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We characterized a negative sense single-stranded RNA mycovirus, Fusarium
oxysporum mymonavirus 1 (FoMyV1), isolated from the phytopathogenic fungus
Fusarium oxysporum. The genome of FoMyV1 is 10,114 nt, including five open reading
frames (ORFs1–5) that are non-overlapping and linearly arranged. The largest, ORF5,
encodes a large polypeptide L containing a conserved regions corresponding to
Mononegavirales RNA-dependent RNA polymerase and mRNA-capping enzyme region
V; the putative functions of the remaining four ORFs are unknown. The L protein
encoded by ORF5 shared a high amino acid identity of 65% with that of Hubei rhabdo-
like virus 4, a mymonavirus that associated with arthropods. However, the L protein of
FoMyV1 also showed amino acid similarity (27–36%) with proteins of mynonaviruses
that infect the phytopathogenic fungi Sclerotinia sclerotiorum and Botrytis cineaea.
Phylogenetic analysis based on L protein showed that FoMyV1 is clustered with the
members of the genus Hubramonavirus in the family Mymonaviridae. Moreover, we
found that FoMyV1 could successfully transfer by hyphal anastomosis to a virus-free
strain. FoMyV1 reduced the vegetative growth and conidium production of its fungal
host but did not alter its virulence. To the best of our knowledge, this is not only the first
mymonavirus described in the species F. oxysporum, but also the first Hubramonavirus
species found to infect a fungus. However, the incidence of FoMyV1 infections in the
tested F. oxysporum strains was only 1%.

Keywords: mycovirus, Fusarium oxysporum, Mymonaviridae, Hubramonavirus, root rots

INTRODUCTION

The genus Fusarium is a class of filamentous fungi that includes endophytes, saprophytes, and
pathogens (Knogge, 1996). It is most notable for a devastating phytopathogenic fungus that causes
severe losses in many economically important crops (Pietro et al., 2003; Michielse and Rep, 2010;
Sharma et al., 2018). Fusarium oxysporum, generally regarded as a species complex, causes vascular
wilt disease, damping-off, and crown or root rots (Farquhar and Peterson, 2010; Gordon, 2017).
Frequent and intensive applications of fungicides have led to the emergence of resistant pathogen
strains in fields (Chen et al., 2007; Xu et al., 2015), along with ecosystem destruction that threatens
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food security and human health (Fisher et al., 2012). Therefore,
new biological control strategies for eco-friendly control of
F. oxysporum are badly needed.

Mycoviruses are viruses that infect fungi which are ubiquitous
across the kingdom Fungi (Ghabrial et al., 2015). Most
known mycoviruses are composed of double-stranded RNA
(dsRNA) genomes, about 30% have positive-sense single stranded
(+)ssRNA genome, a few have negative-sense (−)ssRNA
genome (Ghabrial et al., 2015), and an even smaller number
have circular single-stranded DNA genome (Yu et al., 2010;
Li et al., 2020; Hao et al., 2021). Mycovirus infections
are often cryptic; in some cases, however, they induce
hypovirulence in their fungus host (Ghabrial and Suzuki, 2009).
An increasing number of hypovirulence-associated mycoviruses
have been used as potential viral agents. For example,
Cryphonectria hypovirus 1 (CHV1) has been successfully
utilized to control the disastrous chestnut blight caused by
Cryphonectria parasitica in Europe (Anagnostakis, 1982). Fungal
virus infections can affect the fungicide sensitivity of the host.
Co-infection of Penicillium digitatum polymycovirus 1 and
Penicillium digitatum narna-like virus 1 can reduce the fungicide
resistance of Penicillium digitatum (Niu et al., 2018). Persistent
infection with Phytophthora endornavirus 2 and Phytophthora
endornavirus 3 may impact the fungicide sensitivity of the host
oomycete (Uchida et al., 2021). The well-studied Sclerotinia
sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-
1) can convert its host (Sclerotinia sclerotiorum) from a typical
necrotrophic pathogen to a beneficial endophytic fungus (Yu
et al., 2013; Zhang et al., 2020). SsHADV-1 and similar
mycoviruses are sometimes referred to as “plant vaccines”
because their application to crops represents a new and useful
approach to disease control.

The evidence of (–)ssRNA virus may infect fungi in nature was
first found in 2013 (Kondo et al., 2013). Sclerotinia sclerotiorum
negative-strand RNA virus 1 (SsNARV-1), the first (–)ssRNA
virus was obtained and characterized as infecting a fungus,
belongs to the newly proposed family Mymonaviridae, order
Mononegavirales (Liu et al., 2014; Jiāng et al., 2019). This family
contains nine genera: Auricularimonavirus, Botrytimonavirus,
Hubramonavirus, Lentimonavirus, Penicillimonavirus,
Phyllomonavirus, Plasmopamonavirus, Rhizomonavirus, and
Sclerotimonavirus. Five of these genera (the exceptions being
Hubramonavirus, Phyllomonavirus, Plasmopamonavirus, and
Rhizomonavirus) have been reported to infect fungi. The typical
mymonavirus genome is predicted to have five or six major non-
overlapping ORFs that expressed as individual transcription units
and are separated by non-coding intergenic regions containing
highly conserved gene junction sequences (Jiāng et al., 2019).
One member of the Mymonaviridae is known to infect the genus
Fusarium: Fusarium graminearum negative-stranded RNA virus
1 infects F. graminearum (Wang et al., 2018).

Fusarium oxysporum is an important pathogenic fungus
on many economically important crops, causing Fusarium
root rots. Several mycoviruses have been reported to infect
this fungus, including four dsRNA mycoviruses, Fusarium
oxysporum chrysovirus 1 (FoCV1, ICTV approved), Fusarium
oxysporum f. sp. dianthi virus 1 (FodV1, ICTV approved),

Fusarium oxysporum alternavirus 1 (FoAV1), and Hadaka virus
1 (HadV1), from the families Chrysoviridae, Alternaviridae, and
Polymycoviridae, respectively (Sharzei et al., 2007; Lemus-Minor
et al., 2015; Sato et al., 2020; Wen et al., 2021). Moreover,
several (+)ssRNA viruses infect F. oxysporum, including
Fusarium oxysporum ourmia-like virus 1 (FoOuLV1), Fusarium
oxysporum f. sp. dianthi hypovirus 2 (FodHV2), and Fusarium
oxysporum f. sp. dianthi mitovirus 1 (FodMV1), in the families
Botourmiaviridae, Hypoviridae, and Mitoviridae, respectively
(Torres-Trenas and Pérez-Artés, 2020; Torres-Trenas et al., 2020;
Zhao et al., 2020; Wang et al., 2021). Also noteworthy is
HadV1 has a potential novel lifestyle as a multisegmented RNA
virus. Among these mycoviruses, FodHV2 does not alter the
vegetative growth, conidiation, or virulence of its fungal host.
However, FodV1 and FoOuLV1 showed significant biological
control potential on Fusarium wilt.

In this study, we identified and characterized a novel (–)ssRNA
mycovirus found in F. oxysporum strain LJ3-3, which we named
Fusarium oxysporum mymonavirus 1 (FoMyV1). It belongs
to the family Mymonaviridae and is the first mymonavirus
identified in F. oxysporum. It is also the first virus in the genus
Hubramonavirus reported to infect a fungus. Here, we describe
its transmission ability and effects on its host.

MATERIALS AND METHODS

Fungal Strains and Culture Conditions
The Fusarium oxysporum strain LJ3-3 used in this study was
recovered in 2020 from a capsicum root rot sample (Luohe,
Henan Province, China). The strain AJ3-8 of F. oxysporum was
used as a control. The diseased root was cut into 0.5-cm2 samples
and soaked for 30 s in 75% ethanol. Then, the samples were
rinsed with sterilized water three times and dried on sterilized
blotting paper. Finally, the samples were cultured on potato
dextrose agar (PDA) medium at 25◦C in the dark for 2 days.
A small amount of mycelium was scraped off the culture and
washed with 2 ml sterile water. Then, the mixture was pooled
and filtered through three-layer lens wiping paper. The spore
liquid was diluted to 103 conidia ml−1, and 100 µl was smeared
on a PDA plate and incubated overnight at 25◦C. The next
day, a single colony was selected and considered a purified
strain. Five mycelial agar plugs were inoculated on fresh PDA
medium covered with cellophane membranes and cultured at
25◦C for 4–5 days. Mycelium in each dish were harvested and
stored at –70◦C until use. Genomic DNA was extracted from
the fungi using the CTAB method. The primers for translation
elongation factor 1-alpha (EF-1α), RNA polymerase II subunit
I gene (RPB1), and RNA polymerase II subunit II gene (RPB2)
were used to confirm the Fusarium species identification (Mishra
et al., 2003; O’Donnell et al., 2010). The EF-1α, RPB1, and
RPB2 sequences were analyzed by Blast search against data in
the Fusarium ID: Cyber-infrastructure for Fusarium database
(fusariumdb.org). Mycelial growth and conidial production were
evaluated according to the procedures described by Wu et al.
(2007). A transformant of F. oxysporum strain B9 was used
as a recipient strain in a horizontal transmission test. The
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B9 strain was isolated from a fusarium root rot sample of
tobacco (Xuchang, Henan Province, China, 2020). This B9 strain
has a hygromycin-resistance gene (Hygromycin B phosphor-
transferase), a normal colony morphology, and high virulence
in its hosts. The strain AJ3-8 and strain B9 were confirmed as
virus-free strains by high-throughput sequencing and RT-PCR
detection (data not shown). All strains were cultured on PDA
medium at 25◦C and then stored at –70◦C in 25% glycerol.

Total RNA Extraction and Sequencing
Total RNA of twenty-two F. oxysporum strains were extracted
from 1.0 g of mycelium using an RNAiso Plus Kit (TaKaRa,
Dalian, China) following the manufacturer’s instructions. Next,
total RNA was purified using an RNAClean XP Kit (Cat
A63987, Bechman Coulter, Inc., Brea, CA, United States) and
RNase-Free DNase set (Cat79254, QIAGEN, GmBH, Hilden,
Germany), and rRNA was depleted by a Ribo-ZeroTm rRNA
Removal Kit (Illumina, San Diego, CA, United States). Finally,
the qualified samples were mixed into one sample and used
for pair-end sequencing on an Illumina HiSeq 2500 platform at
Shanghai Bohao Biotechnology Co., Ltd. One sequencing library
was constructed by the qualified total RNA of F. oxysporum
strains. The raw reads were filtered base on default parameters,
1 × 108 bp clean reads were obtained and mapped against
genome sequence of F. oxysporum using Bowtie (1.0) software.
Then, unmapped reads were assembled de novo using CLC
Genomics Workbench (version: 6.0.4) with scaffolding contig
algorithm, word-size = 45, and minimum contig length ≥ 200.
Consequently, 44,679 contigs were achieved. After Blasted by
the non-redundant protein sequences (nr) database in NCBI1, 12
contigs which represented partial genome segments of “virus” or
“viral” were retrieved. Finally, the contig 1028 that was identical
or complementary to mymonavirus genomic sequences were
extracted and subjected to further analysis.

RT-PCR Detection and RACE
The cDNA of each F. oxysporum strains were synthesized using
a PrimerScriptTM 1st Strand cDNA synthesis Kit (TaKaRa,
Dalian, China) following the manufacturer’s instructions. The
occurrence of putative virus sequence in the F. oxysporum strains
included in the RNA-Seq sample was investigated using RT-
PCR with specific primers designed based on the assembled
contig 1028. The RT-PCR results suggested that contig 1028
is the sole viral agent of the LJ3-3 strain (data not shown).
The 5′- and 3′-terminal sequences of the FoMyV1 genome
were completed using a SMARTer RACE Amplification Kit
(Clontech, Mountain View, CA, United States) following the
manufacturer’s instructions using gene-specific primers (GSPs).
GSP-1028F1 (GAGCAAGAACATAGATTCACCT) and GSP-
1028F2 (TGGTTGTGGAGAAATGGGGCTGGTA) were used as
the inner and outer primers, respectively, for 3′-RACE. GSP-
1028R1 (5′-CTGGCTGGTTTGGTAGGG-3′) and GSP-1028R2
(5′-CTTCGTCGTCTGCCCAAT-3′) were used as the inner and
outer primers, respectively, for 5′-RACE. Meanwhile, seven pairs

1https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=
BlastSearch&LINK_LOC=blasthome

of specific primers were designed to verify the almost full
length of FoMyV1 by RT-PCR (Supplementary Table 1 and
Supplementary Figure 1). All RT-PCR products of expected size
were purified and cloned into the pMD19-T vector (TaKaRa,
Dalian, China) and introduced into Escherichia coli Trelief 5α

(TSINGKE Biotech, Zhengzhou, China) by transformation. At
least three recombinant clones were sent to TSINGKE Biotech
for sequencing. In addition, the DNA of strain LJ3-3 was used as
a template to examine whether the viral sequence was integrated
into the host. Moreover, 143 F. oxysporum strains from five
counties or cities in Henan province of China were used to test
for the presence of FoMyV1.

Sequence and Phylogenetic Analysis
The putative open reading frames (ORFs) of FoMyV1 were
deduced using the ORF Finder program on the website of
the National Center for Biotechnology Information (NCBI).2

Homologous sequences were searched for full-length cDNA
sequences and deduced polypeptides of FoMyV1 in the NCBI
database using BlastN and BlastP, respectively. A search for
the predicted domains present in the polypeptide sequence
was conducted using the Conserved Domain Database (CDD).3

Multiple sequence alignments of the RdRp sequences were
performed using DNAMAN (Version 9) and ClustalX (Version
2.0) (Thompson et al., 1997). A phylogenetic tree was
constructed using the maximum-likelihood (ML) method in
MEGA-X (Version 10.1.8) with 1,000 bootstrap replicates
(Kumar et al., 2018).

Virus Transmission Assay
To investigate the vertical transmissibility of FoMyV1, 40 single-
conidium isolates were obtained from parental strain LJ3-3.
Then, the presence of FoMyV1 was determined using RT-PCR
with the primer pair ct1028RT-F2/R2 (Supplementary Table 1),
which was designed to amplify a 746-bp product.

The pairing-culture technique (Wu et al., 2007; Zhang and
Nuss, 2008) was used to investigate the horizontal transmissibility
of FoMyV1 between F. oxysporum strains. In the contact culture
in each plate (9 cm in diameter), the strain LJ3-3 served as
the donor, whereas the strain B9 (a hygromycin-resistance-gene
transformant of F. oxysporum) served as the recipient. The
mycelial agar plugs of two strains were cultured at a distance of
2 cm in PDA medium. After incubation of the contact cultures at
25◦C for 8 days, three mycelial derivative isolates were obtained
from three colonies of the recipient strain in the contact cultures.
Then, derivative isolates were cultured in hygromycin-resistance
(50 mg/ml) PDA medium three times. Finally, the primer pair
ct1028RTF7/F7 with a 1,024-bp amplicon was used to verify the
presence of FoMyV1 in the derivative isolates. Two derivative
isolates of B9 (B9-VI) infected by FoMyV1 both contained the
mycovirus FoMyV1 (Supplementary Figure 2). Compared with
strain B9, the colony of B9-VI was irregular and the aerial
hyphae were rare.

2https://www.ncbi.nlm.nih.gov/orffinder/
3https://www.ncbi.nlm.nih.gov/cdd
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Biological Characterization and
Virulence Assay
To assess the effects of FoMyV1 on its host biological
characteristics and plant pathogenicity, two isogenic strains B9-
VI (virus-infected) and B9 (virus-free) were used. Each strain
was individually tested for mycelial growth rate (PDA, 25◦C)
and conidium production. Five mycelial plugs were inoculated
into 100 ml carboxymethylcellulose sodium (CMC) fluid medium
and cultured for 4 days (28◦C, 180 rpm). Then, the mycelium
solution was filtered through two layers of sterile gauze and the
precipitate was resuspended with 50 ml sterile water. Finally, the
concentration of conidium was counted using a blood counting
plate and the conidium production was calculated. Tobacco
cultivar ‘Zhongyan 100’ and Nicotiana benthamiana were grown
to the third or fourth leaf stage and then individuals with
the same growth status were selected. The roots were injured
and then tobacco seedlings were transplanted into new pots
(9 cm × 7 cm × 6 cm, top width × bottom width × height),
inoculated with 30 ml spore suspension (1 × 107 ml−1), and
cultured at 25◦C under fluorescent light (16 h light/8 h dark). One
month later, investigate the disease incidence, severity, index, and
phenotypic values of plants. Disease incidence was defined as the
percentage of infected plants, and disease severity was rated on
a scale of 0–9 as follows: level 0, no symptoms; level 1, the plant
growth is basically normal or slightly dwarfing, a few roots are
necrotic and dark brown, middle and lower leaves are chlorosis
or discoloration; level 3, the disease plants are 1/4–1/3 lower than
the healthy ones, half of the roots are necrotic and black, 1/2–2/3
of the leaves are wilting; level 5, the disease plants are 1/3–1/2
lower than the healthy ones, most of the roots are necrotic and
black, more than 2/3 of the leaves are wilting, tip and margin of
the middle and lower leaf are slightly withered; level 7, the disease
plants are more than 1/2 lower than the healthy ones, all of the
leaves are wilting, all of the roots are necrotic and black, and the
secondary roots near the surface were obviously damaged; level 9,
plant is dead. Pathogen was re-isolated from seedlings inoculated
with strain B9-VI and detected to carry fungal virus FoMyV1. The
assay treatments were repeated three times with three seedlings
each. A one-way factorial analysis of variance (ANOVA) (SAS
Institute, Cary, NC, United States, Version 8.0, 1999) was used
to determine the differences in growth rate, conidial production,
phenotypic values, and disease index of each strain.

RESULTS

Biological Characteristics of Fusarium
oxysporum Strain LJ3-3
Based on RT-PCR and EF-1α, RPB1, and RPB2 sequencing, we
identified strain LJ3-3 as F. oxysporum (Supplementary Table 3).
The sample also contained the (–)ssRNA mycovirus FoMyV1
(Supplementary Figure 2). We cultured F. oxysporum strain
LJ3-3 at 25◦C on PDA for 10 days to observe its morphology
(Figure 1A). The average radial mycelial growth of LJ3-3 was
8.75 mm/day, which was significantly (p < 0.05) slower than that
of the virus-free strain AJ3-8 (12.00 mm/day) (Figure 1B). The

average conidial production of LJ3-3 was 6.45× 107 ml−1, which
was also significantly (p < 0.05) lower than that of strain AJ3-
8 (21.50 × 107 ml−1; Figure 1C). In the virulence assay using
Zhongyan 100 leaves, the average lesion diameter (7 mm) caused
by strain LJ3-3 was significantly (p < 0.05) smaller than that
caused by strain AJ3-8 (14 mm; Figures 1D,E). For comparation,
strain LJ3-3 infected with FoMyV1 showed slow growth rate, low
conidial production, and weak virulent.

Genome Analysis of Fusarium
oxysporum Mymonavirus 1
The complete genome sequence of FoMyV1 (GenBank accession
no. OM049502) was 10,114 nt, with a GC% content of 47%,
possessing five non-overlapping ORFs (ORF1–5) and two
untranslated regions (UTR) of 129 and 291 nt at the 5′- and
3′-termini, respectively (Figure 2A). ORF1–ORF5 encode
proteins 263, 412, 190, 193, and 1,952 amino acids (aa)
in length, located in the reading frames +1, +1, +1, +2,
and + 2, respectively. The conserved motif search showed
that ORF5 contained a Mononegavirales RNA-dependent
RNA polymerase domain (pfam00946; aa location 142–980;
e-value 1.61e-112), Mononegavirales mRNA-capping region V
(pfam14318; aa location 1,077–1,231; e-value 3.43e-12), and
paramyxovirus_RNAcap (TIGR04198; aa location 1,114–1,462;
e-value 3.82e-06; Figure 2A). We did not find any conserved
domains in the other four ORFs. BlastP analysis showed that
the putative protein L encoded by ORF5 of FoMyV1 was similar
to the RdRp of Hubei rhabdo-like virus 4 (HbRLV4) with 65%
identity (Shi et al., 2016). In addition, the putative protein L
also showed 26–36% identity with the RdRp encoded by other
mymonaviruses in the family Mymonaviridae (Supplementary
Table 3). The proteins encoded by ORF1 and ORF2 were
similar to the hypothetical proteins 1 and 2 of HbRLV4, with
43 and 67% identity, respectively (Table 1). However, the
putative protein encoded by ORF3 and ORF4 of FoMyV1 was
not significantly similar to any other protein in the search
to characterize. In addition, the semi-conserved AU-rich
sequences are finds in the putative untranslated sequences
between ORFs in the FoMyV1 genome (Figure 2B). The putative
gene-junction sequence of ORF1/2 and ORF2/3 (viral RNA
strand, 3′-UAAAUUGUUUUG-5′) was identical to those of
HbRLV4. We also found several complementary nucleotides
near the end of the FoMyV1 genome sequence (Figure 2C). We
identified four conserved motifs (I–IV) from Mononegavirales in
protein L encoded by FoMyV1 ORF5 (Figure 2D). Meanwhile,
FoMyV1 was not detected in the DNA template of LJ3-3 strain
(Supplementary Figure 3). In summary, FoMyV1 genome
structural characteristics were consistent with the typical
characteristics of members in order Mononegavirales, and belong
to the family Mymonaviridae.

Phylogenetic Analysis of Fusarium
oxysporum Mymonavirus 1 and Other
Mymonaviruses
To examine the relationship between FoMyV1 and other
mymonaviruses (Supplementary Table 4), we performed
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FIGURE 1 | The comparison of different biological characteristic of strain LJ3-3 and AJ3-8. Culture morphology (25◦C, 10 days) (A) and pathogenicity assay (28◦C,
13 days) (D) of Fusarium oxysporum strain LJ3-3 and AJ3-8 on PDA medium and detached Zhongyan 100 leaves, respectively. Comparison of radial mycelial
growth rate (25◦C) on PDA (B), conidia production (28◦C, 180 rpm, right) in CMC (C), and lesion diameter (28◦C, 13 days) on detached Zhongyan 100 leaves (E) of
strain LJ3-3 and AJ3-8, respectively. “***” indicates a significantly different (p < 0.05) between strain LJ3-3 and AJ3-8 in radial mycelial growth rate, conidia
production, and lesion diameter.

a maximum-likelihood phylogenetic analysis based on the
amino acid sequences of the L protein of FoMyV1 and 38
other (–)ssRNA viruses, including representative members
of six families in order Mononegavirales (Nyamiviridae,
Bornaviridae, Rhabdoriridae, Paramyxoviridae, Filoviridae, and
Pneumoviridae), and representative strains of nine genus in
family Mymonaviridae. FoMyV1 clustered with HbRLV4 and
H2BulkLitter 1223 virus (Starr et al., 2019) to form a distinct
clade with a bootstrap support value of 100%, indicating a
close evolutionary relationship. These three viruses belong
to the genus Hubramonavirus and clustered with 22 other
mymonaviruses, forming a large independent clade of family
Mymonaviridae (Figure 3). The other 17 (–)ssRNA viruses also
formed corresponding viral family clades. These results confirm
that FoMyV1 is a novel member of the genus Hubramonavirus,
family Mymonaviridae.

Horizontal Transmission of Fusarium
oxysporum Mymonavirus 1 between
Fusarium oxysporum Strains
We used F. oxysporum strain B9 as a recipient for horizontal
transmission of FoMyV1. We obtained one mycelial derivative

isolate—B9-VI—from one B9 recipient colony in the two contact
cultures of LJ3-3/B9 (Figure 4A). The average growth rate of
B9-VI was 8.29 mm/day, which was significantly slower than
that of B9 (10.00 mm/day; Figure 4B). Similarly, the conidium
production of B9-VI was 3.35 × 107 ml−1, significantly lower
than that of B9 (6.76 × 107 ml−1; Figure 4C). Furthermore,
RT-PCR indicated that FoMyV1 was successfully transmitted
from LJ3-3 to the virus-free strain B9HygR (Supplementary
Figure 2). In summary, colony morphology, growth rate, and
conidium production were significantly affected by the FoMyV1
infection (Figure 4).

Transmission of Fusarium oxysporum
Mymonavirus 1 to Conidium Progeny
To determine the frequency of FoMyV1 transmission by
conidium progeny in the laboratory, we obtained 40 single-
conidium isolates from parent strain LJ3-3 and tested for
FoMyV1 using RT-PCR. All the single-conidium isolates were
FoMyV1 positive (Supplementary Figure 4). The average growth
rate of the isolates was 6.6–9.6 mm/day in PDA plate. There were
no significant differences in growth rate among the 40 conidium
progeny (p < 0.05).
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FIGURE 2 | Genome organization of a mymonavirus from the F. oxysporum strain LJ3-3. (A) Schematic diagram of the genome organization of Fusarium oxysporum
mymonavirus 1 (FoMyV1). FoMyV1 shows the presence of five ORFs. The black bars indicate the coding regions, and the gray bars represent the untranslated
regions on the genome of FoMyV1. The four green arrowheads point out the location of the putative gene junction sequence. (B) Comparison of putative
gene-junctions between ORFs in the FoMyV1, alignment of the putative junction sequences are shown in the 3′–5′ orientation. (C) Complementarity between the 3′-
and 5′-terminal sequences of FoMyV1 genomic RNA strand. (D) Multiple alignments of the amino acid sequences of RdRp in the protein L encoded by FoMyV1 and
other (–)ss RNA viruses. The abbreviations of virus names are listed in Supplementary Table 4.

TABLE 1 | Information about first blastp hit for each predicted protein encoded by Fusarium oxysporum mymonavirus 1.

Virus ORF Blastp First Hit Query cover E value Per/Ident Accession

Fusarium oxysporum
mymonavirus 1

ORF1 hypothetical protein 1 [Hubei rhabdo-like virus 4] 100% 1e-54 43.35% YP_009336593.1

ORF2 hypothetical protein 2 [Hubei rhabdo-like virus 4)] 99% 0 67.31% YP_009336594.1

ORF3 No significant similarity found / / / /

ORF4 No significant similarity found / / / /

ORF5 RNA-dependent RNA polymerase [Hubei rhabdo-like virus 4] 99% 0 64.94% YP_009336595.1

Blastp search was conducted using NCBI-BLAST.

Effect of Fusarium oxysporum
Mymonavirus 1 on Host Virulence
To study the effect of FoMyV1 on the virulence of its fungal
host, we evaluated the pathogenicity of two isogenic strains,
B9-VI (virus-infected) and B9 (virus-free), in two different

tobacco cultivars. The disease index of B9-VI and B9 in tobacco
cultivar ‘Zhongyan 100’ was 35.80 and 38.27, respectively, and
those in N. benthamiana were 8.64 and 9.87, respectively
(Supplementary Table 5). There were no significant differences
in disease index between the two strains on either cultivar
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FIGURE 3 | Phylogenetic analysis of FoMyV1 (marked with a red dot) and other related (–)ss RNA viruses. The phylogenetic tree was generated by the
maximum-likelihood method (1,000 bootstrap replicates) based on the amino acid sequences of the RdRp domains using MEGA-X.

(p < 0.05). Furthermore, there were no significant differences
(p < 0.05) in plant height, fresh weight, or root length between
plants inoculated with the two strains in either plant cultivar
(Figure 5). At the same time, we re-isolated the pathogen
from the root of B9-VI infected plants for FoMyV1 detection.
The two re-isolated strains were detected as FoMyV1 positive
(Supplementary Figure 5). These results suggest that FoMyV1
does not alter the pathogenicity of its host.

Incidence of Fusarium oxysporum
Mymonavirus 1
To investigate the incidence of FoMyV1 in Henan Province, 143
F. oxysporum strains (Supplementary Table 6) were tested for the
presence of FoMyV1 using RT-PCR with primer pair ct1028RT-
F7/R7 (Supplementary Table 1). The result showed that only
two strains harbored FoMyV1 in the tested 143 F. oxysporum
strains (Supplementary Figure 2), and the incidence of FoMyV1
was only 1%. The FoMyV1 infected strain LJ3-3 and LJ4-1
were both collected from same location (Xuchang city, Henan
Province, China).

DISCUSSION

In this work, we identified and characterized an (–)ssRNA
mycovirus found in a strain of Fusarium oxysporum,
which was isolated from capsicum. Based on homology
BlastX searches, genome organization comparison, and
phylogenetic analysis, we propose that this (–)ssRNA virus
is a novel member of the genus Hubramonavirus in the
family Mymonaviridae. We name it Fusarium oxysporum
mymonavirus 1 (FoMyV1).

Fusarium oxysporum is a plant pathogenic fungus that is
distributed worldwide. It causes vascular diseases and fusarium
root rot in many economically important crops, leading to
serious economic losses (Michielse and Rep, 2010). The known
mycoviruses associated with F. oxysporum are limited and
belong to the families Chrysoviridae, Hypoviridae, Mitoviridae,
Polymycoviridae, Botourmiaviridae, and Alternaviridae. Of
these reported mycoviruses, only FodV1 and FoOuLV1 are
hypovirulent and could be used as biological control agents
(Lemus-Minor et al., 2019; Zhao et al., 2020). The hypovirus
FodHV2 does not affect the vegetative growth, conidiation, or
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FIGURE 4 | The comparison of different biological characteristic of strain B9
and B9-VI. (A) Culture morphology (25◦C, 10 days) of Fusarium oxysporum
strain B9 and B9-VI on PDA medium. (B,C) Comparison of radial mycelial
growth rate (B) on PDA (25◦C) and conidia production (C) in CMC (28◦C,
180 rpm) of strain B9-VI and B9, respectively. “***” indicates a significantly
different (p < 0.05) between strain B9 and B9-VI in both radial mycelial growth
rate and conidia production.

the virulence of its fungal host (Torres-Trenas et al., 2020).
In contrast, FoMyV1 infection reduced the vegetative growth
and conidial production of its host, but did not affect the
pathogenicity. FoMyV1 is also stable in its conidium progeny.
Therefore, FoMyV1 may interact with the fungus to modulate its
vegetative growth and conidia production without affecting its
virulence. Then, the reason for this need to be further studied.

Liu et al. (2014) reported the genome structure, virion
morphology, transcription strategy, and infectivity of the
first known (–)ssRNA mycovirus, Sclerotinia sclerotiorum
negative-stranded RNA virus 1 (SsNSRV1), which is most
closely related to Bornaviridae and Nyamiviridae in the order
Mononegavirales. With the development of high-throughput
sequencing technology, many more mycoviruses have been
identified and characterized, leading to the establishment of a
new family of viruses, the Mymonaviridae, which contains nine
genera and 32 species (Jiāng et al., 2019). SsNSRV1 belongs to
the genus Sclerotimonavirus in the family Mymonaviridae. The
typical mymonavirus genome contains five or six major non-
overlapping ORFs that are arranged linearly. ORF II and ORF
V encode the nucleoprotein and RdRp, respectively. Similarly,
FoMyV1 and HbRLV4 both contain five ORFs, the ORF2 and
ORF5 encodes putative nucleoprotein and L protein, respectively.
However, the remaining three ORFs encode proteins do not
match known viral proteins. In contrast to HbRLV4, FoMyV1’ L
protein also contains one domain paramyxovirus_RNAcapping
region (TIGR04198). The function of this domain is capping

of mRNA, which requires RNA triphosphatase and guanylyl
transferase activities, demonstrated for rinderpest virus L protein
(Gopinath and Shaila, 2009). The GC content of the FoMyV1
RNA is 47%, slightly lower than that of HbRLV4 (48%), and
slightly higher than that of SsNSRV-1 (39%). The gene-junction
sequences are ubiquitous in the mononegaviral genomes and
are important for transcriptional regulation (Conzelmann, 1998).
The putative gene-junction sequence of ORF1/2 and ORF2/3 is
identical to those of HbRLV4, but not identical to those of other
mymonaviruses (Liu et al., 2014; Lin et al., 2019). Comparison
of the complete nucleotide and amino acid sequences of FoMyV1
and HbRLV4 showed a high similarity (58 and 65%, respectively).
However, the amino acid sequence of FoMyV1 ORF1 and
ORF2 were only similar to those of HbRLV4 hypothetical
protein 1 and hypothetical protein 2, with 43 and 67% identity,
respectively. Moreover, a phylogenetic analysis showed that
FoMyV1 formed a tight cluster with HbRLV4 (derived from
an arthropod mix) and then clustered with H2BulkLitter1223
virus (derived from grassland soil), forming an independent
clade of Hubramonavirus in family Mymonaviridae with a
bootstrap support value of 100%. In brief, we characterized a
novel mymonavirus, FoMyV1, in the genus Hubramonavirus that
could infect fungi in nature. This is the first reported (–)ssRNA
mycovirus associated with F. oxysporum.

Mycoviruses infect all the major taxa of fungi. In general,
mycoviruses are transmitted horizontally via anastomosis of
vegetatively compatible strains of the same species and
vertically by disseminating sexual or asexual spores (Ghabrial
et al., 2015). However, the fungal DNA virus Sclerotinia
sclerotiorum hypovirulence-associated DNA virus 1 can be
transmitted through insect vectors, which extends our traditional
understanding fungal virus transmission mechanisms (Liu et al.,
2016). Sclerotinia sclerotiorum mycoreovirus 4 (SsMYRV4) can
overcome the hurdle of vegetatively incompatible groups via
suppressing non-self-recognition by the fungus host. Therefore,
SsMYRV4 infection facilitates the horizontal transmission of
other mycoviruses across vegetatively incompatible groups (Wu
et al., 2017). Several mycoviruses, such as Cryphonectria
hypovirus 1, Cryphonectria hypovirus 4, and Rosellinia necatrix
mycoreovirus 3 (RnMyV3), encode RNA silencing suppressor
proteins (RSS) to escape the host RNA silencing for horizontal
transmission (Segers et al., 2006; Yaegashi et al., 2013; Aulia
et al., 2021). In contrast, Mycoreovirus 1, which originated from
Cryphonectria parasitica, can induce silencing genes dicer-like 2
(dcl2) and argonaute-like 2 (agl2), which activate the antiviral
RNA silencing of the host and constrain the infection of other
mycoviruses (Chiba and Suzuki, 2015; Yang et al., 2021). In view
of the biological characteristics of FoMyV1 infected its host, it
can be used as a typical material for the studying the molecular
mechanism of fungus-virus interaction.

More than 80% of plant diseases are caused by fungal
pathogens that cause yield reduction and mildewing in crop
plants. The most environmentally friendly ways to control
diseases are the development of resistant varieties and the use of
beneficial microbes (Fravel, 2005). For example, the mycovirus
CHV1 has been successfully used as a biological control agent
against chestnut blight (Cryphonectria parasitica) (Anagnostakis,
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FIGURE 5 | Comparison of pathogenicity between F. oxysporum strain B9-VI (virus infect) and B9 (virus-free) on the tobacco cultivar ‘Zhongyan 100’ and
N. benthamiana. (A) Strain B9-VI and B9 inoculated tobacco cultivar ‘Zhongyan 100’ were grown in pots for 31 days (left), and comparison of growth status of
plants inoculated with strain B9-VI and B9 (right). (B) Strain B9-VI and B9 inoculated tobacco cultivar N. benthamiana were grown in pots for 31 days (left), and
comparison of growth status of plants inoculated with strain B9-VI and B9 (right). (C,D) Average plant height, root length, and fresh weight of two tobacco cultivars
inoculated with strain B9-VI and B9. Strain B9-VI infects by FoMyV1, strain B9 is the mycovirus-free. The “control” in panels (C,D) represents plants that have not
been inoculated with any pathogens.

1982). One biological control mechanism of CHV1 is that it
encodes and utilizes RNA silencing suppressors against the host
defense (Segers et al., 2006). An ubiquitin-like protein, ATG8, is
a key element of the autophagy pathway (Klionsky et al., 2016).
Moreover, CHV1 infection can regulate a homologous gene
Cpatg8 that is required for virulence and development of chestnut

blight fungus, as well as accumulation of viral dsRNA replicative
form in the fungus (Shi et al., 2019). Fungal DNA virus SsHADV1
could infect a mycophagous insect (Lycoriella ingenua), and use
it as a transmission vector (Liu et al., 2016). As we all know, the
nutritional incompatibility of fungi is one of the limiting factors
for horizontal transmission of mycovirus (Ghabrial et al., 2015).
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The finding implies that mycoviruses could be transmitted via
insects, and also provided a new idea on how to use fungal virus
to control fungal plant diseases. Furthermore, the SsHADV1-
infected S. sclerotiorum strain DT-8 can grow endophytically in
monocots, protecting against fungal disease (Tian et al., 2020).
In summary, diseases could be controlled by hypovirulence-
associated mycoviruses.

Fusarium oxysporum is a fungus with a wide range of hosts.
It includes pathogenic and non-pathogenic strains, and several
non-pathogenic strains have been widely applied as biocontrol
agents (Gordon and Martyn, 1997; Fravel and Alabouvette, 2003).
For example, an endophytic F. oxysporum strain was found to
induce systemic resistance against nematode (Radopholus similis)
infection in banana plants (Vu et al., 2006). There is abundant
mycovirus diversity in Fusarium, and some mycoviruses are
associated with hypovirulence (Li et al., 2019; Zhao et al.,
2020). Our expectation is to apply these hypovirulence-associated
mycoviruses to control Fusarium disease. It may be associated
with non-pathogenic or endophytic traits of F. oxysporum strains.
However, this requires further study.
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