V0 subunit d2 [96], and CD9 in lipid 
rafts [97] are thought to lower the first intermediate energy 
barriers by tightly tethering the opposing plasma mem-
branes. Proteins that have membrane-deforming activity or 
those inducing membrane expansion could then contribute 
to hemifusion and fusion pore formation. In fact, circum-
ferential podosomes, but not mature actin rings, may sup-
ply the lateral tension necessary to drive fusion pore opening 
[91]. When probed with markers of PI-binding domains, the 
fusion sites are often enriched with products of PI3-kinases 
[60]. Inhibition of PI3-kinase activity only during the period 
of highest fusion frequency results in fusion defects, while 
the expression of osteoclast genes are unaffected [60]. The 
phox homology (PX) domain adaptor protein Tks5, known 
to regulate invadopodia formation in cancer cells [98], was 
found to act downstream of PI3-kinase and Src in promoting 
cell–cell fusion. Reduced expression of Tks5 results in the 
loss of circumferential podosomes and cell–cell fusion [60] 
(Table 1), which is in accordance with recent findings show-
ing that N-WASP-dependent actin-rich protrusive structures 
are also key drivers of myoblast fusion [99, 100]. Alterna-
tively, circumferential podosome expansions in osteoclasts 
often accompany tiny membrane protrusions [101] that 
might be generated by membrane-deforming proteins such 
as Bin-Amphiphysin-Rvs161/167 (BAR) domain superfam-
ily proteins [102]. For this reason, we refer to the protru-
sions observed during osteoclast fusion as fusion-competent 
protrusions. Studying the shared and distinct fusion mecha-
nisms in multiple biological processes may soon provide a 
more complete and clear picture of osteoclast fusion.

Efficient bone resorption is achieved through ruffled 
border formation and intracellular membrane  
trafficking

Fused osteoclasts reorganize their actin cytoskeletons and 
eventually form F-actin-rich adhesive structures called actin 
rings on the ventral membranes contacting the bone surface 
[6]. The membrane area enclosed by the actin ring, termed 
the ruffled border, secretes protons and hydrolases that sol-
ubilize and digest inorganic and organic bone matrix. The 
ruffled border was originally found to be the site of lysoso-
mal secretion [103, 104] and defects in its formation were 
reported in osteoclasts from patients with malignant juve-
nile osteopetrosis [105]. The a3 subunit of v-ATPases and 
the Cl−/H+ antiporter CLC-7 localize at both the lysosomes 
and ruffled border, where they function to acidify secret-
ing lysosomes and the space between the ruffled border and 
bone surface [106, 107] (Fig. 3). Notably, mutations in the 
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gene encoding the a3 subunit of v-ATPases (OC116) or in 
the gene encoding CLC-7 (CLCN7) are reported in malig-
nant juvenile osteopetrosis [107, 108]. Similarly, disruption 
of Atr6i, the gene encoding the a3 subunit of v-ATPases 
in mice, or mouse Clcn7 causes osteopetrosis [107, 109] 
(Table  1). Furthermore, the small GTPase Rab7, which 
regulates vesicle fusion to late endosomes or lysosomes, 
also localizes to the ruffled border [110] (Fig. 3). Reduced 
expression of Rab7 impairs actin ring formation, ruffled 
border formation and bone resorption in vitro [111], while 
multinucleation (cell–cell fusion) is unaffected (Table  1). 
Rab3D is another Rab GTPase that is essential for osteo-
clast function as revealed by Rab3d−/− mice that exhibit an 
osteopetrotic phenotype [112] (Table 1). Osteoclasts from 
these mice form disturbed ruffled borders with normal actin 
rings [112] (Table  1). However, the vesicular trafficking 
pathway mediated by Rab3D appears different from that 
mediated by Rab7 as judged by their distinct subcellular 
localization (Fig. 3). Generally, Rab GTPases function only 
when the C-terminal cysteine(s) are covalently linked to a 
farnesyl or geranylgeranyl moiety (called prenylation). The 
importance of prenylation for Rab GTPase function and 
osteoclast-mediated bone resorption is demonstrated by 
gunmetal mice, which have an autosomal recessive muta-
tion in the gene encoding Rab geranylgeranyl transferase 
(RGGT), resulting in a 70 % reduction in GTPase activity 
[113] and osteoclasts with normal cytoskeletal architecture 
but reduced resorptive activity [114] (Table 1).

Synaptotagmin VII (Syt VII), a member of the synap-
totagmin family that mediates Ca2+-triggered fusion of cyto-
plasmic/synaptic vesicles to the plasma membrane [115], 
localizes at the ruffled border, and promotes the secretion of 
lysosomal contents [116] (Fig. 3). Osteoclasts deficient in 
Syt VII (Syt7−/−) fail to localize cathepsin K to the resorp-
tive microenvironment or form ruffled borders; however, 
the bone density of Syt7−/− mice is actually reduced partly 
because of attenuated bone formation by osteoblasts [116] 
(Table 1). Unlike many other phases of osteoclastogenesis, 
proteins regulating the formation of the ruffled border are 
largely unknown. In this regard, autophagic proteins that 
regulate lysozyme secretion in intestinal Paneth cells [117], 
insulin secretion in pancreatic β cells [118], or degranula-
tion of mast cells [119] are strong candidate effectors of 
ruffled border formation and extracellular secretion by oste-
oclasts. Indeed, osteoclast-specific deletion of autophagy-
related (Atg) protein Atg5 leads to increased bone mass and 
alleviates bone loss caused by ovariectomy [120] (Fig.  3; 
Table 1). Further, the conjugation of the mammalian Atg8 
homolog LC3 with phosphatidylethanolamine (PE) is indis-
pensable for the proper trafficking of cathepsin K to the ruf-
fled border [120]. Both Syt VII and Atg5 are required for 
ruffled border formation/maturation and vesicle-membrane 
fusion but not for actin ring formation [116, 120] (Table 1). 
Protein kinase Cδ is another likely participant in cathepsin 
K secretion. Mice deficient in Prkcd−/− are osteopetrotic 
and protected from bone loss induced by ovariectomy [121] 

Fig. 3   Vesicular trafficking 
enables bone resorption. In the 
resorbing phase (red-boxed 
phase in the top schematic), Rab 
GTPases mediate vesicle traf-
ficking, while the fusion of vesi-
cles with the ruffled border to 
release acids and hydrolases is 
mediated by Syt VII and Atg5. 
Dynamin-mediated endocyto-
sis clears degraded materials. 
Knockouts or mutations of the 
molecules in red have bone-
related phenotypes because of 
functional defects in osteoclasts 
(see text for details)
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(Table  1). Intriguingly, impaired cathepsin K secretion in 
Prkcd−/− osteoclasts is independent of ruffled border forma-
tion and trafficking of lysosomal vesicles [121] (Table 1). 
Therefore, the DAG-PKCδ pathway may promote cathepsin 
K secretion through alternate mechanisms.

While digesting the bone matrix, osteoclasts must prop-
erly dispose of large amounts of calcium, phosphate, and 
digested collagen that would otherwise rise to cytotoxic lev-
els. Osteoclasts transport these products and transcytose the 
vesicles containing these materials to the apical region of 
the plasma membrane, called functional secretory domain, 
into the extracellular space [122, 123] (Fig. 3). The ruffled 
border is thus the site of extensive endocytic activity and 
expresses known endocytic proteins like clathrin, AP-2 and 
dynamin [124, 125]. Exogenous small tracer molecules rap-
idly enter the osteoclast and are found at the ruffled border 
within minutes [126]. Therefore, at least some endocyto-
sis from the ruffled border is thought to be receptor-inde-
pendent and non-specific, resembling macropinocytosis. 
Dynamin, a PH domain-containing GTPase essential for 
podosome formation and endocytosis, is pivotal for the 
coat-dependent specific uptake [127, 128] (Fig.  3). Over-
expression of dynamin stimulates osteoclast migration and 
resorption and this stimulation depends on the presence of 
dynamin GTPase activity [129] (Table 1). Dynasore, a spe-
cific inhibitor of dynamin [130], may be a useful agent for 
treating osteoporosis if selectively delivered to osteoclasts.

It has been suggested that raft-dependent membrane traf-
ficking from the ventral or apical membrane is necessary to 
maintain a functional ruffled border [110, 131], but it is still 
unclear as to how osteoclasts organize and segregate the func-
tionally distinct membrane regions or as to how regions like 
the ruffled border and apical membrane coordinate membrane 
recycling so that exocytosis and endocytosis are optimized.

Conclusions

In this review, we presented evidence demonstrating that 
membrane lipids, particularly PIs, are crucial for osteoclast 
differentiation and bone resorption. As osteoclastogenesis is 
largely dependent on IP3-mediated Ca2+ oscillations, sign-
aling pathways that lead to IP3 production are of special 
importance. Indeed, knockout of various molecules in Ca2+- 
or IP3-dependent pathways result in osteopetrotic pheno-
types because of impaired osteoclast differentiation and 
bone resorption (Fig. 1; Table 1). Once committed, remode-
ling of both the actin cytoskeleton and the plasma membrane 
drives the morphological changes associated with osteoclas-
togenesis. During morphological transformation and matu-
ration, there are three major barriers to overcome according 
to knockout or knockdown phenotypes: (1) cell–cell fusion, 
(2) actin ring formation, and (3) ruffled border formation. 

(1) To overcome the energy barrier of membrane fusion, 
fusogens on the plasma membrane and efficient migration 
and formation of fusion-competent protrusions are required. 
Production of PI(3,4,5)P3 and/or PI(3,4)P2 on the mem-
brane triggers migration and protrusion formation in pre-
fusion osteoclasts (Fig. 2; Table 1). Without cell–cell fusion, 
mononuclear osteoclasts can still proceed to the next barrier. 
(2) Actin ring formation requires actin regulatory molecules 
that act to stabilize dense actin bundles (Fig. 2 and Table 1). 
Without actin rings, osteoclasts cannot proceed to the next 
barrier. The actin ring acts to segregate hydrolytic enzymes, 
acids, and toxic digestive products from the extracellular 
environment. Actin ring formation is also dependent on ino-
sitol phospholipids that regulate a variety of small GTPases 
associated with the membrane and cytoskeleton. (3) The 
ruffled border of osteoclasts allows these cells to efficiently 
release degradative enzymes and resorb digestion products 
for recycling by membrane trafficking and vesicle–mem-
brane fusion (Fig. 3; Table 1).
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