
ORIGINAL RESEARCH
published: 23 March 2020

doi: 10.3389/fnins.2020.00183

Frontiers in Neuroscience | www.frontiersin.org 1 March 2020 | Volume 14 | Article 183

Edited by:

Kamran Avanaki,

Wayne State University, United States

Reviewed by:

Rayyan Manwar,

Wayne State University, United States

Shennan Aibel Weiss,

Thomas Jefferson University,

United States

Eishi Asano,

Children’s Hospital of Michigan,

United States

*Correspondence:

Andrei Barborica

andrei.barborica@fizica.unibuc.ro

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 01 August 2019

Accepted: 19 February 2020

Published: 23 March 2020

Citation:
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High-frequency oscillations >80Hz (HFOs) have unique features distinguishing them

from spikes and artifactual components that can be well-evidenced in the time-frequency

representations. We introduce an unsupervised HFO detector that uses computer-vision

algorithms to detect HFO landmarks on two-dimensional (2D) time-frequency maps. To

validate the detector, we introduce an analytical model of the HFO based on a sinewave

having a Gaussian envelope, for which analytical equations in time-frequency space can

be derived, allowing us to establish a direct correspondence between common HFO

detection criteria in the time domain with the ones in the frequency domain, used by

the computer-vision detection algorithm. The detector identifies potential HFO events on

the time-frequency representation, which are classified as true HFOs if criteria regarding

the HFO’s frequency, amplitude, and duration are met. The detector is validated on

simulated HFOs according to the analytical model, in the presence of noise, with different

signal-to-noise ratios (SNRs) ranging from −9 to 0 dB. The detector’s sensitivity was

0.64 at an SNR of −9 dB, 0.98 at −6 dB, and >0.99 at −3 dB and 0 dB, while its

positive prediction value was >0.95, regardless of the SNR. Using the same simulation

dataset, our detector is benchmarked against four previously published HFO detectors.

The F-measure, a combined metric that takes into account both sensitivity and positive

prediction value, was used to compare detection algorithms. Our detector surpassed the

other detectors at −6, −3, and 0 dB and had the second best F-score at −9 dB SNR

after the MNI detector (0.77 vs. 0.83). The ability to detect HFOs in clinical recordings

has been tested on a set of 36 intracranial electroencephalogram (EEG) channels in six

patients, with 89% of the detections being validated by two independent reviewers. The

results demonstrate that the unsupervised detection of HFOs based on their 2D features

in time-frequency maps is feasible and has a performance comparable or better than the

most used HFO detectors.

Keywords: electroencephalogram (EEG), high-frequency oscillations, time-frequency maps, computer vision,

signal detection
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INTRODUCTION

A pioneering study by Fisher et al. (1992) on five epileptic
patients implanted with subdural electrodes showed a significant
increase of spectral power above 35Hz at the beginning of
epileptic seizures exhibiting electrodecremental patterns and
hypothesized that high-frequency (HF) recordings may be useful
in localizing the seizure onset (Fisher et al., 1992).

In the years that followed, many studies revealed that HF
oscillations (HFOs) in the 80–250-Hz frequency range, also
known as “ripples,” can be identified in the hippocampal and
parahippocampal regions of rodents (Buzsáki et al., 1992; Ylinen
et al., 1995), primates (Skaggs et al., 2007), and humans (Bragin
et al., 1999; Matsumoto et al., 2013). These studies identified
HFOs in healthy subjects or in epileptic patients performing
visual ormotor tasks (Matsumoto et al., 2013), while other studies
found an increased number of HFOs in brain regions that are part
of the epileptogenic network; therefore, the HFO was considered
to be a potential epilepsy biomarker (Urrestarazu et al., 2007;
Jacobs et al., 2009; Brázdil et al., 2010; Kerber et al., 2013;
Geertsema et al., 2015). However, in spite of the various existing
models of HFO generation (Fink et al., 2015; Helling et al., 2015),
it is still a matter of debate how to distinguish physiological and
pathological HFOs (Engel et al., 2009; Waldman et al., 2018).

Currently, the gold standard of marking HFOs is still based
on visual analysis of band-pass filtered signals, as described in
detail by Jacobs et al. (2009). It implies the filtering of the
electroencephalogram (EEG) signal in the 80–250-Hz frequency
range (“ripple” band) or 250–500Hz (“fast ripple” band),
followed by a visual search of portions of the filtered EEG signal
that have “clearly visible” higher amplitudes than the rest of the
signal. At least four oscillations have to be counted in each HFO
(Jacobs et al., 2009; Zijlmans et al., 2017). The main drawback
of this method derives from the fact that the human eye cannot
accurately evaluate a complex mix of frequencies by looking
at the filtered signal, as the high-amplitude low-frequency
components of the spectrum may obscure low-amplitude HFOs.
Moreover, it has been previously shown that interictal spikes and
sharp transients, when filtered in the HFO frequency range of 80–
250Hz, may result in HFO-like oscillations, leading to false HFO
detections, and it was suggested that HFOs should be identified
using time-frequency analysis (Bénar et al., 2010; Burnos et al.,
2014). The distinctive signature of true HFOs is considered to
consist in “blobs” of more or less regular shapes that are detached
from the time axis and whose centroid is located above 80Hz
(Bénar et al., 2010).

The aims of this report are to: (1) come up with a definition of
HFOs in the time-frequency domain, referring to the presence
of blobs having centroids located above 80Hz, by introducing
an analytical model that translates the one-dimensional (1D)
time-domain definition into the 2D time-frequency domain; and
(2) design a detector to identify HFO’s signature in 2D time-
frequency domain using computer-vision algorithms.

Most automatic HFO detector tool kits use the time-frequency
analysis solely for the visual validation of HFO candidates which
have been identified using a time-domain detection method
(Crépon et al., 2010; Burnos et al., 2014; Amiri et al., 2016; Fedele

et al., 2016; Liu et al., 2016). Therefore, HFOs that are not part
of the candidates will not be identified in the time-frequency
analysis step, resulting in “misses” or “false negatives.” Visual
analysis of time-frequency maps provides access to detailed
features of the HFOs, allowing for a better discrimination of
the true HFOs from the artifactual components (Bénar et al.,
2010). We aim at duplicating this complex process of visual
detection or validation of the HFOs using time-frequency maps
in a computer-based image analysis algorithm, to be used as a
high-performance HFO detector. In our study, we provide an
unsupervised detection algorithm that combines time-frequency
analysis and computer vision to replicate the “visual analysis”
of the time-frequency representation. Our algorithm performs
the detection directly in the time-frequency space, reducing
the number of potential misses. To avoid the limitations and
subjectivity of visual markings and the absence of a “ground
truth” in real EEG recordings confirmed by time-frequency
representations, we validate our automatic detector on simulated
EEG signals that contain a mix of discrete HFO events and pink
noise (Miyakoshi et al., 2013), with various signal-to-noise ratios
(SNRs). We compare the performance of our detector with four
previously published detection algorithms (Staba et al., 2002;
Gardner et al., 2007; Crépon et al., 2010; Zelmann et al., 2012)
using their implementation available in RIPPLELAB (Navarrete
et al., 2016). We also validate the detector on intracranial EEG
signals recorded during stereo-EEG procedures.

METHODS

Description of the Workflow for
High-Frequency Oscillation Detection
The detection algorithm flowchart is shown in Figure 1 and is
described in detail in the following sections.

Analytical Modeling of High-Frequency
Oscillations
Simulated signals, based on a general model of HFOs
superimposed on spikes or sharp transients (Urrestarazu et al.,
2007), are introduced for assessing the detector’s performance.

The spikes are considered to have a Gaussian shape,
characterized by the spike amplitude (Aspike) and the standard
deviation (σspike). In the time domain, it can be written as:

Spike(t) = Aspikee
− t2

2σ2
spike (1)

The HFO is modeled as a sinewave with a Gaussian envelope:

HFO(t) = AHFO · e
− t2

2σ2HFO
︸ ︷︷ ︸

envelope

· cos(2π · f0 · t)
︸ ︷︷ ︸

oscillation

(2)

where AHFO and σHFO. are the amplitude and the standard
deviation of the Gaussian envelope, and f0 is the frequency of
the sinewave.

Combining (1) and (2), we obtain the formula in the time
domain of an HFO superimposed on a spike:

x(t) = Spike(t)+HFO(t) (3)
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FIGURE 1 | Flowchart of detection algorithm.
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FIGURE 2 | High-frequency oscillation (HFO) model. (A) Simulated signal of HFO superimposed on a spike. The continuous blue line represents the HFO, while the

dashed blue line represents the spike. Their superposition is shown with a black line. (B) The amplitude spectral density of the signal.

In the frequency domain, the Fourier transform of the HFO’s
Gaussian envelope is also a Gaussian:

e
− t2

2σ2 ⇔
F √

2π σHFO e−2π2σ 2HFOf
2

(4)

The modulation theorem (Papoulis, 1962):

F{cos(2π f0t) · g(t)}(f ) =
1

2

[

G(f − f0)+ G(f + f0)
]

(5)

allows us to derive the equation for the frequency spectrum of
the HFO:

HFO(f ) = AHFO

√

π

2
σHFOe

−2π2σ 2HFO(f−f0)
2

(6)

The Fourier transform of the spike and HFO signal described in
the time domain by Equation (3) is therefore:

y(f ) = Aspike

√
2π σspikee

−2π2σ 2
spike

f 2

+ AHFO

√

π

2
σHFOe

−2π2σ 2HFO(f−f0)
2

(7)

Figure 2 visually illustrates a simulated signal based on ourmodel
(A) and its frequency spectrum (B). The spike has an amplitude of
Aspike = 2.5 au and 50-ms duration at full-width half-maximum
(FWHM). The HFO has a frequency of f0 = 100Hz, while its
envelope has an amplitude of AHFO = 1 au, 40-ms duration,
and four oscillations, both computed at FWHM. To make the
model more realistic, we have added a 1t = 15-ms delay to the
HFO with respect to the spike, by replacing t in Equation (2)
with t + 1t. One can clearly see in both Equation (7) and its
plot in Figure 2B that the spectral components of the spike are
represented by a Gaussian centered on the origin, whereas that
for the HFO, there is a Gaussian centered at f0.

Time-Frequency Maps
The 1D analysis in the frequency domain alone has a number
of limitations. First, in the context of EEG signal analysis and
visual markings of HFOs, it has been previously shown that notch
filtering (Kirac et al., 2016) and high-pass filtering of spikes and
sharp transients may produce artifacts that can be easily mistaken
as HFOs (Bénar et al., 2010). A second limitation relates to
the fact that low-frequency components of the spectrum have
a higher amplitude than the HF components, thus restricting
the visual analysis to oscillations that are close to the high-
pass filtering frequency, which are shadowing higher-frequency
lower-amplitude oscillations that may be also present in the
EEG signal.

The most commonly used method for computing time-
frequency maps is by employing a continuous wavelet transform,
which is defined as:

x(s, τ ) =
1

√
|s|

∞∫

−∞

x(t)ψ̄

(
t − τ
s

)

dt (8)

where Ψ is the mother wavelet, s is the scale of the mother
wavelet, and τ is the translation of the mother wavelet.

The wavelet transform has been intensively used to study a
wide range of neurological diseases (Ahmadlou et al., 2012a,b;
Sankari et al., 2012) and can be implemented in applications
such as single-unit isolation (Ortiz-Rosario et al., 2015), seizure
detection (Li et al., 2016), and brain computer interfaces (Hsu,
2011).

For EEG signal analysis, the Morlet wavelet is perhaps the
most commonly used and was found to be particularly useful in
HFO analysis (Le Van Quyen and Bragin, 2007). As it has been
successfully used in previous studies for both visual validation
of manual markings (Bénar et al., 2010; Crépon et al., 2010;
Alkawadri et al., 2014; Navarrete et al., 2016) and automatic HFO
detectors (Zelmann et al., 2010), we decided to use it in the
current study.

The Morlet mother wavelet (Figure 3A) has been initially
introduced for the analysis of geoseismic signals (Goupillaud
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FIGURE 3 | Time-frequency representation of the high-frequency oscillation (HFO) model. (A) The Morlet wavelet. (B) The frequency spectrum of the Morlet wavelet.

(C) Time-frequency map of the HFO model defined by Equation (3). (D) The instantaneous amplitude spectral density of the HFO.

et al., 1984) and is a particular case of the more general Gabor
wavelet, defined by Equation (9), in which 2π · f0 = 5(Kumar and
Foufoula-Georgiou, 1997). Le VanQuyen et al. (2001) defined the
number of cycles as nco = ωσ = 2π · f0.

ψ(t) = e
− t2

2σ2
︸ ︷︷ ︸

envelope

· cos(2π · f0 · t)
︸ ︷︷ ︸

oscillation

(9)

The frequency spectrum of the Morlet wavelet is shown in
Figure 3B. Within the continuous wavelet transform, the Morlet
wavelets are scaled so that their envelope’s standard deviation fits
the duration of various oscillations within the EEG signal.

The time-frequency representation of the analytical signal
defined by Equations (1–3) and plotted in Figure 2A containing a
prototype HFO superimposed on a spike is shown in Figure 3C.
One has to note the appearance of the HFO as a blob that is
isolated from the low-frequency components of the spike. A
cross section of the time-frequency map, performed at a time
corresponding to the peak of the HFO (Figure 3D), shows a
spectral density in agreement with the analytical form plotted
in Figure 2B. The presence of blobs and their characteristics
(amplitude, centroid, FWHM) will be used in the subsequent
analysis as the signature of true HFOs.

Computer Vision for Automatic
High-Frequency Oscillation Detection
Our automatic HFO detector is based on time-frequency
maps that are computed for a specified interval (1 s) of

EEG signal (Figure 4A) by performing a continuous wavelet
transform. Consecutive windows have a 200-ms overlap that
ensures HFO candidates located at the window edges will
still be detected in at least one window. A computer-vision
algorithm processes each time-frequency map (Figures 4B,D)
as an image, attempting to identify blobs that correspond to
the presence of the HFOs. This approach aims to automate
the visual analysis of time-frequency representations that
would be performed by a human. So, in this context,
computer vision means all processing steps performed on
the time-frequency images that lead to the identification of
HFO candidates.

We suppress structures that are lighter than their
surroundings and that are connected to the image border
(Soille, 2004) (this step is useful to discard any wavelet filtering
artifacts located at the extremities of the time window and
to eliminate low-frequency components of the signal). Otsu’s
method allows us to compute a threshold which is further
used to convert the image to black and white (Otsu, 1979).
We use the black-and-white image to perform blob analysis
and detection (Figures 4C,E). The blob analysis is performed
using the “vision.BlobAnalysis” function in Matlab’s Computer
Vision Toolbox. This function analyzes the black-and-white
image and, for each white blob resulting after image binarization,
computes the blob centroid coordinates, width and height in
pixels. Knowing the exact dimensions of the image and the
screen’s resolution, we can determine the exact location in
time, frequency, and the amplitude of each detected blob in the
original time-frequency representation (Figure 4F).
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FIGURE 4 | Automatic high-frequency oscillation (HFO) detection. (A) Electroencephalogram (EEG) signal. (B,D) Time-frequency representations at two different

amplitude thresholds. (C,E) Detected blobs shown in white. (F) HFO detection.

Detection Validation Criteria
Blobs detected in the previous step are considered HFO
candidates, which are validated as HFOs using the
following criteria:

1. 80 < HFOfrequency < 250Hz (ripples) or 250 < HFOfrequency

< 500Hz (fast ripples)
2. HFOduration > Nosc

∗ 1/HFOfreq

3. HFOamplitude > 3.5 ∗ Cthresh (adapted from Alkawadri et al.,
2014).

where HFOfrequency → blob’s centroid frequency; HFOamplitude

→ blob’s centroid amplitude (wavelet coefficients); HFOduration

→ width of the rectangle which contains the blob; Nosc = 4.5
→ minimum number of oscillations at HFOfrequency (adapted
from Haegelen et al., 2013, and Jacobs et al., 2010); Cthresh →
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mean of wavelet coefficients in the 80–100-Hz range, computed
on time intervals where the wavelet coefficients are less than the
amplitude threshold.

Image Intensity Thresholds
The steps described in previous paragraphs only take into
account one intensity threshold of the time-frequency image. As
the amplitude of various frequencies within the EEG signal shows
large variations, it is required to use a variable image intensity
threshold to be able to detect the HFOs in the upper frequency
range of the spectrum, which would otherwise be shadowed by
the higher amplitudes of the lower-frequency components within
the spectrum (Figures 4B,D).

Our algorithm starts with an initial threshold computed as
the root mean square (RMS) of the EEG signal for the selected
channel, computed during the first 15 s. This step ensures the
adaptation of the algorithm to the different EEG amplitudes
which are found on different channels.

The threshold is then decreased exponentially starting from an
initial threshold using a geometric progression with a common
ratio of 0.8:

threshi = 0.8i−1 · thresh0 (10)

where threshi is the i-th therm of the geometric progression and
thresh0 is the initial threshold, computed as the RMS of the first
15 s of the EEG signal.

For each image intensity threshold, we repeat the previously
described steps. For the decreasing thresholds, the detectedHFOs
are considered identical and not marked if the rectangle of the
newly detected HFO already contains the centroid of a previously
detected HFO. In this way, we avoid false large markings which
may occur due to the fact that two nearby blobs may become one
larger blob at lower thresholds.

The processing steps described above were implemented in
Matlab R2016a using the “vision.BlobAnalysis” function in the
Computer Vision Toolbox. As the Computer Vision Toolbox
requires a license, we have provided a compiled executable
version of our detector at https://bitbucket.org/cristidonos/
hfodetector. The algorithm performs a detection on a 1-s window
signal at 15 different image intensity thresholds in ∼1.5–2 s on a
laptop (Asus Q324U, Intel R© CoreTM i7 7500U CPU, 16GB RAM).

Simulation Data
Three hundred HFO events were simulated using the previously
described formula [Equation (2)]. The HFO amplitude was
normalized to 1, while the frequency was randomly distributed
in the 80–250-Hz range. The HFO duration at FWHM was
frequency dependent, so that it will be 5, 6, or 7 oscillations long
at the HFO frequency in the simulation dataset. We will refer to
the 300 s continuous signal having 2 kHz sampling rate and one
HFO every second as our simulated HFO signal.

The choice of pink noise was motivated by the resemblance
with the frequency spectrum of real EEG recordings, as well
as their previous usage in previously published HFO detection
studies (Miyakoshi et al., 2013). Three hundred seconds of
pink noise with a sampling rate of 2 kHz were generated. The

amplitude of the noise signal was normalized to ± 1 au. We will
further refer to this signal as our simulated noise signal.

Four additional signals were obtained by performing a
weighted summation of the simulated HFO and the simulated
noise signals so that constant SNRs of −9, −6, −3, and 0 dB
were obtained. The combined signal (Sigcombined) was obtained by
multiplying the pink noise (noise) by a factor f so that the desired
SNR (SNRdB) is obtained, according to the formula:

Sigcombined = SigHFO + f · noise

where f = 2

∣
∣
∣
SNRdB

3

∣
∣
∣ · RMS(SigHFO)

RMS(noise) and SNRdB ∈ {−9;−6;−3; 0}.
The simulation dataset and a Matlab GUI of our detection

software are made available for testing at https://bitbucket.org/
cristidonos/hfodetector.

Comparison With Other High-Frequency
Oscillation Detectors
Four previously published automatic detectors were used to
perform HFO detection on the same simulation dataset using
their implementation in RIPPLELAB (Navarrete et al., 2016).
As named in RIPPLELAB, the four detectors are Hilbert (HIL)
(Crépon et al., 2010), MNI detector (MNI) (Zelmann et al., 2010),
Short Time Energy (STE) (Staba et al., 2002), and Short Line
Length (SLL) (Gardner et al., 2007). For all four detectors in
RIPPLELAB, we set the frequency range to 80–250Hz and the
epoch duration to 300 s. Two additional parameters were tuned
for MNI and STE, and we will discuss the reasoning in the
Results section. All remaining parameters were used with their
default values, recommended by the original papers describing
the algorithms and successfully used for similar comparisons on
manually annotated EEG data (Zelmann et al., 2010; Navarrete
et al., 2016; Roehri et al., 2017). For all detectors, we computed
the number of true (TPs) and false positives (FPs), the positive
prediction value (PPV), the sensitivity (Sens), and the F-measure.
F-measure is defined as F = 2 PPV·Sens

PPV+Sens (or
TP

TP+ FP+FN
2

, where FN

is the number of false negatives).

Intracranial Electroencephalogram Data
The detection algorithm’s performance was also evaluated on
intracranial EEG data recorded during slow-wave sleep (Jacobs
et al., 2008; Alkawadri et al., 2014) in six patients undergoing
stereo-EEG presurgical evaluation for drug-resistant epilepsy in
our epilepsy center using the methodology described in Donos
et al. (2017). For each patient, we selected a total of six bipolar
EEG traces recorded on three contacts located in epileptogenic
areas and three contacts located in non-epileptogenic areas, and
we performed automatic detection of HFOs on a 5-min EEG
segment. The detections were visually inspected independently
by two experienced reviewers (CD, AB) based on a combined
display of the raw EEG trace, the 80–300-Hz filtered EEG trace,
and the time-frequency representation of the signal. Detections
that did not meet the standard inclusion criteria (Jacobs et al.,
2009, 2012; Zijlmans et al., 2017), including the appearance as
blob separated from the time axis on time-frequencymaps (Bénar
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FIGURE 5 | Examples of simulated high-frequency oscillations (HFOs) and pink noise with signal-to-noise ratios (SNRs) of 0, −3, −6, and −9 dB. (E–H) show the

time-frequency maps of the simulated signals in (A–D). The simulated HFO is centered at 0.5 s in all panels. Events that passed the HFO validation criteria are marked

in green. The rectangle represents the duration and frequency extent of the HFO, while the circle shows the HFO’s center in time and frequency.

et al., 2010; Roehri et al., 2017) were rejected as FPs. The inter-
rater agreement was quantified by Cohen’s kappa coefficient
(Cohen, 1960).

RESULTS

Detector Evaluation
The automatic detection algorithm was run on the simulation
dataset. Figure 5 shows a simulated HFO at 88Hz, superimposed
on the noise signal with SNRs of 0 (Figure 5A), −3 (Figure 5B),
−6 (Figure 5C), and −9 dB (Figure 5D). The corresponding
time-frequency representations are provided in Figures 5E–H.

If multiple candidate events were detected within some limits
of tolerance in both time (50ms) and frequency (5Hz), they
were merged and considered as a single event. Detections within
the tolerance limits were compared to the known time and
frequency location of each simulated HFO and were considered
TPs, while other detections were considered FPs. Whenever
multiple detections within the tolerance limits occurred due to
detection window overlap and the associated baseline changes,
they were considered as unique events.

For our detector, the number of TPs ranged between 193
at −9 dB SNR and 299 at −6, −3, and 0 dB SNRs for the
mixed simulated HFOs and noise signals. A small number of
FPs were detected at all SNRs, with a maximum of 15 FPs at
−6 dB SNR. Figure 6 shows the time and frequency distribution
of TPs and FPs for all SNRs pooled together. Our detector
successfully detected simulated HFOs that cover the whole 80–
250-Hz frequency range. The time and frequency localization
errors of each simulated HFO were computed as the difference
between the ground truth simulated values and the detection
values. The average time localization errors and the average
frequency localization errors had similar values regardless of the
SNR:∼ 5ms and∼0.8Hz, respectively (Table 1).

The PPVs were above 0.95 for all SNRs. Sensitivity and
F-measure were 0.64 and 0.77 at −9 dB SNR, but they both
increased to more than 0.97 for the remaining SNRs.

The FPs were either simulated HFOs detected outside the
time and frequency tolerance limits, either random oscillations
in the pink noise that matched the HFO detection criteria
by chance.

The performance metrics of our detector are shown in detail
in Table 1 and are compared to four other detection algorithms
implemented in RIPPLELAB in Figure 7. Results in Table 1 and
Figure 7 are obtained for simulation dataset.

The detector is able to detect HFO events with virtually
any frequency by adjusting the frequency criterion (1)
described in the Detection Validation Criteria section. In
the Supplementary Material, we have validated the detector
with an additional dataset of simulated HFOs in the fast ripple
band (250–500Hz), and we obtained similar sensitivity results.
The ability to detect even higher-frequency events can be
accommodated by adjusting the time and frequency intervals,
as well as the resolution of the time-frequency maps, such that
the blobs associated with HFOs having the minimal number
of oscillations will have a minimal area that will allow the
computer-vision algorithm to properly operate.

Comparison With Other Automatic
Detectors
We used the same evaluation scheme as described in Detector
Evaluation based on comparing detections to the ground truth of
the simulated HFO parameters.

MNI and STE almost failed to detect HFOs with their default
parameters. The MNI detector had the initial baseline duration
set to 125 s, and using this value, the detection sensitivity and F-
measure were <0.05 at all SNRs. After decreasing the baseline
duration to 15 s, the detection greatly improved. STE requires
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FIGURE 6 | Distribution of high-frequency oscillation (HFO) detections in time and frequency for the simulation dataset. True positive (TP) and false positive (FP) are

represented in blue and orange in the scatterplot and in the histograms.

TABLE 1 | Detection performance of our detector on the simulation dataset

across various SNRs.

SNR −9 dB −6 dB −3 dB 0 dB HFOs

only

Noise

only

Number of simulated HFOs 300 300 300 300 300 0

TP 193 295 299 299 299 0

FP 7 15 6 2 0 7

PPV 0.965 0.952 0.980 0.993 1.000 0

Sensitivity 0.643 0.983 0.997 0.997 0.997 0

F-measure 0.772 0.967 0.988 0.995 0.998 0

Mean time localization error 0.005 0.005 0.005 0.005 0.005 -

SD time localization error 0.004 0.003 0.003 0.003 0.003 -

Mean frequency localization error −0.787−0.832−0.824−0.824−0.824 -

SD frequency localization error 1.281 1.162 1.156 1.156 1.156 -

FP, false positive; HFO, high-frequency oscillation; PPV, positive prediction value; SNR,

signal-to-noise ratio; TP, true positive.

explicit definition of the minimum number of oscillations for
HFO events. Since all our simulated HFOs had five, six, or
seven oscillations, we set the minimum number of oscillations
to 4.5, the same value we use for our detector. Additionally, the
MNI detector did not detect any HFOs in the absence of noise
(SimHFOs). A possible explanation is that the MNI detector
relies on a baseline period for detection, which in the absence of
noise was maybe too similar to the HFO simulations which were
targeted for detection.

Our detector and MNI surpassed all other detectors in terms
of sensitivity, F-measure, and number of TP at all SNRs. However,
MNI performed slightly better at −9 dB in terms of TPs (234 vs.
193) but also had a significantly larger number of FPs, ranging

between 28 vs. 7 at−9 dB and 34 vs. 2 at 0 dB. Consequently, our
detector reached higher PPVs at all SNRs and higher F-measures
for−6,−3, and 0 dB.

The HIL and SLL detectors had almost similar TP and
sensitivities, but overall, we would say that SLL performed better
due to the fact that SLL had a sensitivity of 0.44 at −9 db SNR,
which increased to 0.69 at 0 dB SNR. HIL had 0 sensitivity at
−9 db but quickly increased to 0.07, 0.5, and 0.77 at −6, −3,
and 0 dB, respectively. Similar increase trend was observed for F-
measure: SLL was more consistent across various SNRs, but HIL
reached 0.87 at 0 dB SNR. STE had its highest sensitivity of 0.29
and its highest F-measure of 0.17 at 0 dB. While investigating the
causes of such sensitivities, we observed that STE’s performance
can be improved by reducing the detection threshold from 5 to
2.5 standard deviations, represented by the “RMS SD_threshold”
field in RIPPLELAB. However, for the purpose of our simulation,
it is important to use the detection parameters already optimized
and validated in real EEG data by the authors of each detection
algorithm to be able to properly compare performances between
various methods.

Our detector had a few FPs at all SNRs, reaching a maximum
of 15 at−6 dB. MNI had 28 FPs at−9 and−6 dB SNR. MNI had
34 FPs at−3 and 0 dB, and in the noise only signal. STE had only
34 FPs in the noise only signal. In other cases, no more than 1–2
FPs were detected, regardless of the SNRs. As a consequence, all
detectors have a PPV equal or very close to 1.

Performance on Real
Electroencephalogram Data
A total of 173 HFOs were detected across all 36 EEG
channels recorded intracranially in six patients diagnosed with
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FIGURE 7 | Comparison of detection performance in the simulation dataset. SimHFOs is the signal containing only simulated high-frequency oscillation (HFO), while

SimNoise is the signal containing only the pink noise.
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FIGURE 8 | High-frequency oscillation (HFO) with a particular morphology, simultaneous with an epileptic spike, detected on intracranial electroencephalogram (EEG).

The panels show raw EEG signal (A), filtered EEG in 80–500-Hz frequency rage (B), and the time-frequency representation (C).

drug-resistant epilepsy, undergoing presurgical evaluation at
the University Emergency Hospital of Bucharest. All patients
consented to participate in the study and provide EEG. A
detection illustrating the ability of our algorithm to discriminate
HFOs having an irregular shape, superiposed on spikes, is shown
in Figure 8. After visual validation, 19 events were rejected by
at least one reviewer and were classified as FPs, while 154 (89%)
events were visually confirmed. Of the 19 events, five were
rejected by both reviewers. Cohen’s kappa was 0.375, showing
a non-accidental fair agreement between the two independent
reviewers. The mean number of HFOs per channel was 5.5 ±
6.46, resulting in an average HFO rate of 1.1 events per minute.
The mean HFO frequency was 146.72 ± 54.98, and the mean
HFO duration was 39 ± 14ms. It has to be noted that actual
EEG recordings have been used in order to create a dataset
of real HFOs for validating the detector, not to determine the
clinical relevance of the detected HFOs. The study is a purely
methodological one that aims to provide an HFO detection
method that is built on a mathematical model and is therefore
immune to the subjectivity of manual markings. The tool we
have developed and made available to the scientific community
could be used in the future to better assess the clinical utility
of HFOs.

DISCUSSION

The HFOs are thought to be a correlate of tissue epileptogenicity
(Urrestarazu et al., 2007; Jacobs et al., 2009, 2012; Brázdil et al.,
2010; Kerber et al., 2013). Being considered a potential biomarker
of epileptogenic tissue, HFOs drew a lot of attention from
the scientific community. Based on the gold standard of HFO
identification, which is the band-pass filtering combined with
visual analysis, a large number of automatic HFO detectors
emerged (Staba et al., 2002; Gardner et al., 2007; Crépon
et al., 2010; Zelmann et al., 2010; Dümpelmann et al., 2012;
Gliske et al., 2015). However, all of the detectors mentioned
above rely, at least to some extent, on the optimization of the
detection against some visually marked HFOs. The subjectivity
of visual markings, quantified by the Cohen’s kappa coefficient
(Cohen, 1960), is reflected by the direct comparison of four
automatic detectors (Zelmann et al., 2012), a study in which the
median kappa coefficient varied in the 0.05–0.97 range for the
four detectors. Indeed, this limitation is also acknowledged by
Dümpelmann et al. (2012), which shows that the automatically
detected HFOs partially overlap with the visual markings, but
nevertheless, the overall HFO rates across channels reflect the
patient’s epileptogenicity. Considering all of the above, we believe
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that a standardized model of HFOs is much needed, a model
which can be described throughmathematical equations and that
can be further used to validate automatic detection algorithms.
In this study, we provide such an analytical model of the HFO,
together with a practical way of identifying the HFOs from real
EEG data in an unsupervised manner.

The use of simulated HFOs, whose time localization, duration,
and frequency are known, considered to represent the ground
truth for evaluating our detection algorithm allows us to
overcome the layer of uncertainty caused by the subjectivity of
manual HFO markings in real EEG data, for which the ground
truth is unknown. Our algorithm showed high sensitivity and
F-measure across various SNRs, ranging from 0.64 and 0.77 at
−9 dB to 0.997 and 0.995 at 0 dB, respectively. This is a clear
proof that our detection algorithm is able to find the HFOs that
match the HFO guidelines in terms of frequency and number
of oscillations, provided by previous studies (Jacobs et al., 2010;
Alkawadri et al., 2014). As a second validation step, we used
our HFO detector on intracranial data recorded from patients
undergoing stereo-EEG presurgical evaluation for drug-resistant
epilepsy. Detections were visually validated by two independent
expert reviewers, resulting in 89% of detections being visually
confirmed as HFOs. We relied on the fact that our detector had
an insignificant number of FPs on simulated data and assumed
a similar number of FPs on real EEG data as well. This was
indirectly confirmed by the visual validation of the detections and
the HFO rates, which were 1.1 events per minute, in agreement
other studies (Alkawadri et al., 2014).

The direct comparison on the same simulated dataset between
our detector and four other automatic detectors showed that our
method provides better sensitivities and F-measures, which are
robust in respect to SNR changes. Interestingly, the STE and
MNI detectors failed to generally detect the simulated HFOs
with their default parameters, which were optimized based on
visual markings of real EEG data. While their performance
on simulated data was improved by changing some of their
parameters, it is very likely that such changes will affect their
performance on real EEG. The remaining algorithms, HIL and
SLL detectors, had moderate performance across all SNRs.

An interesting observation is that the simulated pink noise
contains some “HFO-like” events, which are within the HFO
frequency range and meet the other detection criteria defined in
the Methods section. The presence of HFO-like events in noise,
without electrophysiological substrate, may explain to some
extent the modest inter-rater agreements andmodest sensitivities
that were previously reported in HFO studies (Zelmann et al.,
2010; Dümpelmann et al., 2012; Spring et al., 2017).

The four detectors that we compare ours with use indirect
ways of detecting and quantifying oscillations in the time domain
(line length) or across a frequency range which is biased toward
its low edge of the spectrum. These detectors do not heavily
rely on the mathematical properties of oscillations, instead, they
eventually use empirically derived features tuned tomaximize the
match between the detections and the visual markings of HFO.
A new dataset of simulated HFOs, generated by an innovative
method combining an autoregressive model for simulating EEG
and discrete wavelet transforms for extracting HFOs from visual
markings, was made available by Roehri et al. (2017). However,

this dataset also lacks the information about HFO frequencies.
Nevertheless, this simulation dataset is used for comparing
Delphos, a new detection algorithm with the four other detection
algorithms in RIPPLELAB. While such detection algorithms
proved to be useful in delineating the epileptogenic areas (Jacobs
et al., 2008, 2009; Zijlmans et al., 2011; Burnos et al., 2014;
Fedele et al., 2016), it is still a matter debate how to differentiate
pathological from physiological HFOs (Engel et al., 2009; Jefferys
et al., 2012; Fink et al., 2015). Using our automatic detector,
the HFO analysis and the quest for separating pathological and
physiological HFOs can extend to another dimension, by using
the frequency information.

In agreement with a previous study (Roehri et al., 2017),
we conclude that based on our simulated data, optimizing an
HFO detector to visual markings is not enough to ensure a
robust detection across various SNRs. Paradoxically, detectors
that generally failed to detect true oscillations, matching the
HFO detection criteria on our simulated dataset, are successful
in localizing the epileptogenic focus in real EEG data (Staba et al.,
2002; Zelmann et al., 2010). The fact that visually marked (or
detected by automatic detectors tuned to visual markings) HFOs
are positively correlated to epileptogenic areas may be explained
by the high number of other types of interictal events, like spikes
and sharp-waves (Engel and da Silva, 2012; Staba, 2012; Zijlmans
et al., 2012). These events, known to be associated with the
epileptogenic cortex, have an HF content that may be mistaken as
HFOs in the filtered signal (Bénar et al., 2010; Amiri et al., 2016).
Our unsupervised detector operates directly on time-frequency
representations of the EEG signal and looks for “blobs” in the
time-frequency space, anHFO landmark, as shown by Bénar et al.
(2010). Although the HFO model discussed in this paper is a
simplified one, based on HFO “atoms,” our detection algorithm
generalizes very well to complex real EEG data, in which HFOs
often appear on time-frequency representations as blobs with
irregular shape. Figure 8 shows an HFO superimposed on an
epileptic spike, centered at 237Hz, with a duration of 18ms, that
has a particular morphology: it starts at a frequency above 300Hz
and decreases to roughly 220Hz over ∼30ms. Studying the
specificmorphology of HFOsmay be important in distinguishing
pathological from physiological HFOs, although a recent study
on a limited subset of four morphological types demonstrated a
limited value in delineating the epileptogenic zone (Burnos et al.,
2016).

The extent to which HFOs detected on a time-frequency
map are correlated with the epileptogenic areas remains to
be determined by future clinical studies. In the meantime,
we provide additional evidence that there is an inconsistency
between the gold standard HFO detection criteria in time-
amplitude domain and the actual signal characteristics in time-
frequency domain. We come to the conclusion, just like Roehri
et al. (2017), that HFO detection criteria need to be revisited by
taking into consideration both time and frequency characteristics
of HFOs.

CONCLUSIONS

We provide a method for the automatic detection of HFOs
that uses a computer-vision approach for detecting the
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HFO landmarks on time-frequency maps. The algorithm
was validated using simulated data, based on an analytical
model of the HFOs, as well as intracranial EEG. A
mathematical model in time and frequency domain provides
a justification of “blobs” unambiguously identifying true
HFOs in time-frequency maps. Our detection algorithm
was proven to have a high F-measure over a wide range
of SNRs.
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