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ABSTRACT

Deep periocular cancers can be difficult to plan and treat with radiation, given the difficulties in apposing bolus
to skin, and the proximity to the retina and other optic structures. We sought to compare the combination of
electrons and orthovoltage therapy (OBE) with existing modalities for these lesions. Four cases—a retro-orbital
melanoma (Case 1) and basal cell carcinomas, extending across the eyelid (Case 2) or along the medial canthus
(Cases 3–4)—were selected for comparison. In each case, radiotherapy plans for electron only, 70% electron
and 30% orthovoltage (OBE), volumetric-modulated arc therapy (VMAT), conformal arc, and protons were
compared. Dose–volume histograms for planning target volume coverage and selected organs at risk (OARs)
were then calculated. The V90% coverage of the planning target volume was >98% for electrons, VMAT, con-
formal arc and proton plans and 90.2% and 89.5% in OBE plans for Cases 2 and 3, respectively. The retinal
V80% was >98% in electron, VMAT and proton plans and 79.4%; and 87.1% in OBE and conformal arcs for
Case 2 and 91.3%, 36.4%, 56.9%, 52.4% and 43.7% for Case 3 in electrons, OBE, VMAT, conformal arc and pro-
ton plans, respectively. Protons provided superior coverage, homogeneity and OAR sparing, compared with all
other modalities. However, given its simplicity and widespread availability, OBE is a potential alternative treat-
ment option for moderately deep lesions where bolus placement is difficult.
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INTRODUCTION
Periocular malignancies, particularly skin cancers, are difficult to
treat due to the sensitive location of the tumor with regards to
organs at risk (OARs) such as the retina, lens, and optical nerve.
Traditionally, orthovoltage photon therapy or electron treatments

are used to treat superficial lesions; however, due to the challenging
anatomy, neither technique currently provides the oncologist with
optimal dose distributions for tumor coverage and eye sparing.
Whereas orthovoltage treatments are inadequate for treating deeper
tumors but provide an excellent opportunity for shielding the eye
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due to sharp radiation penumbras, electron beams produce out-of-
field scatter, which deposits more dose in the retina or lens, and
they are challenging to shield [1, 2]. In these cases, bolus (e.g. of
wax or Superflab Bolus Material) can extend the dose coverage to
the skin surface, but results in large treatment volumes, poorly
reproducible set-up and decreased dose at depth, while tantalum
mesh maintains dose at depth but causes inhomogeneities [1, 3].

Recent therapy developments include use of IMRT techniques
[e.g. volumetric-modulated arc therapy (VMAT)], proton therapy
and brachytherapy [4–8]. However, these treatments have associated
costs and require specialized support staff and experience [8–10].
While attractive due to their Bragg peak, protons remain unavailable
to many centers, particularly in Canada and Australia. IMRT and
brachytherapy are more widely available, but IMRT is associated
with a high out-of-field dose due to the many beam projections
involved, while penetration suffers in brachytherapy due to inverse-
square drop-off. Because of this, alternative treatments such as oculo-
plastic surgery, Moh’s micrographic surgery or radiotherapy with
plan for salvage enucleation are often used [11].

We propose a combination of megavoltage (MV) electron radio-
therapy and orthovoltage/kilovoltage (kV) X-rays to optimize treat-
ment both at depth and at the skin surface. The objective of this
study was to describe this novel technique, its rationale and its clin-
ical set-up, and to provide proof-of-concept by comparing dose dis-
tribution with other modalities in four potential clinical cases: OBE,
electrons alone, VMAT plans using coplanar beams, non-coplanar
dynamic arc therapy, and protons.

Historically, kilovoltage X-ray therapy has not been used to its
potential. This is partly due to technical limitations in computing
dose distributions, which means that dose distributions are very
rarely (if ever) assessed in orthovoltage radiotherapy [12, 13]. In
this study, we use the recently developed and thoroughly validated
kilovolt X-ray dose calculation algorithm kVDoseCalc to calculate
patient-specific kilovolt dose distributions [14–19]. While our study

is based on a limited four cases, we have established the potential of
this novel technique for offering a cheaper, more convenient alter-
native to protons in treating periocular tumors.

MATERIALS AND METHODS
Proposed technique rationale

Both orthovoltage X-ray and electron therapy have long been used
in treating surface and near-surface tumors. However, each tech-
nique has limitations regarding potential in treating periocular
tumors.

Electrons benefit from a finite range, which can limit the dose to
deep OARs such as the optical nerve. However, the presence of a
build-up region leads to a low surface dose, particularly at lower
energies and wide penumbras. While the surface dose can be
increased by the placement of bolus, this reduces the range of the
electrons in the tissue, necessitating the use of a higher electron
energy and, consequently, even wider penumbras.

In contrast, secondary charged particles released by orthovoltage
X-rays have submillimeter range. Consequently, they show no build-
up region (i.e. high surface dose) and sharp penumbras, which allow
for geometric sparing of OARs. However, their lower energy
increases attenuation and the influence of the photoelectric effect;
therefore, dose fall-off is faster than with megavolt photons, and
they can deposit up to approximately four times more dose in bone.

We propose combining electron and orthovoltage therapy to
maximize the advantages and mitigate the disadvantages of these
two techniques. When using a cleverly weighted sum consisting of
70% 9 or 12 MeV electrons + 30% 200 kVp photons, a combined
dose distribution is produced in which the kilovolt photon fall-off is
almost perfectly compensated for by build-up in the electron beam,
such that the percentage depth dose (PDD) is nearly flat (<1% vari-
ation) within the first 4 cm. Furthermore, the combined beam has a
tighter penumbra compared with the electron beam, potentially
allowing for geometric sparing of the OAR. Figure 1 shows the
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Fig. 1. Percentage depth–dose profile for 12 MeV electrons (broken blue line), 200 kVp orthovoltage photons (red dotted
line), EO Bump (broken orange line) and EO Bump renormalized to 100% dose (black).
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central axis PDD for a 6 × 6 cm2 12 MeV electron beam, and a
6 cm 200 kVp orthovoltage beam at 30 cm focal-to-surface distance
(FSD). The cross-sectional profile can be seen in Supplementary
Fig. 1.

Since they are delivered independently on different treatment
units, the electron and orthovoltage components of the OBE tech-
nique are independently prescribed at dmax (for electrons) and sur-
face (for orthovoltage). However, the OBE PDD has a nominal
maximum value of 90%, thus a normalization by 1.1 to bring dmax
to 100% is necessary. In practice, since the dose at the edges of the
field is lower than at the CAX due to scatter and penumbra, the
OBE was prescribed to bring dmax to 107% of the prescribed dose,
with the intent to keep the planning target volume (PTV) dose
between 95 and 107%.

Patient cases
We identified four patients presenting periorbital malignancies trea-
ted between December 2013 and December 2016. Patient 1 had a
pathologically proven retro-orbital melanoma and refused enucle-
ation (Case 1). Case 2 was a basal cell carcinoma of the right orbit
with destruction of the upper lid and extension to the frontal bone.
Cases 3 and 4 were basal cell carcinomas of the medial canthus
abutting the globe and extending along the lid to different extents.
Patients 1 and 3 were treated with conformal arc therapy, Patient 2

with electrons, and Patient 4 with OBE. For each patient, retro-
spective radiation therapy plans were created for each modality
using their original simulation CT and structure set. The Health
Research Ethics Board of Alberta reviewed the protocol and found
that the research qualified as a quality assurance/improvement
review and did not require a formal research ethics review [20]. In
the case of patient set-up being presented, written consent was
obtained to use photographs.

Set-up
Each patient in this study had previously undergone CT simulation
scanning with an Aquaplast® shell (Aquaplast Corp, Avondale USA)
immobilization mask with external metal ball bearing (BB) markers
for laser localization. Passive eye immobilization involved directed
gaze to a pin-hole. For cases treated with non-coplanar arcs or
VMAT, institutional standards of practice were adhered to and pre-
scription doses were between 4000 cGy in 10 fractions and
5000 cGy in 20 fractions at the discretion of the treating physician.
For the case treated with OBE (Case 4) and the case treated with
electrons (Case 2), the prescribed dose was similar when the radio-
biologic effective dose was taken into consideration. With set-ups as
shown in Fig. 2, the orthovoltage bump patient first received elec-
tron therapy for 7 out of 10 scheduled fractions. No bolus was used
in these treatments, and patients were immobilized in an Aquaplast®
shell (Aquaplast Corp, Avondale USA) that was cut out around the
affected eye. During electron treatment, a small tungsten shield was
placed directly in the electron applicator and held in place using a
magnet, such that the patients’ globes were not receiving the pri-
mary dose from the electron beam. Position was optimized using
the Linac light field. The remaining three fractions of radiation were
delivered using 200 kVp orthovoltage therapy and a custom lead
cut-out with a tungsten internal eye shield.

Contouring
All patients were contoured by the same physician according to
guidelines described by Brouwer et al. [14]. For all patients, add-
itional structures included the eyelid and the retina, defined as a
2 mm internal contour of the eye contour excluding the anterior
chamber. Gross tumor volume (GTV) structures were contoured by
the treating physician and confirmed by a second coauthor in all
cases. The clinical tumor volume (CTV) was defined as a 1 cm sym-
metric expansion about the GTV and cropped to normal uninvolved
bone and globe. The PTV was a symmetric 3 mm expansion about
the CTV in all cases. Example contours for each of these are found
in Supplementary Fig. 2. For VMAT, planning optimization struc-
tures were made as follows: VMAT_PTV 1 mm symmetric expan-
sion about the PTV, PTV plus retina, PTV minus retina, and retina
outside of PTV.

Because of limitations in the CT planning software with shield
modeling, an additional evaluatory PTV (PTVEval) was created for
OBE calculations when applicable. This structure consisted of the
original PTV trimmed to a line parallel to the field and perpendicu-
lar to the position of the eye shield to provide adequate modeling
of the same (Supplementary Fig. 3) [15]. This was of particular
importance in Case 2, where the gross tumor involved the eyelid

Fig. 2. Set-up for combination electrons with orthovoltage
bump cases. Top: electron portion of treatment. Patients are
immobilized within an Aquaplast shell; orbital shielding
(only in medial canthus cases) is provided directly in the
aperture. Bottom: orthovoltage therapy is performed with a
tungsten eye shield in place and a custom lead cut-out.
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and would be treated in practice, but there would be little dose
below the eyelid due to shielding. In subsequent dose–volume histo-
gram (DVH) calculations, this PTV was used and compared with
the PTVs as described above for all other plans.

Dosimetric calculations
Proton plans were generated in a proton therapy facility by an
expert planner using the Aria EclipseTM version 13.6.14 for a
250 MeV dual-scattering MeVion synchrocyclotron therapy device
[16]. Non-coplanar conformal arc treatments were planned using
iPlan (Brainlab Inc, Feldkirchen, Germany). VMAT plans were
planned using Aria EclipseTM (Varian Medical Systems Inc, Palo
Alto, USA) using the AAA algorithm, while electron plans (for elec-
trons alone or as part of the OBE) used the electron Macro Monte
Carlo (eMC) dose calculation algorithm. Case 1 was planned using
16 MeV electrons due to lesion depth, while Cases 2–4 were
planned with 12 MeV electrons. For electrons alone, the plans were
normalized to a PTV coverage of V95% = 95%. The orthovoltage
component of OBE plans were created using our kilovolt X-ray
dose calculation software, kVDoseCalc for a Xstrahl 300 orthovol-
tage unit using a 200 kVp 30 cm FSD beam developed at our insti-
tution [17]. This software was previously used to characterize this
X-ray beam and has been extensively validated for superficial kilo-
volt dose calculation applications [18, 19, 21, 22]. The field aperture
was created using the electron beam’s eye view of the PTVEval
structure to simulate a surface cut-out. The two dose distributions

were then superimposed using weighting of 70% electron dose pro-
file and 30% orthovoltage dose profile to generate the final dose dis-
tribution. All final OBE dose distributions were renormalized to a
maximum dose of 107%.

The tungsten eye shield was not modeled, as the kVDoseCalc
software does not currently support structure-based Hounsfield unit
(HU) overrides. Since tungsten is a high atomic number (Z = 74)
material, 1 mm is sufficient to attenuate >98% of the beam [23].
Therefore, we modeled the effect of the tungsten shield by restrict-
ing the orthovoltage beam aperture to where the eye was not
shielded. Bolus was created for cases and modalities where it was
clinically indicated (e.g. VMAT) and assigned a HU of 0.
Contouring and planning were performed by a single physician–
planner pair to ensure uniformity in planning practices. All plans
were then reviewed by a second physician and planner, as is done in
quality assurance rounds.

Data analysis
PDD profiles were calculated along a user-defined line perpendicu-
lar to and starting at body surface (i.e. bolus excluded), going
through the GTV and aligned with the central axis of the electron
or orthovoltage beam. In each case, between modalities, the same
coordinates were used to calculate PDD profiles. Although it is not
necessarily applicable for comparative purposes, the same depth–
dose profiles using the same start and end points were generated for
VMAT and conformal arc plans. We reported depths (in
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Fig. 3. PDD profiles by modality. Plotted are percentage depth–dose profiles for Case 1: retro-orbital melanoma; Case 2:
large squamous cell carcinoma over superior eyelid; Case 3: medial canthus lesion number 1; and Case 4: second medial
canthus lesion. Red, orange, green, blue and magenta colors correspond to plans for electron therapy, electrons with
orthovoltage bump, volumetric-modulated arc therapy, conformal arc therapy and proton therapy, respectively.
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centimeters) at which the maximum dose (dmax) and the 90% iso-
dose level (De90%) were encountered. Additionally, De30% and the
dose at 1 mm were calculated. We also reported DVHs for the PTV
(specifically V90%) and OARs for each case and modality. Finally,
axial slices aligned with the central axis of the beam are shown with
calculated dose distributions. All data analyses were performed using
the R programming language version 3.1.1 (www.r-project.org).

RESULTS
Depth–dose profiles

Depth–dose profiles for protons, electrons only and OBE plans are
shown in Fig. 3 for each of the four cases. Comparing electrons plus
bolus with OBE plans, dmax, as expected, was similar when calcu-
lated as depth from skin surface (Table 1). With proton therapy
plans, De30% was shallower in Cases 1, 2 and 4. In Case 3, con-
formal arc therapy had the lowest De30% (3.2 cm). As seen in Fig. 3,

there was also less heterogeneity in dose for the proton plans when
compared with other modalities.

Isodose distributions
As shown in Fig. 4, the lateral dose washout was most pronounced
in the VMAT plans, followed by electron-only treatments. However,
with plan optimization, most 30% isodose levels were limited to
small volumes of the brain, and the contralateral orbit was univer-
sally spared. As expected, conformal arc therapy and proton therapy
plans showed very steep dose gradients with exceptional sparing of
normal tissues. Reassuringly, OBE plans showed similar normal tis-
sue sparing in Cases 3 and 4.

Dose–volume histograms
Cumulative DVHs for PTV coverage across modalities are pre-
sented in Fig. 5. In Case 2, the electron treatment required a high

Table 1. Depth–dose values

Case number Modality Dose at 1 mm [%] dmax [cm] De90% [cm] De30% [cm]

Case 1 Electrons 87.0 1.5 4.0 >5.3

OBE 106.3 1.0 3.5 >5.3

VMAT 29.4 2.7 3.2 5.1

Conformal arcs 0.1 2.9 3.6 4.3

Proton plans 0.9 2.6 3.7 4.2

Case 2 Electrons 125.0 1.0 2.9 4.4

OBE 101.2 2.6 2.8 3.7

VMAT 99.5 1.5 2.6 >4.3

Conformal arcs 104.3 0.2 3.0 >4.3

Proton plans 100.2 1.1 2.9 3.4

Case 3 Electrons 96.7 1.9 3.6 7.4

OBE 83.7 1.8 2.8 5.1

VMAT 95.0 2.4 3.0 5.2

Conformal arcs 101.4 0.4 2.1 3.2

Proton plans 100.7 1.0 3.6 5.3

Case 4 Electrons 109.1 0.8 2.2 4.8

OBE 101.4 0.9 1.9 4.5

VMAT 100.0 1.5 2.1 3.9

Conformal arcs 96.7 0.3 1.3 2.6

Proton plans 100.2 1.3 2.6 3.9

Values of Dex% are the depth at which the x% isodose line occurs along the central axis of the beam (i.e. De90% is the depth at which the 90% isodose level is
encountered).

Orthovoltage bump of electrons • 597

http://www.r-project.org


normalization to ensure V95% > 95%; therefore, a hotspot of 120%
is present. In OBE cases, orthovoltage X-rays deposit 3–4 times as
much dose in bone as in tissue due to the photo-electric effect, caus-
ing hot spots of up to 175% where bone overlaps with the PTV.
Consequently, in all OBE cases, ~10% of the volume received 120%
of the prescribed dose due to the varying presence of bone in
the PTV.

In Table 2, we compared the following metrics between techni-
ques for all four cases: target coverage in terms of V90% and V95% in
the PTV, V80% in the ipsilateral retina, and V100% in the ipsilateral
optic nerve. For the ipsilateral retina, V80% (40 Gy) represents an
equivalent dose in 2 Gy fractions (EQD2 Gy) of 44 Gy, which has
been associated with morbidity [24]. Similarly, V100% corresponds
to an OAR dose < dmax (50 Gy/20 fx, EQD2 Gy 3 = 55 Gy) for the
ipsilateral optical nerve. Cumulative DVH plots for the ipsilateral
retina and optic nerves are shown in Figs 6 and 7.

DISCUSSION
We present a comprehensive comparison of dosimetry between
OBE, EO, VMAT, conformal arc, and protons, with DVH distribu-
tions for each.

Each technique offers advantages and disadvantages. In terms
of sharp penumbras and geometric sparing, electrons and VMAT

performed the worst, followed by conformal arcs, while protons
and the OBE technique performed the best. On the other hand,
in terms of conformality, electrons and OBE performed the
worst.

For Cases 1 and 2, the OBE technique was completely unsuit-
able and would have led to undesirable dose distributions. In Case
1, the target was too deep (OBE is only a good technique when
using 12 MeV electrons for a treatment depth of ≤4 cm). In Case 2,
the extensive disease did not permit geometric sparing of OARs, so
more conformal techniques, such as protons, VMAT, or conformal
arcs, produced superior dose distributions. This is seen in the DVH
metrics (Table 1).

However, in Cases 3 and 4, the OBE technique achieved the
best geometric sparing of the ipsilateral retina and optical nerve. In
Case 4, the coverage metrics (PTV V90%, V95%) were similar to
those achieved by the other techniques. In principle, the DVH
metrics for Case 3 showed inferior coverage (V90% and V95% of
89.5% and 73.1%, respectively) to the OBE technique. However,
this was caused by the PTV expanding the target beyond the ≤4 cm
therapeutic range of the technique. In fact, the corresponding V90%

and V95% for the GTV were 99.9% and 95%, respectively. This was
partly caused by the fact that we used an identical PTV expansion
(3 mm isotropic) for all techniques. However, when using a single-field

Fig. 4. Isodose distributions for each case for electrons only, electrons with orthovoltage bump, volumetric-modulated arc
therapy, conformal arc plans and proton therapy plans. Unless otherwise indicated, red, blue, green, magenta, beige and
orange correspond to 95%, 90%, 80%, 70%, 50% and 30% isodose levels, respectively. Differences noted in image resolution
are due to display differences between planning systems. OBE: electrons with orthovoltage bump; VMAT: volumetric-
modulated arc therapy.
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technique (electrons, OBE), there was no depth-related positioning
error; therefore, PTV expansion along the axis of the beam could
either be ignored or reduced to 1–2 mm, thus improving coverage
statistics drastically. This is in contrast to the VMAT and con-
formal arc techniques, in which accurate localization in all axes is
required.

In every case, protons offered excellent coverage, homogeneity,
and OAR sparing. However, the OBE technique showed promise
for optimal dose distributions in very specific cases—periocular
tumors extending ≤4 cm, where geometric sparing is more import-
ant than dose conformity to the target. Since accessibility to pro-
tons is still geographically and financially restricted, OBE may be
an economical alternative with good retinal sparing in these select
cases.

Given the simplicity of combining electrons and orthovoltage,
their lower cost, their relatively widespread availability compared with
protons, and the ease of planning and clinical mark-ups, our proposed
novel technique (OBE) may have a role in treating facial lesions that
extend deep or are in positions where direct apposition of bolus is
difficult, such as the medial canthus. While we only review a limited
number of cases and profiles, this study was sufficient to provide
proof of concept for considering the technique in select difficult cases.
While not appropriate for all periocular lesions (Cases 1 and 2) there
was a dosimetric advantage for lesions extending ≤4 cm along the
medial canthus when proton therapy is unavailable.

On reviewing the homogeneity, both electron treatments and
conformal arc therapy were noted to have significant hotspots at
120%. As expected, proton therapy plans had excellent coverage and
rapid fall-off. In OBE plans, a tail of >120% of the prescribed dose
was due to the high orthovoltage dose in bone, where the f-factor is
3–4 due to the photoelectric effect [25]. No plan showed unaccept-
able coverage; however, when using electrons alone, the PTV
V120% for Case 2 was deemed unacceptable. This did not change
significantly when increasing the energy to 16 MeV, but dmax could
be lowered to 110% by repositioning bolus to below the mask (an
unrealistic clinical scenario).

When considering PDDs across modalities, it is important to
note that all profiles were calculated as the patient would be treated,
with or without bolus. Dose profiles were chosen to start at the
body surface, below any bolus used, and to run through the GTV
perpendicular to body surface. Hence, in these cases, caution must
be employed when comparing conformal arc plans, VMAT plans,
and two-beam proton plans with plans using single-beam modalities
(electrons and OBE). For example, De30% was similar between
VMAT, electron only, and OBE plans, but the 30% isodose lines
splayed out laterally in the VMAT plans and not in the electron or
OBE plans. This was expected, but not often intuitive [1, 4, 26].
What was perhaps more enlightening was the flat dose profiles of
protons across all cases. No other single modality was able to
achieve this. Also of note, the PDD for Case 2 exemplified an
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Fig. 5. Planning target volume (PTV) dose–volume histogram (DVH) profiles by modality. Plotted are DVHs showing PTV
coverage for Case 1: retro-orbital melanoma; Case 2: large squamous cell carcinoma over superior eyelid; Case 3: medial
canthus lesion number 1; and Case 4: second medial canthus lesion. Red, orange, green, blue and magenta colors correspond
to plans for electron therapy, electrons with orthovoltage bump, volumetric-modulated arc therapy, conformal arc therapy and
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expected spike in dose for the OBE case at 2.5 cm as the beam tra-
versed the sphenoid bone and the photoelectric effect became the
dominant dose-depositing interaction.

Despite the comprehensive nature of the comparisons used and
the care taken to ensure comparisons were equivalent, there are sev-
eral limitations to this study. First, since calculating kilovolt dose
distributions is a time-intensive process, only four cases were exam-
ined to establish a proof of principle. Investigation over a larger
number of patients will be necessary in order to obtain more con-
clusive statistics before one technique can be declared superior to
another. Second, comparing the techniques necessitated calculating
dose distributions using five different dose algorithms—Eclipse
Monte Carlo (electrons, protons), Eclipse AAA (VMAT),
BrainScan (conformal arcs), and kVDoseCalc (OBE). This is an
unavoidable limitation since no treatment-planning software that
models the entire range of physics necessary to compare these
entirely different radiation delivery mechanisms exists. Additionally,

the use of different treatment-planning software causes technical
problems. For example, Eclipse exports dose distributions in stand-
ard DICOM format in planes 2 mm apart (regardless of the dose
calculation resolution.); this meant that patients with 1 mm slice
datasets required interpolation to create sum OBE plans.
Furthermore, kVDoseCalc calculates the dose to discrete voxels,
while BrainScan and Eclipse calculate the dose in arbitrary geomet-
rical grids.

While these technical limitations are extremely challenging to
quantify perfectly, they only affect the calculation of dose on a scale
of the submillimeter, which only affects the accuracy near the dose
gradients. However, the structures for which we evaluated the DVH
are formed of thousands to hundreds of thousands of pixels, the
majority of which are located in a low-gradient dose region.
Therefore, while the exact value of the dose in individual pixels, or
of a certain DVH metric could be affected by submillimeter aver-
aging errors being handled differently by the different treatment

Table 2. Dose–volume histogram data

Structure Metric Electrons OBE VMAT Conf arcs Protons

Case 1

PTV V90% 100 85.0 100 100 100

V95% 100 61.6 100 99.5 95.8

Retina V80% 82.6 52.7 35.3 25.4 27.0

Optic nerve V100% NA NA NA NA NA

Case 2

PTV V90% 98.7 90.2 100 100 99.6

V95% 95.0 79.1 98.0 99.5 96.2

Retina V80% 100.0 79.4 98.9 87.2 100.0

Optic nerve V100% 19.4 2.1 1.4 4.2 0.6

Case 3

PTV V90% 98.7 89.5 100 100 98.0

V95% 95.0 73.1 99.3 100 97.9

Retina V80% 91.3 36.5 56.9 52.4 43.7

Optic nerve V100% 36.9 0 0 0.3 0

Case 4

PTV V90% 98.6 96.8 99.7 71.4 100

V95% 95.0 88.4 87.9 55.6 98.7

Retina V80% 42.6 33.4 38.7 18.3 48.3

Optic nerve V100% 0 1.0 0 0 0.9

Values Vx% are the values as percentages (%) of the prescribed dose received by x% of the volume (i.e. V90% of 98.7 means 98.7% of the structure’s volume received
90% of the prescribed dose).
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planning systems, the broad conclusions of this study are highly
unlikely to be affected.

Furthermore, we did not assess the dosimetric effect of the
uncertainty in eye shield placement. Additionally, although we did
see improved geometric sparing in OBE cases over electrons alone,
it is unclear whether improved dosimetry would lead to superior
clinical outcomes. Comparisons between OAR constraints and tar-
get coverage were also oversimplified, as radiobiologic effectiveness
across modalities was not accounted for. Finally, we did not discuss
the utility of surgical excision or Moh’s micrographic surgery due to
the risk of enucleation or large deforming defects in these sites [11,
27].

Due to the much sharper penumbras of kilovolt X-ray beams
compared with electrons, in principle, it is possible to achieve the
required OBE technique by using a smaller aperture for the kilovolt
field compared with that of the electron. Although we were able to
show the potential for our novel OBE technique for achieving geo-
metric sparing of OARs, we did not complete a sensitivity analysis
of the ideal kilovolt aperture for varying sizes of electron fields.
Therefore, further optimization may be possible to create even
more superior dose distributions.

This work represents the first description and proof of concept
of a novel combined orthovoltage – electron radiation therapy tech-
nique. We compared dose distributions for our proposed technique
with those of conventional radiotherapy techniques for four
difficult-to-treat periorbital tumor cases. While inadequate for two

of the cases with deep or large lesions, the proposed technique
showed potential in the other two cases, where this technique might
be beneficial for medial canthus lesions given its simplicity and the
widespread availability of both electron and orthovoltage therapy.

SUPPLEMENTARY DATA
Supplementary data are available at Journal of Radiation Research
online.
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Fig. 6. Retinal dose–volume histogram (DVH) profiles by modality. Plotted are DVHs showing retinal dose for Case 1: retro-
orbital melanoma; Case 2: large squamous cell carcinoma over superior eyelid; Case 3: medial canthus lesion number 1; and
Case 4: second medial canthus lesion. Red, orange, green, blue and magenta colors correspond to plans for electron therapy,
electrons with orthovoltage bump, volumetric-modulated arc therapy, conformal arc therapy and proton therapy, respectively.
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Fig. 7. Ipsilateral optic nerve dose–voume histogram (DVH) profiles by modality. Plotted are DVHs showing ipsilateral optic
nerve dose for Case 1: retro-orbital melanoma; Case 2: large squamous cell carcinoma over superior eyelid; Case 3: medial
canthus lesion number 1; and Case 4: second medial canthus lesion. Red, orange, green, blue and magenta colors correspond
to plans for electron therapy, electrons with orthovoltage bump, volumetric-modulated arc therapy, conformal arc therapy and
proton therapy, respectively. Of note, optic nerve sparing would not normally be prioritized in Case 1.
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