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Calcitonin gene-related peptide (CGRP) is a highly potent vasoactive peptide released
from sensory nerves, which is now proposed to have protective effects in several
cardiovascular diseases. The major α-form is produced from alternate splicing and
processing of the calcitonin gene. The CGRP receptor is a complex composed of
calcitonin like receptor (CLR) and a single transmembrane protein, RAMP1. CGRP is
a potent vasodilator and proposed to have protective effects in several cardiovascular
diseases. CGRP has a proven role in migraine and selective antagonists and antibodies
are now reaching the clinic for treatment of migraine. These clinical trials with antagonists
and antibodies indicate that CGRP does not play an obvious role in the physiological
control of human blood pressure. This review discusses the vasodilator and hypotensive
effects of CGRP and the role of CGRP in mediating cardioprotective effects in various
cardiovascular models and disorders. In models of hypertension, CGRP protects against
the onset and progression of hypertensive states by potentially counteracting against
the pro-hypertensive systems such as the renin-angiotensin-aldosterone system (RAAS)
and the sympathetic system. With regards to its cardioprotective effects in conditions
such as heart failure and ischaemia, CGRP-containing nerves innervate throughout
cardiac tissue and the vasculature, where evidence shows this peptide alleviates
various aspects of their pathophysiology, including cardiac hypertrophy, reperfusion
injury, cardiac inflammation, and apoptosis. Hence, CGRP has been suggested as
a cardioprotective, endogenous mediator released under stress to help preserve
cardiovascular function. With the recent developments of various CGRP-targeted
pharmacotherapies, in the form of CGRP antibodies/antagonists as well as a CGRP
analog, this review provides a summary and a discussion of the most recent basic
science and clinical findings, initiating a discussion on the future of CGRP as a novel
target in various cardiovascular diseases.
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INTRODUCTION

Calcitonin gene-related peptide (CGRP) was first identified in 1982 (Amara et al., 1982). It was
soon established that the neuropeptide is a potent vasodilator and a transmitter in the peripheral
and central nervous systems (Rosenfeld et al., 1983; Brain et al., 1985), resulting in their predicted
roles in pain and cardiovascular regulation (Rosenfeld et al., 1983). It was soon realized that CGRP
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release in trigeminal neurons is associated with control of
cerebral vascular tone and plays a role in migraine (O’Connor
and van der Kooy, 1988; Edvinsson et al., 2012). As such, drugs
targeting CGRP are currently being investigated for use clinically
for the treatment of migraine. The first non-peptide CGRP
antagonist, BIBN 4096 BS, was shown to be effective in animals
and humans (Doods et al., 2000; Olesen et al., 2004). There
are currently a number of CGRP monoclonal antibodies and
antagonists in development which are showing good efficacy for
migraine, with up to 32% of patients being completely relieved of
symptoms. These drugs are currently undergoing approval for the
treatment of migraine. However, as evidence suggests that CGRP
possesses protective properties in various cardiovascular diseases
(Smillie et al., 2014; Aubdool et al., 2017), there are concerns
regarding cardiovascular safety despite minimal cardiovascular
issues being observed in clinical trials to date (Paemeleire and
MaassenVanDenBrink, 2018; Raffaelli and Reuter, 2018). This
review aims to summarize knowledge on the potential role of
CGRP in cardiovascular disease to aid the discussion of potential
adverse effects of anti-CGRP treatments as well as to guide
the developments of novel CGRP-dependent targets for various
cardiovascular conditions.

CGRP AND RECEPTOR

CGRP Synthesis and Structure
Calcitonin gene-related peptide is a 37 amino acid peptide,
produced by alternative splicing of the calcitonin gene (CALCA)
(Amara et al., 1982; Rosenfeld et al., 1983; Figure 1).
Human CGRP exists in α and β forms, which share 94%
structural similarity (Zaidi et al., 1990), with different residues
at positions 3, 22, and 25. β-CGRP is transcribed from a
separate CALCB gene, which has been proposed to be the
result of a duplication of the alpha gene (Alevizaki et al.,
1986). Both α-CGRP and β-CGRP have comparable biological
roles, but α-CGRP is the principal form and is found in the
central and peripheral nervous systems and is the primary
subject of this review (Russell et al., 2014), while β-CGRP
plays a larger role in enteric transmission (Mulderry et al.,
1985). The expression of calcitonin and CGRP mRNA is
tissue-specific, and CGRP mRNA is produced by splicing the
first three exons to the fifth and sixth exons of CALCA
(Amara et al., 1982). The translated CGRP protein then
undergoes post-translational modification and protease cleavage
to generate the mature peptide. This process is illustrated in
Figure 1.

Storage, Release and Metabolism
Calcitonin gene-related peptide is localized throughout the
peripheral and central sensory nervous system as well as other
locations in the brain (Rosenfeld et al., 1983; Terenghi et al.,
1985). Although CGRP is mostly associated with Aδ and C
fiber sensory nerves (Gibbins et al., 1985; Lundberg et al.,
1985), immunostaining approaches demonstrated the presence
of CGRP in association with smooth muscles in the heart
and vasculature (Rosenfeld et al., 1983; Franco-Cereceda et al.,

1987; Csillik et al., 1993), suggesting the potential sensory
and cardiovascular roles of CGRP. GGRP synthesis mainly
occurs in the dorsal root ganglion (DRG) (Deng and Li, 2005)
where the pro-peptide is then cleaved to the active form
and stored in large dense-core vesicles at the sensory nerve
terminals, where CGRP is commonly stored and co-released with
substance P (Gulbenkian et al., 1986; Brain and Grant, 2004;
Schlereth et al., 2016). Exocytosis leading to release is mediated
by calcium-dependent pathways following nerve depolarization
(Matteoli et al., 1988; Russell et al., 2014). Although release
can be mediated in response to pressor substances, such as
the sympathetic noradrenergic transmitter and the hypertensive
mediator angiotensin (see section: Hypertension), their release is
most commonly associated with the activation of these sensory
fibers, either by electrical stimulation or by the activation of
transient receptor potential (TRP) channels, as shown in Figure 1
(Escott and Brain, 1993; Russell et al., 2014). TRP channels are
a superfamily of non-selective cation-permeable channels, that
are each activated by a range of agonists and stimuli (Zheng,
2013). The precise circumstances under which CGRP is released
remain under study. Of particular significance to sensory nerves
are TRPV1 (transient receptor potential vanilloid 1) and TRPA1
(transient receptor potential ankyrin 1) channels, which are
highly co-expressed in CGRP-positive fibers (Kobayashi et al.,
2005). TRPV1 is activated by the chili pepper extract capsaicin
as well as noxious stimuli such as heat or acidity, acting as
transducers of thermal pain (Caterina et al., 1997; Venkatachalam
and Montell, 2007), while TRPA1 channels are activated by
a distinct subset of agents, including pungent extracts, such
as mustard oil and cinnamaldehyde, noxious cold, as well
as by endogenous reactive oxygen species and cellular stress
mediators (Bandell et al., 2004; Viana, 2016). Both TRPV1 and
TRPA1 channels have been shown to trigger CGRP release by
increasing intracellular calcium levels in vitro (Quallo et al.,
2015; Shang et al., 2016; Eberhardt et al., 2017) and in vivo,
producing neurogenic vasodilation (Pozsgai et al., 2012; Aubdool
et al., 2016). In human skin, capsaicin produces a flare that is
mediated by CGRP (Van der Schueren et al., 2008). TRPV1 was
shown to contribute to cardiovascular pathophysiology under
certain conditions, such as high fat diet, but not in a CGRP-
dependent manner (Marshall et al., 2013). Moreover, TRPA1
has no observed contribution to blood pressure regulation
(Bodkin et al., 2014). The depletion of CGRP positive nerves
is possible by repeated TRPV1 agonist application, such as
capsaicin and resiniferatoxin, resulting in the desensitization of
sensory nerves, which is often used as a blocking strategy (Jancsó
et al., 1967; Bánvölgyi et al., 2005). Following its release and
action, CGRP has a short half-life, with one study calculating it
to have a biphasic clearance with a 6.9-min initial half-life and a
26.4 min slower decay (Kraenzlin et al., 1985). It is metabolized
via proteases and possibly other mechanisms (Russell et al.,
2014).

CGRP Source and Plasma Levels
The main source of plasma CGRP is thought to be due to a
“spillover” from its release from the perivascular nerve endings,
which may contribute to its vasodilatory role (Brain and Grant,
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FIGURE 1 | Splicing and post-translational processing of the complete CGRP peptide from the CALCA gene, vesicular packaging, and release from sensory nerves.
Exons 1,2,3,5, and 6 of the CALCA gene are transcribed to form the CGRP mRNA which is then translated to protein. Post-translational cleavage produces the
complete 37-amino acid CGRP peptide. CGRP is packaged and co-released with substance P in a calcium dependent manner due to depolarization or via
activation of TRPA1 or TRPV1 channels.

2004). Circulating plasma levels in healthy volunteers are low
(in the pg/ml range), which in part is due to the rapid
metabolic clearance of plasma CGRP (Kraenzlin et al., 1985).
However, CGRP is naturally elevated in pregnancy where it
is proposed to regulate utero/placental blood flow and other
vascular changes (Dong et al., 2002). Plasma levels are elevated
in certain pathological states, such as sepsis (Joyce et al., 1990a),
where hypotension poses a major comorbidity. In migraine,
only cerebral vessel and ipsilateral jugular vein levels, but not
plasma levels, of CGRP are elevated (Goadsby et al., 1990;
Edvinsson and Goadsby, 1995; Ashina et al., 2000; Cernuda-
Morollón et al., 2015; Messlinger, 2018). Changes in plasma
CGRP levels under pathological conditions are further discussed
in respective sections. A range of non-neuronal cells have also
been shown to synthesize CGRP, including lymphocytes and

monocytes (Bracci-Laudiero et al., 2002; Wang et al., 2002;
Linscheid et al., 2004). Endothelial cells have also been shown
to synthesize and store CGRP in Weibel-Palade bodies where it
may play a role in autoregulation of hemodynamics (Ozaka et al.,
1997; Doi et al., 2001). Thus, there appear to be multiple sources
of CGRP, but the neuronal sources are considered the most
important in terms of cardiovascular physiology and pathology
and indeed the relevance of some of the cellular sources is
unknown.

The CGRP Receptor
The biological effects of CGRP are mainly mediated by its
associated receptor. The complex nature of the CGRP receptor
has been discussed in-depth recently in Hay et al. (2018).
Following an intense period of research, it is now realized that
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FIGURE 2 | Receptors for CGRP, formed by association of either CTR or CLR with RAMP1. Sizes of different agonists indicate relative potencies at each receptor
complex. CGRP and amylin are equally potent at the CTR/RAMP1 receptor complex while CGRP is more potent at the CLR/RAMP1 complex, the classical CGRP
receptor.

the canonical CGRP receptor is a complex of calcitonin receptor-
like receptor (CLR), a class B G-protein coupled receptor (GPCR)
and a receptor activity modifying protein 1 (RAMP1), a member
of the single transmembrane RAMP family (RAMPs 1, 2, or 3),
and the receptor component protein (RCP) (McLatchie et al.,
1998; Evans et al., 2000; Dickerson, 2013; Russell et al., 2014).
RAMP1 is important in the transport of CLR to the plasma
membrane where they form a heterodimer to create the full
receptor complex and agonist binding (Kuwasako et al., 2006;
Booe et al., 2018), while RCP is important in the intracellular
G-protein signaling (Evans et al., 2000). However, due to the
promiscuous nature of RAMP, it is now thought that CGRP
may also be able to signal via other non-canonical receptors of
related peptide members, such as the CLR/RAMP3 combination,
which is an adrenomedullin receptor (AM2) (Qi et al., 2011;
Russell et al., 2014) although at a lower potency. Adrenomedullin
additionally has some affinity for CGRP receptors, which could
account for some of the heterogeneous results and difficulty
in early attempts at classifying the CGRP receptor (Moreno
et al., 2002). This model has been validated experimentally
where CGRP binding correlates well to RAMP1 mRNA levels
(Chakravarty et al., 2000). The RAMP proteins regulate the
transport of CLR from the endoplasmic reticulum to the plasma
membrane (McLatchie et al., 1998) and it has been shown
that the cytoplasmic tails of RAMP proteins are crucial for
intracellular trafficking of CLR to the membrane. To add to
the complexity, more recently it has also been found that
association of the calcitonin receptor (CTR) and RAMP1 also
forms a CGRP responsive receptor. Although the CTR/RAMP
complex was previously described as amylin receptors, it is
now shown that CGRP and amylin are equally potent at the
CTR/RAMP1 (AMY1) receptor (Hay et al., 2018; Figure 2).
Indeed, the expression of CTR/RAMP1 is suggested to be of
potential importance in the sensory trigeminal system, where it
may play a role in migraine pain as shown by its expression
and histology in rats and humans (Hay et al., 2018). CTRs can

promote RAMP translocation to the cell surface and there may
be competition between RAMPs, leading to biased formation
of one receptor complex over another (Bühlmann et al., 1999).
Downstream of the receptor activation, the CGRP receptor
complex is coupled to Gαs and Gαq, and the effects of agonist
binding are mediated by downstream signaling through these
G proteins depending on their sites of action. Using a HEK293
cell line, it was shown that CGRP exhibits biased agonism,
favoring the Gαs pathway and thus vasodilation (Weston et al.,
2016) where CGRP triggers nitric oxide (NO) production in the
endothelial cells, acting to relax the underlying vascular smooth
muscles, while PKA activation in the vascular smooth muscles
also independently mediate NO-independent vasodilation by
hyperpolarisation of the smooth muscle cell. Thus, while the
pharmacological profile of the CLR receptor expressed on the cell
surface is dependent on the RAMP subtype that accompanies it,
the pharmacology is complex, potentially involving other CGRP
receptors.

VASODILATOR EFFECTS OF CGRP

Physiologically, intravenous infusion of CGRP in humans
induces a decrease in blood pressure through its vasodilatory
effects as well as a positive chronotropic effect, as demonstrated
in humans (Struthers et al., 1986), in addition to altering regional
blood flow, as observed in human subjects (Jäger et al., 1990). The
administration of CGRP by intravenous infusion also increases
blood flow to skin (in support of its microvascular potency,
resulting in an observable facial flushing) and brain, measured
by laser doppler imaging (Jäger et al., 1990). CGRP can also
have effects on other organ systems; for example, in the kidneys,
CGRP induced relaxation and increase in cAMP levels result
in increased blood flow and a subsequent rise in glomerular
filtration that has a significant effect on renal hemodynamics
(Kurtz et al., 1989; Edwards and Trizna, 1990). CGRP also affects
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coronary blood flow by its direct action on the vasculature,
independent of any systemic reflexes due to the changes in blood
pressure or heart rate, as measured in humans by angiography
(Ludman et al., 1991). Of note, as discussed above, the vaso-
relaxing effects of CGRP do appear to be predominantly at
the peripheral level in small vessels rather than large arteries
(Marshall et al., 1988; Sekiguchi et al., 1994). The highly
potent effects of CGRP on multiple cardiovascular functions
highlight its potential contribution in various cardiovascular
diseases.

CGRP has a range of regulatory effects that have been
studied in rodents, as described below. However, it has also
been shown to generally mediate its vasodilator activity
independently of cyclo-oxygenase products, such as prostacyclin
(Brain et al., 1985), by comparison, CGRP does have a
nitric oxide-dependent vasodilator mechanism in certain
tissues in a manner that appears neither species or tissue-
dependent (Russell et al., 2014). There is also a distinct but
reported interaction whereby the CGRP receptor reduces the
effects of the potent constrictor agent endothelin through
an interaction involving G-protein βγ subunit (Meens et al.,
2012).

CGRP IN CARDIOVASCULAR DISEASE

Hypertension
Despite its role as a vasodilator, there is no consensus on
the levels of CGRP in hypertension. In human patients with
hypertension, plasma CGRP has been found to be higher
(Masuda et al., 1992), unchanged (Schifter et al., 1991),
and decreased (Edvinsson et al., 1989; Portaluppi et al.,
1992) as reviewed by several groups (including Dong et al.,
2002; Smillie and Brain, 2011). It has been suggested that
these contradictory observations may be due to differences
in sampling and radioimmunoassays used as well as due to
the heterogeneity in duration, severity, and treatment of the
varying hypertensive populations studied (Bell and McDermott,
1996). However, in patients with secondary hypertension,
plasma CGRP levels were decreased after adrenalectomy to
treat the underlying condition (Masuda et al., 1992). This
would indicate that CGRP is a compensatory response to
elevated blood pressure and can become depleted or potentially
inhibited as disease progresses (Dong et al., 2002; Smillie et al.,
2014).

In CGRP knockout (KO) mice, blood pressure was shown
to be significantly elevated in some (Kurihara et al., 2003;
Mai et al., 2014), but not all strains (Smillie et al., 2014).
The role of CGRP has been studied in a range of different
rodent models of hypertension. This includes those that involve
raising the levels of pressor agent angiotensin. In one study
where baseline blood pressure was not affected in CGRP
KO mice, angiotensin administration for up to 28 days led
to enhanced hypertension, alongside aortic hypertrophy and
decreased endothelial nitric oxide synthase expression (Smillie
et al., 2014). In the rat angiotensin-induced hypertension model,
the co-administration of subdepressor doses of exogenous CGRP

for 6 days significantly reduced blood pressure (Fujioka et al.,
1991). However, in a 10-day study, angiotensin increased CGRP
receptor expression but not endogenous CGRP levels (Li and
Wang, 2005). In one CGRP KO mouse strain, plasma renin
was higher in KO mice and AT1 blockers were found to have
greater effects (Li et al., 2004). Thus, there is good evidence
that CGRP plays a protective role against the pathophysiology
and onset of hypertension (Smillie and Brain, 2011). This
was further shown in the spontaneously hypertensive rat
model, where treatment with angiotensin-converting enzyme
inhibitors increased the density of CGRP innervation and
expression, restoring CGRP nerve function and vasodilator
responses (Kawasaki et al., 1999). This adds to the concept that
CGRP interacts with RAAS to modulate and maintain blood
pressure.

To further understand the mechanisms, deoxycorticosterone
(DOC) salt and two-kidney, one-clip (2K1C) rat hypertensive
models have been utilized. CGRP expression (mRNA) and
plasma levels were elevated, and CGRP8−37 or capsaicin
depletion of CGRP (to deplete and thus lose/block the CGRP
component) led to further increases in the already elevated
blood pressure in these models (Supowit et al., 1997; Deng
et al., 2003). In spontaneously hypertensive rats and phenol
induced hypertensive models, CGRP expression (mRNA) and
plasma levels were instead decreased, but CGRP8−37 or
capsaicin pre-treatment had no effect on blood pressure.
Hence, it is clear that the loss of CGRP contributes to the
development of hypertension (Supowit et al., 1993; Deng et al.,
2004).

It is perhaps not surprising that CGRP interacts indirectly
with a range of other vasoactive mediators. Early evidence from
the rat mesentery indicated that noradrenaline released from
sensory nerves could influence release of CGRP and vice versa;
indicating the potential of CGRP to be involved in regulating
vascular resistance (Kawasaki et al., 1998). Immunohistochemical
staining revealed high concentrations of CGRP immunoreactive
fibers in the rat mesenteric artery, the intensity of which
decreased after pre-treatment with capsaicin, confirming the
expression of CGRP in this vascular bed (Kawasaki et al., 1990).
Then, subdepressor doses of CGRP were co-administered with
norepinephrine, causing a significant reduction in blood pressure
in norepinephrine-induced hypertensive rats (Fujioka et al.,
1991). Studies blocking CGRP nerve transmission by CGRP8−37
or capsaicin depletion showed increased vasoconstriction
caused by periarterial nerve stimulation, further showing
that exogenous CGRP can attenuate noradrenergic-induced
constriction (Takenaga and Kawasaki, 1999). Together, these
studies suggest that CGRP has the ability to inhibit sympathetic
nervous activity. Indeed, it is considered that perivascular
sensory nerves and sympathetic nerves act alongside each
other, in rodents at least, to maintain peripheral vascular
tone.

Altogether, previous studies have shown that CGRP plays a
protective role in the onset and progression of hypertension
in rodents. By comparison, the physiological role of CGRP
in the normotensive situations in rodents remains unclear,
as some knockout mouse strains are mildly hypertensive,
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indicating a physiological role, as previously mentioned. Usually,
these have deletion in the calcitonin gene, in addition to
the CGRP, gene (Smillie and Brain, 2011). However, the
cardiovascular effects of CGRP blockade have been investigated
in rat models (Juhl et al., 2007; Zeller et al., 2008) which
found no change in cardiovascular parameters. Hence the
evidence mainly from animal models, to date, indicates
that CGRP can interact with key pro-hypertensive systems
to counterbalance the onset of cardiovascular disease (see
Table 1)

Ischemia
CGRP is released endogenously in response to ischemia
(Mishima et al., 2011) and is suggested to play a role in
preconditioning and protection against reperfusion injury. It
has been shown in humans that plasma CGRP expression is
upregulated following acute myocardial infarction (Roudenok
et al., 2001). In rat models, CGRP induced preconditioning has
been shown to be able to protect and attenuate reperfusion
injury in heart, brain, and hepatic tissue. These responses
were abolished by CGRP8−37, indicating that CGRP is a key
central mediator of preconditioning and acts in a protective
role (Li et al., 1996; Song et al., 2009; Liu et al., 2011).
The release of CGRP by TRPV1 is also implicated. In a rat
model of ischemia/reperfusion, administration of ruthenium
red, a non-selective TRP antagonist, abolished the protective
effects of remote limb preconditioning, as measured by
infarct size, the release of lactate dehydrogenase, and creatine
kinase (Singh et al., 2017). The protective effect is also lost
with CGRP8−37 administration (Wolfrum et al., 2005). This
finding is in line with previous studies that have shown
plasma CGRP and mRNA levels to be increased after remote
limb ischemic preconditioning, suggesting a cardioprotective
mechanism involving TRPV1 mediated CGRP release (Gao
et al., 2015). CGRP also protects against ischemia/reperfusion
injury in the liver, as measured by alanine aminotransferase
and glutamate-lactate dehydrogenase in one study (Song et al.,
2009). A summary is shown in Table 1. However, the mechanism
through which CGRP mediates this protective effect remains to
be elucidated.

Heart Failure
In the heart, CGRP-containing nerves are densely distributed
around the coronary arteries, ventricular muscle, and the
conduction system, thus ideally placed to play a functional role
in the maintenance of cardiac homeostasis (Mulderry et al.,
1985; Russell et al., 2014). Reported levels of plasma and
tissue CGRP in heart failure, as for hypertension, are confusing
and in general, poorly described. One study in children with
congenital heart disease found that CGRP levels are higher
in those with heart failure compared to healthy controls and
levels were also positively correlated with the severity of disease
(Hsu et al., 2005). However, in adult patients with chronic
congestive heart failure, CGRP levels were found to be lower
(Taquet et al., 1992). By comparison, increased CGRP levels
in blood plasma have been observed in volume overload heart
failure in humans, suggesting that it has the potential to act

as a compensatory mechanism (Preibisz, 1993). In an in vitro
model, the administration of the TRPV1 agonist, capsaicin,
caused the release of CGRP which had positive inotropic and
chronotropic effects on guinea pig atrium that were subject
to tachyphylaxis as well as being abolished by capsaicin pre-
treatment, to desensitize the nerve (Lundberg et al., 1984). Similar
results were observed in a rat model, where CGRP release
by another proposed TRPV1 agonist, rutaecarpine, protects
against isoprenaline-induced heart failure by relieving cardiac
hypertrophy and cardiac apoptosis. These effects were also
attenuated with capsaicin pre-treatment, suggesting that CGRP
production and release protects against heart failure (Lundberg
et al., 1984; Li et al., 2010). This is in keeping with results
in the CGRP KO mouse using a transverse aortic constriction
(TAC) model (Li et al., 2013). The vasodilator activity of CGRP
is considered to decrease cardiac afterload and improve cardiac
function (Struthers et al., 1986). In the guinea pig atrium, CGRP
was found to increase the L type calcium current by stimulation
of adenylyl cyclase leading to positive inotropy, but the same
was not found in ventricular myocytes (Nakajima et al., 1991).
This finding is also consistent with earlier studies that showed
high binding of radiolabelled CGRP ligands in the rat atrium
but not the ventricles (Sigrist et al., 1986) and that cAMP levels
in the atria significantly increases following administration of
CGRP (Ishikawa et al., 1988). The effects of CGRP on intracellular
calcium dynamics also appear to be mediated by the PI3K/Akt
pathway. Inhibition of PI3K in rat myocytes in vivo abolished
CGRP induced increases in calcium release and prolonged
calcium sequestration (Al-Rubaiee et al., 2013). A summary is
shown in Table 1.

The concept that exogenous administration of CGRP may be
beneficial has been investigated, mainly using the CGRP peptide
which, as discussed, has a short half-life. CGRP administration in
humans causes an increase in catecholamine levels in the blood,
and the inotropic effects of CGRP have been associated with
increased plasma norepinephrine and epinephrine (Tortorella
et al., 2001). Moreover, the positive inotropy was blocked by
adrenergic antagonists but not the hypotensive and chronotropic
actions (Gennari and Fischer, 1985). As heart failure often
leads to activation of the baroreceptor reflex and sympathetic
activity (Wang et al., 2004), the response to CGRP was separated
by ganglionic and adrenergic blockade in one canine study.
It was found that ganglionic antagonist hexamethonium did
not affect CGRP mediated inotropy and vasodilation but the
adrenergic antagonist timolol attenuated the heart response to
CGRP (Katori et al., 2005). Thus, sympathetic activation is
suggested to be, at least in part, an indirect effect of CGRP
which enhances cardiac function through systemic vasodilation.
In a rat coronary ligation model, CGRP was found to have
a dilatory effect, but the response to CGRP in the basilar
artery was attenuated. This led to the suggestion that this
would be beneficial in heart failure as arterial perfusion pressure
would be maintained despite the decreased cardiac output
(Bergdahl et al., 1999). Additionally, in a canine model, CGRP
administration increased coronary flow and decreased coronary
resistance without affecting heart rate, presumably due to its
vasodilatory actions on the coronary vasculature (Joyce et al.,
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1990b). By comparison, in chronic heart failure, there is
attenuation of the adrenergic system. In another canine study,
the capacity of sympathetic neurons to release noradrenaline was
reduced resulting in reduced sympathetic compensation in heart
failure (Cardinal et al., 1996). Additionally, desensitization to
catecholamines occurs in multiple points of the adrenoceptor
cascade, including decreased distribution and amount of
adrenoceptors, decreased agonist affinity, and decreased the
activity of adenylyl cyclase (Vatner et al., 1996). Thus, in chronic
heart failure, the indirect sympathetic effects of CGRP are
likely to be dampened. It has been suggested that CGRP acts

indirectly through sympathetic signaling as a compensatory
mechanism to increased demand, such as during exercise where
CGRP levels are found to be increased (Lind et al., 1996).
However, in heart failure where adrenergic transmission becomes
downregulated, one possibility may be that CGRP may no longer
reduce afterload efficiently to improve cardiac output (Katori
et al., 2005). Importantly though, CGRP administration has
still been shown to be beneficial in the few human studies
carried out to date (Gennari et al., 1990; Anand et al., 1991;
Ferrari et al., 1991; Shekhar et al., 1991), so more studies are
needed.

TABLE 1 | The role and protective effects of CGRP in hypertension, ischemia, and heart failure.

Disease Role of CGRP Mechanisms of protection Evidence in animal models References

Hypertension CGRP reduces blood pressure
in pathologic states but is not
involved in physiological
regulation of blood pressure

Modulation of RAAS to
maintain blood pressure

Plasma renin is higher in CGRP KO
mice

Li et al., 2004

Treatment with ACE inhibitors on
spontaneously hypertensive rats
restores CGRP function and responses

Kawasaki et al., 1999

Inhibition of sympathetic activity
reduces blood pressure

In a rat model, CGRP antagonist or
capsaicin depletion potentiates
vasoconstriction induced by periarterial
nerve stimulation

Takenaga and Kawasaki, 1999

CGRP KO mice had increased
hypertension and aortic hypertrophy in
an angiotensin II model

Smillie et al., 2014

αCGRP decreased arterial pressure
while CGRP8−37 increased it in
angiotensin II treated rats

Li and Wang, 2005

Heart failure CGRP is released in a
compensatory manner in
response to heart failure and
acts in a protective manner

Vasodilation decreases
afterload to enhance stroke
volume

In a congestive heart failure rat model,
CGRP induces vasodilation of blood
vessels in vitro

Bergdahl et al., 1999

CGRP infusion in dogs increased
coronary flow and decreased coronary
resistance and blood pressure

Joyce et al., 1990b

Positive inotropic effects
increase stroke volume and
ejection fraction

CGRP infusion in dogs increased
cardiac contractility and is blocked by ß
receptor antagonists. As isolated
myocytes show no response to CGRP,
it is suggested CGRP mediates positive
inotropy through sympathetic activation

Katori et al., 2005

Ischemia CGRP is released, by the
activation of TRPV1 channels,
in ischemia where it exerts
protective effects against
reperfusion injury and mediates
preconditioning

The mechanism of the
protective effects of CGRP is
unclear. CGRP is purported to
play a role in ischemic
preconditioning and is
protective against reperfusion
injury

In a rat model of remote hind limb
preconditioning, TRPV and CGRP
inhibitors abolished protective effects of
preconditioning

Singh et al., 2017

CGRP protects against
ischemia-reperfusion injury in a rat liver
ex vivo model

Song et al., 2009

CGRP decreases infarct size in a rat
mesenteric artery occlusion model.
PKC inhibition abolishes the effect of
CGRP, and it is suggested myocardial
PKCE activation by CGRP mediates
protection

Wolfrum et al., 2005

Mechanisms by which CGRP exerts its effects and evidence in animal studies is also summarized.
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THERAPEUTIC APPROACHES
INVOLVING THE CGRP PATHWAY

Effects of CGRP Antagonists and
Antibodies That Benefit Migraine on the
Baseline Regulation of Human Blood
Pressure
Recently, various pharmacological tools targeting CGRP have
been developed for the treatment of migraine. CGRP antagonists
such as BIBN 4096 BS (Olcegepant) have been used in migraine
to good effect (Olesen et al., 2004) but were not further developed
despite showing efficacy (Yao et al., 2013). Importantly, the
safety of these compounds has been studied in single dose
(Edvinsson, 2005) and longer-term daily dosing (Ho et al., 2014)
and no cardiovascular adverse events were detected. However,
the studies were relatively small and short-term, lasting no
more than 12 weeks, as most of the treatments for migraine
are administered acutely for short periods of time and the
timeframes of clinical studies reflect this. Recently, longer studies
involving antibodies have also progressed without cardiovascular
side effects. In one study specifically examining cardiovascular
and hemodynamic effects of CGRP antagonism in humans, no
clinically significant changes in blood pressure, heart rate, or
ECG were detected over 24 weeks (Bigal et al., 2014). There
are currently four monoclonal antibodies, against the CGRP
peptide or receptor, undergoing phase 2 or 3 clinical trials. At the
time of writing, there has not been any cardiovascular adverse
event or significant changes in cardiovascular measurements
such as electrocardiogram (ECG) attributable to treatment. The
findings of the latest trials are detailed (see Table 2). To
date, most studies have been performed on normal, healthy
subjects and do not address how CGRP blockade may affect a

compromised cardiovascular system. Considering the findings
in the pre-clinical models consistently showing exacerbation
of underlying cardiovascular pathologies with CGRP inhibition
it is important to address whether CGRP blockade may
exacerbate current cardiovascular disease or increase the severity
of cardiovascular events that happen and also whether there is
a difference between monoclonal antibodies targeted toward the
CGRP receptor or peptide (MaassenVanDenBrink et al., 2016).
Emerging evidence begins to take this into account, as a recent
clinical study investigated the effect of intravenous erenumab
administration in patients with stable angina. Consistently,
such acute administration did not show a significant difference
in exercise-induced angina or ischemia, consistent with the
minimal effect of CGRP inhibition in acute conditions (Depre
et al., 2018). However, erenumab is currently the only antibody
that blocks the CGRP receptor and the results may not be
applicable to inhibition of the CGRP ligand. Indeed, further
study on whether chronic CGRP depletion adversely affects
subjects with cardiovascular disease will be important to establish
cardiovascular safety of these drugs, especially as migraine is
associated with an increased risk of cardiovascular disease (Sacco
and Kurth, 2014).

CGRP Pharmacotherapy
The administration of a CGRP agonist will act to enhance
CGRP signaling and may prove to be beneficial in cardio-
protection. As discussed above, CGRP plays several roles in
cardio-protection against hypertension, ischemia, and heart
failure. Thus, it follows that administration of exogenous CGRP
may have beneficial effects in these conditions. However, one of
the major drawbacks of CGRP is that, as a peptide, it cannot be
delivered orally. In addition, it has a short half-life and is rapidly
cleared from the blood. Exogenous CGRP has been studied

TABLE 2 | Current monoclonal antibodies undergoing clinical trials and latest findings, in terms of cardiovascular adverse events and changes in cardiovascular
perimeters.

Name Target Trial Study length Findings Reference

Erenumab (AMG-334) CGRP receptor STRIVE: Phase 3 DBPC 6 months No significant cardiovascular adverse
events. Safety profile similar to placebo

Goadsby et al., 2017

ARISE: Phase 3 DBPC 3 months No clinically significant cardiovascular
events, with no change in
electrocardiogram (ECG), hematology,
or vital signs

Dodick et al., 2018a

DBPC study 3 months No significant cardiovascular events
and no change in total exercise time in
patients with existing cardiovascular
disease

Depre et al., 2018

Eptinezumab (ALD403) CGRP peptide Phase 2 DBPC 24 weeks No significant adverse events related to
treatment. No difference in vital signs
and ECG

Dodick et al., 2014

Fremanezumab (TEV-48125) CGRP peptide Phase 2b DBPC 12 weeks No significant change in vital signs and
ECG

Bigal et al., 2015

Phase 3 DBPC 12 weeks No significant change in vital signs and
ECG. Most adverse events were due to
injection and administration

Dodick et al., 2018b

Galcanezumab (LY2951742) CGRP peptide EVOLVE-1 Phase 3 DBPC 10 months No significant change in vital signs or
increases in blood pressure. No
cardiovascular adverse events reported

Stauffer et al., 2018
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in patients with congestive heart failure, given by continuous
intravenous infusion over 24 h, and has been demonstrated
to be beneficial to hemodynamic variables (Gennari et al.,
1990). However, the effects were lost within 30 min of stopping
therapy, concurring with the short half-life (Shekhar et al., 1991).
Recently, an acylated αCGRP analog has been synthesized and
shown to have a significantly longer half-life of 10.2 h using a
diabetes model (Nilsson et al., 2016). The same peptide analog
was later investigated in murine models of hypertension and
heart failure. It was demonstrated that daily dosing with up
to 100 nmol/kg protects against hypertension by attenuating
cardiac remodeling, oxidative stress, and reduces blood pressure
in an Ang-II model of hypertension. Renal function was also
preserved, alongside upregulation of RAMP1. In an abdominal
aortic constriction model of heart failure, the CGRP analog
attenuated cardiac hypertrophy and apoptosis, demonstrating a
beneficial effect of chronic CGRP treatment in heart failure over
several weeks (Aubdool et al., 2017). In human tissue, this analog
also demonstrated similar pharmacological effects to the native
peptide, except for a slightly reduced potency but a longer plasma
half-life means that it is potentially useful in research as well
as therapy (Sheykhzade et al., 2018). Thus, CGRP analogs or
agonism may be a viable pharmacological target for the treatment
of cardiovascular diseases and warrants further study.

Future studies should be aimed at understanding the
mechanisms involved in the protective effects and the relative
contribution of the vasodilator compared with other activities of
CGRP described above. It is also hoped that the results targeting
the protective effects of CGRP act to incentivise studies into the
synthesis of non-peptide CGRP agonists, which could potentially
lead to an orally available agonist. This will truly allow the
therapeutic potential of CGRP agonists to be evaluated clinically.
Meanwhile, the possibility that chronic antagonist and antibody
therapy leads to cardiovascular side effects will be evaluated
in ongoing experimental medicine studies as well as patient
observation of those now being given these new agents to treat
migraine.

CONCLUSION

Calcitonin gene-related peptide is a potent vasodilator peptide
released from sensory nerves. While it does not regulate

blood pressure or hemodynamics in healthy conditions, it
has cardio-protective activities under pathological states. The
protective actions of CGRP have been demonstrated in several
rodent models of different cardiovascular diseases. CGRP was
found to counteract pro-hypertensive systems to protect against
hypertension. It remains unclear how important the vasodilator
effects are in this. It is also known from studies including
those carried out in humans that CGRP decreases afterload and
increases inotropy, which is protective in heart failure. Finally,
under ischemic stress, CGRP helps preserve cellular energetics,
as well as having anti-apoptotic and anti-inflammatory effects.
The effects of CGRP on the different pathologies are summarized
in Table 1. Ultimately, CGRP is released and confers beneficial
protective effects under pathological states.

Currently, CGRP therapy is used in the treatment of migraine,
where antagonists and antibody inhibitors have shown good
efficacy. No adverse cardiovascular effects of concern have been
observed in studies to date. However, many of the safety studies
on CGRP antagonists have not examined their effects on subjects
with compromised cardiovascular systems. CGRP agonists may
have therapeutic use in cardiovascular disorders where they
are able to mediate protective actions. However, one of the
major hurdles of therapeutic use of CGRP is that, as a peptide,
administration and metabolism are issues. Thus, further work
on CGRP agonists as therapy for cardiovascular disorders could
reveal potential new drugs and provide more options in the
treatment of cardiovascular disease.
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