
Article

Predicting the Coupling Specificity of G-protein Coupled Receptors
to G-proteins by Support Vector Machines

Cui-Ping Guan, Zhen-Ran Jiang, and Yan-Hong Zhou*

Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology,
Wuhan 430074, China.

G-protein coupled receptors (GPCRs) represent one of the most important classes
of drug targets for pharmaceutical industry and play important roles in cellular
signal transduction. Predicting the coupling specif icity of GPCRs to G-proteins is
vital for further understanding the mechanism of signal transduction and the func-
tion of the receptors within a cell, which can provide new clues for pharmaceutical
research and development. In this study, the features of amino acid compositions
and physiochemical properties of the full-length GPCR sequences have been ana-
lyzed and extracted. Based on these features, classif iers have been developed to
predict the coupling specif icity of GPCRs to G-proteins using support vector ma-
chines. The testing results show that this method could obtain better prediction
accuracy.
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Introduction

G-protein coupled receptors (GPCRs) represent one
of the most important classes of drug targets for phar-
maceutical industry and play important roles in cel-
lular signal transduction as cell surface receptor pro-
teins (1 , 2 ). A GPCR only has a single polypeptide
that consists of seven transmembrane α-helices, three
extracellular and three intracellular loops connecting
the transmembrane domains. The N-terminal of the
polypeptide is located on the extracellular side and
the C-terminal extends to the cytoplasm. GPCRs
can be activated by various extracellular signaling
molecules that bind to the receptors and trigger their
conformational changes. The activated receptors will
then couple with G-proteins (Gi/o, Gq/11, Gs, and
G12/13) and further activate different signaling path-
ways (3 ). Since most GPCRs are coupled with one
single subtype of G-proteins, they are broadly catego-
rized into Gi/o-, Gq/11-, Gs-, and G12/13-coupled re-
ceptors based on their G-protein coupling preference.

Predicting the coupling specificity of GPCRs to G-
proteins is vital for further understanding the mech-
anism of signal transduction and the function of the
receptors within a cell, which may provide new clues
for pharmaceutical research and development. Many
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computational methods such as the pattern discovery-
based method (4 ), the naive Bayes model (5 ), the
chemometric approach (6 ), and the hidden Markov
model (HMM) (7–9 ), have been developed. Most of
these methods are only based on the sequence in-
formation of GPCRs. Furthermore, since previous
experimental researches have demonstrated that the
coupling specificity of GPCRs to G-proteins is mainly
determined by the intracellular domains of the re-
ceptor (10 , 11 ), the reported computational methods
only used the intracellular regions of GPCR sequences
as the information for the development of the predic-
tion models.

In this study, we hypothesize that, besides the in-
tracellular regions of GPCRs, other factors such as the
physiochemical properties of amino acid residues, the
extracellular and transmembrane regions of GPCRs,
might also have some influence on the coupling
specificity, and therefore can be used as additional in-
formation to further improve the prediction accuracy.
Accordingly, the features of amino acid compositions
and the physiochemical properties of the full-length
GPCR sequences have been analyzed and extracted,
and classifiers have been developed to predict the cou-
pling specificity based on these features and support
vector machines (SVMs). The testing results show
that this method could obtain better prediction accu-
racy.
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Results

In this study, 124 human GPCR sequences (62, 33,
and 29 sequences for Gi/o-, Gq/11-, Gs-class, respec-
tively) were collected from the gpDB database (12 ),
which were used to develop the SVM classifiers for
three classes of GPCRs. Ten-fold cross-validation pro-
cess was used to evaluate the performance of the pro-
posed method, that is, nine tenths of the sequences
were used as the training set to extract classification
features and train SVM classifiers, and one tenth were
used as the test set to verify the prediction results.
The training and test sets were segregated at ran-
dom and the process was repeated 30 times. Three
measures, sensitivity (Sn), specificity (Sp), and over-
all performance accuracy (Acc), were used to evaluate
the prediction performance. Sn and Sp are defined as
Sn = TP/(TP+FN) and Sp = TN/(TN+FP), respec-
tively, where TP is the number of correctly predicted
positive samples for a specific class of GPCRs, FN
is the number of incorrectly predicted positive sam-
ples, and FP is the number of incorrectly predicted
negative samples. The overall performance accuracy,
which measures the average accuracy of predicting the
three classes of GPCRs, is defined as the percentage
of all correctly predicted number of positive samples
to the total number of positive samples.

During the development of SVM classifiers,
different kernel functions were tried, and it was found
that using the linear kernel function could get the
best results. Besides the commonly used feature of
amino acid compositions, additional features such as

hydrophobicity, normalized van der Waals volume,
polarity, polarizability, and the charge of amino acids
were also used in this study for better prediction re-
sults. For each of these additional features, it is
defined as the feature frequency in the form of k-
mers (see Materials and Methods) and the value of
parameter k (k ≥ 1) has a great influence on the
prediction results. The results of predicting the cou-
pling specificity for the three classes of GPCRs with
different k (k= 1, 2, and 3) are given in Table 1, which
were obtained by using the linear kernel function and
the features extracted from the full-length GPCR se-
quences.

It can be seen that, when k= 2, the overall per-
formance accuracy is higher than others, while the Sn
and Sp for all three classes also achieve a relatively
high level. In order to compare the prediction per-
formance based on the information of the full-length
sequences of GPCRs with that only based on the in-
tracellular part as adopted by other researches, we
predicted the transmembrane helices of these GPCRs
with the programs ConPred II (13 ) and HMMTOP
2.0 (14 ), then extracted the intracellular sequences
and converted them into fixed-length feature vectors
with the same method. The prediction results with
k= 2 and k= 3 are given in Table 2.

Discussion

The primary aim of this study is to improve the accu-
racy of predicting the coupling specificity of GPCRs
to G-proteins by such measures as making use of the

Table 1 Predicting Results Based on Features of the Full-Length Sequences

Class k=1 k=2 k=3

Sn (%) Sp (%) Sn (%) Sp (%) Sn (%) Sp (%)

Gi/o 91.67 90.11 95.42 94.61 95.56 91.15

Gq/11 80.00 80.83 83.34 87.54 79.89 93.89

Gs 65.00 83.33 81.25 90.00 73.67 92.78

Acc (%) 82.34 88.89 86.60

Table 2 Predicting Results Based on Features of the Intracellular Sequences

Class k=2 k=3

Sn (%) Sp (%) Sn (%) Sp (%)

Gi/o 89.17 91.01 90.00 87.06

Gq/11 73.34 81.00 70.00 87.54

Gs 67.50 79.61 65.00 65.00

Acc (%) 79.91 78.83
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information of full-length GPCR sequences, integrat-
ing the compositional features and physiochemical
properties of amino acids, and using the SVM method.
By comparing Table 1 with Table 2, it is distinct that
the prediction accuracy based on the full-length se-
quences of GPCRs is better than that only based on
the intracellular part, meaning that the full-length se-
quences do contain more information about the cou-
pling specificity of GPCRs to G-proteins than the
intracellular sequences. These results justify our hy-
pothesis. In addition, the methods based on the intra-
cellular sequences need to extract them from the full-
length sequences of GPCRs using transmembrance
topology prediction programs, which may bring some
errors as the accuracy of predicting the seven trans-
membrance α-helices of GPCRs is currently only
about 80%. On the contrary, this problem does not
exist in the proposed method that uses the informa-
tion of full-length GPCR sequences directly. Fur-
thermore, the additional features used in this study,
including hydrophobicity, normalized van der Waals
volume, polarity, polarizability, and the charge of
amino acids, can contribute to better prediction accu-
racy (data not shown), implying that the physiochem-
ical properties of amino acids might also play impor-
tant roles in determining the coupling specificity of
GPCRs to G-proteins.

It is worth noticing that the overall prediction ac-
curacy of our method is still affected by the following
factors. Firstly, the size of dataset and the imbalance
among different GPCR classes have a great influence
on the prediction accuracy. Secondly, although the
collected dataset has been filtrated to only include
single coupled GPCRs, it may still contain some po-
tential promiscuous receptors, which could couple to
more than one class of G-proteins and have not been
validated by biological experiments. On one hand, if
the training set contains the promiscuous receptors, it
will influence the feature extraction of the single cou-
pled receptors, therefore, the test set cannot be clas-
sified effectively. On the other hand, if the test set
has promiscuous ones, it will not obtain the overall
prediction results of their coupling specificity to G-
proteins. Fortunately, with the accumulation of more
experimental data, the influence of the above factors
on the prediction accuracy will decrease gradually.

In a word, the testing results demonstrate that
the method proposed in this study could obtain bet-
ter prediction accuracy. Future work of this study
will focus on exploring and integrating more features
of GPCRs to further improve the accuracy of predict-

ing the coupling specificity of GPCRs to G-proteins
and to develop novel approaches to distinguish single
coupled receptors from promiscuous ones.

Materials and Methods

Dataset

A set of human GPCR sequences with known
coupling specificity was collected from the gpDB
database (http://bioinformatics.biol.uoa.gr/gpDB).
This database, which is useful for the study of
GPCR/G-protein interactions, contains 469 species of
G-proteins and GPCR sequences. We selected 124 hu-
man GPCRs that meet the following criteria: Firstly,
only single coupled receptors (only couple to one class
of G-proteins) were included in the dataset. G12/13-
coupled receptors were not included because of in-
sufficient data. Secondly, those GPCR sequences la-
beled with “fragment” were excluded. Finally, the
GPCRs were divided into three groups according to
their coupling specificity, and the Gi/o-, Gq/11-, and
Gs-coupled receptors contained 62, 33, and 29 se-
quences, respectively. Furthermore, all of these se-
quences were verified with the TiPS (15 ) and SWISS-
PROT database.

Generally, in the process of constructing the posi-
tive and negative samples for developing classifiers,
two kinds of methods are wildly used, one is the
one-against-other (1-v-n) method, and the other is
the one-against-one (1-v-1) method. Supposing there
are N classes to be classified, the one-against-other
method means to pick up the samples in one class as
positive and the ones in remnant classes as negative.
Another method, one-against-one, uses the samples
in one class as positive and the ones in another class
as negative. In this study, the numbers of GPCR se-
quences for the classes Gq/11 and Gs are not large
enough, which may cause the imbalance problem in
the dataset. The one-against-other method will fur-
ther aggravate the imbalance problem, while the one-
against-one method can improve the prediction accu-
racy for classes with fewer samples, and therefore was
adopted in this study.

Coding of GPCR sequences

For each GPCR sequence, the feature vector was as-
sembled from the encoded representations of amino
acid compositions, hydrophobicity, normalized van
der Waals volume, polarity, polarizability, and charge.
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Two different coding schemes were adopted for the
amino acid compositions and the five physiochemical
properties, respectively.

According to the amino acid compositions, a pro-
tein sequence is represented by a vector in a 20-
dimensional space:

−→x a = [f1, f2, . . . , f20]T (1)

where fi (i = 1, 2, . . . , 20) is the occurrence frequency
of the twenty amino acids in the sequence.

For each of the five physiochemical properties, the
twenty amino acids are grouped into three classes rep-
resented by Pi (i = 1, 2, and 3) according to their
different values. Each amino acid is replaced by Pi .
So a primal sequence is transformed into five different
physiochemical sequences consisting of P1, P2, and
P3, which are called PCseq. Then, the k-mer vector
C and the distribution vector D for the PCseq corre-
sponding to each of the five physiochemical properties
are calculated, respectively (16 , 17 ).

Given an integer k ≥ 1, k-mers are composed of
all the continuous subsequences with length k. There
are possibly 3k permutation and combination of the
subsequences. So the k-mer vector C is a vector
with 3k dimensions and the value of each dimension
is the occurrence frequency of every subsequence in
the PCseq. The distribution vector D, which is used
to describe the global distribution of the property in
the PCseq, is described by five chain lengths (in per-
cent), within which 25%, 50%, 75%, and 100% of the
amino acids with a certain class Pi in each of the five
properties are contained. It is defined as:

D =
3∑

i=1

4∑

j=1

Pos
(
L(i)× j × 25%

)

L(seq)
× 100% (2)

where L(i) is the number of amino acids in the special
class Pi, and L(seq) is the length of PCseq. For each
of the chosen physiochemical properties, its k-mer vec-
tor C and the distribution vector D were calculated
and combined.

Finally, a protein sequence was converted into a
vector with [20 + (3k + 4× 3)× 5)] dimensions as the
input of the SVM classifiers.

SVM

SVM is a standard supervised learning algorithm
based on recent developments in the statistical learn-
ing theory (18 , 19 ). It builds a hyperplane separat-

ing the positive and negative examples in multiple-
dimensional space. The SVM calculation was imple-
mented by using the LIBSVM 2.8 (20 ) software pack-
age. The software enables the user to choose different
parameters and kernel functions including linear ker-
nel function, radial basis function, and polynomial
kernel function to obtain the best effect. In this study,
three SVMs were constructed for classifying the Gi/o-,
Gq/11-, and Gs-GPCRs. The comparison results of
using different kernel functions show that the linear
kernel function can achieve the best accuracy, which
is therefore used in the developed SVM classifiers.

In addition, the penalty factor C is an important
parameter of SVM, which has a great influence on the
prediction results. In this study, the optimal value of
this parameter was searched in the range of 1 to 200
by comparing the prediction results.
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