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Coronary angiography is the “gold standard” for the diagnosis of coronary heart disease, of which vessel segmentation and
identification technologies are paid much attention to. However, because of the characteristics of coronary angiograms, such as
the complex and variable morphology of coronary artery structure and the noise caused by various factors, there are many
difficulties in these studies. To conquer these problems, we design a preprocessing scheme including block-matching and 3D
filtering, unsharp masking, contrast-limited adaptive histogram equalization, and multiscale image enhancement to improve
the quality of the image and enhance the vascular structure. To achieve vessel segmentation, we use the C-V model to extract
the vascular contour. Finally, we propose an improved adaptive tracking algorithm to realize automatic identification of the
vascular skeleton. According to our experiments, the vascular structures can be successfully highlighted and the background is
restrained by the preprocessing scheme, the continuous contour of the vessel is extracted accurately by the C-V model, and it
is verified that the proposed tracking method has higher accuracy and stronger robustness compared with the existing adaptive
tracking method.

1. Introduction

Cardiovascular disease is currently recognized as one of the
most important chronic diseases leading to human death
in the world. In recent years, morbidity and mortality from
cardiovascular diseases continue to increase, ranking first
among various diseases. Coronary angiography (CA) is a
common and effective method for diagnosing coronary
heart disease. It is regarded as the “gold standard” for the
diagnosis of coronary heart disease and is widely used in
clinical diagnosis [1].

Normally, human arteries and vessels are invisible under
X-rays. However, by injecting X-ray impervious substances
into the coronary arteries and then irradiating the coronary
artery area with X-rays, the arteries and vessels can be

visualized. To decide the treatment plan, doctors need to
find the location and degree of coronary artery stenosis
based on the image by themselves. Nevertheless, in this
way, a large amount of repetitive work and subjective errors
are inevitable. Thus, it is of great benefit to invent technolo-
gies to segment and identify vessels in angiograms. For this
reason, many scholars have proposed various methods.

For many years, image segmentation is one of the
focuses of image processing. Up to now, many segmentation
technologies for vessels have been proposed. Based on the
two characteristics of discontinuity between regions and
similarity within regions, we can divide vessel segmentation
technologies into three categories: boundary-based segmen-
tation technologies [2–8], region-based segmentation tech-
nologies [9–11], and technologies combined with specific
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theories and tool segmentation [12–15]. Sahoo et al. [16]
adopted the maximum entropy method and the gray thresh-
old that maximizes entropy corresponded to the optimal
segmentation threshold. Sato et al. [17] constructed a multi-
parameter similarity function for enhancing vessels by ana-
lyzing the properties of the eigenvalues of the Hessian
matrix of spherical, tubular, and sheet-like structures at a
certain scale. Based on the simplified Mumford-Shah model
and the level set idea, Chan and Vese [18] proposed a new
active contour C-V model to evolve the curve through the
minimization of the energy function. Most recently, deep
learning methods have also been widely used in the field of
vessel segmentation. For example, Chen et al. [19] trained
the 3D U-Net to perform three-dimensional vessel segmen-
tation and achieved high segmentation accuracy.

Moreover, people have studied a variety of methods for
vascular identification, such as multiscale-based methods
[20–24] and tracking-based methods [25–29]. Among these
methods, the tracking-based method has been proved to be
very effective. It can detect coronary information based on
the local response of angiogram without scanning the entire
image. In the process of coronary artery extraction, the
extraction result is unstable due to the manual setting of seed
points. Aiming at this problem, Xiao et al. [30] proposed an
automatic seed point acquisition method based on ridge
point detection. These ridge points serve as seed points for
adaptive tracking of the centerline of the coronary artery.
Aylward and Bullitt [26] proposed a multiscale spatial cen-
terline tracking algorithm based on ridge detection, which
uses the eigenvalue decomposition of the Hessian matrix to
extract the ridge. However, due to limitations in algorithm
design and the effects of low image quality, noise, etc., the
accuracy and robustness of these methods still have room
for improvement.

Our main work and contributions are as follows: first, we
designed a preprocessing scheme to increase the quality of
the image and enhance the vascular structure. Then, we used
the C-V model to achieve vessel segmentation. Finally, we
proposed an improved adaptive tracking algorithm to realize
automatic identification of the vascular skeleton, which
achieved better effects than former methods according to
our experiments.

This paper is organized as follows. In Section 2, we intro-
duce our scheme of image preprocessing. Section 3 describes
the active contour model to extract the vascular contour.
Section 4 describes the details of our proposed improved adap-
tive tracking method. Section 5 presents the analysis and
experimental results of testing the robustness and accuracy
of our methods. Finally, conclusions are drawn in Section 6.

2. Image Preprocessing

The complex and varied configuration of the coronary artery
structure, noise caused by various factors, artifact caused by
the beating of the heart, and low contrast of terminal vessels
make precise segmentation very challenging. Therefore,
before the extraction of coronary artery structure, coronary
angiograms should be preprocessed to enhance the vascular
structure and suppress the background noise. In this paper,

block-matching and 3D filtering (BM3D) [31] is used to
effectively filter out noise. Unsharp masking (UM) [32],
contrast-limited adaptive histogram equalization (CLAHE),
[33] and multiscale image enhancement [34] are used to
improve image contrast and highlight the vascular structure.

2.1. Block-Matching and 3D Filtering. BM3D is a 3D block-
matching algorithm used primarily for noise reduction in
images. Firstly, by the grouping technique of block-match-
ing, image fragments are grouped based on similarity and
are integrated into a three-dimensional matrix. Then, filter-
ing is done on every fragment group. At last, the image is
transformed back into its two-dimensional form and all
overlapping image fragments are weight-averaged to ensure
that they are filtered for noise yet retain their distinct signal.
This algorithm can effectively remove image noise.

2.2. Unsharp Masking. The main procedures of UM algo-
rithm are as follows: first, a passivated fuzzy image is gener-
ated after low-pass filtering of the original image. Then, the
image with high-frequency components is obtained by sub-
traction of the original image and the fuzzy image. Finally,
the high-frequency image is enlarged with a parameter and
superimposed with the original image; that is, an image with
enhanced edges is generated. The specific algorithm steps are
as follows:

(1) Generate the smoothing result:

gmask x, yð Þ = I x, yð Þ −�I x, yð Þ, ð1Þ

where Iðx, yÞ represents the gray of the pixel ðx, yÞ, �Iðx, yÞ
represents the gray of the pixel ðx, yÞ after low-pass filtering,
and gmaskð∙Þ generates the high-frequency component of
the image

(2) Add the passivation template to the original image
with a certain proportion:

g x, yð Þ = I x, yð Þ + k ∗ gmask x, yð Þ, ð2Þ

where k is the enlarge coefficient and gð∙Þ generates the
image with enhanced edges

2.3. Contrast-Limited Adaptive Histogram Equalization. As a
variant of adaptive histogram equalization, the CLAHE
method limits the contrast amplification to reduce excessive
amplification of noise. In CLAHE, the contrast amplification
in the vicinity of a given pixel is given by the slope of the
transformation function, which is proportional to the slope
of the neighborhood cumulative distribution function
(CDF) and therefore to the value of the histogram. CLAHE
limits the amplification by clipping the histogram at a prede-
fined value before computing the CDF. This limits the slope
of the CDF and therefore of the transformation function. It
is advantageous not to discard the part of the histogram that
exceeds the clip limit but to redistribute it equally among all
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histogram bins. The process of clipping the histogram is
shown in Figure 1.

2.4. Multiscale Image Enhancement. Frangi et al. [34] pro-
posed the multiscale enhancement method based on the
Hessian matrix of the image. In this method, the relationship
among the eigenvalues, eigenvectors of the Hessian matrix,
and the orientation of vascular structure are utilized, com-
bined with the multiscale theory. Then, the vascular struc-
ture in the coronary angiogram is detected by constructing
an appropriate vascular similarity function. At present, the
method has become one of the most commonly used
methods of multiscale enhancement.

The vascular similarity function is established as follows:

V P ; σð Þ =
0, if λ2 > 0,

exp −
RB

2

2β2

� �
exp −

2m2

λ2
2

� �
1 − exp −

SH
2

2c2
� �� �

, otherwise,

8><
>:

ð3Þ

where λ1 and λ2 are two eigenvalues of the Hessian matrix,
∣λ1 ∣ ≤jλ2j, P is an arbitrary point in the image, σ is the scale
parameter, RB = jλ1j/jλ2j, SH =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1

2 + λ2
2p
, and RB is the

vascular structure enhancement factor, which is used to dis-
tinguish the globular structures from the tubular structures;
SH is the norm of the Hessian matrix; and β, c, and m
control the overall smoothness of linear objects.

When the scale factor σ is consistent with the width of
the tubular structure, the filtering result VðP ; σÞ gets the
maximum value. By iterating the scale parameters σ, the
values VðP ; σÞ under different scales are obtained, and the
maximum value is taken as the actual output of the
point P:

V Pð Þ = max
σmin≤σ≤σmax

V P ; σð Þ, ð4Þ

where σmin and σmax are the minimum and maximum
sizes of the vascular structure, respectively.

3. Vessel Segmentation

In this section, we will introduce the active contour model to
extract the vascular contour of coronary angiograms.

Kass et al. [35] proposed the active contour model
(ACM). This method converts the image segmentation
problem into solving an energy minimization problem.
The contour curve is the edge of the blood vessel when the
energy function reaches the minimum. The active contour
model is mainly divided into edge-based and region-based
according to the different construction methods of the
energy function. The most prominent advantage of the
ACM is its resistance against strong noise.

The C-V model [18, 36, 37] is a representative region-
based active contour model. The specific algorithm steps
are as follows:

(1) Put forward the energy function:

F C, c0, cbð Þ = u · L Cð Þ + v · Sb Cð Þ + λ0

ð
outside

I x, yð Þ − c0j j2dxdy

+ λb

ð
inside

I x, yð Þ − cbj j2dxdy,

ð5Þ

where c0, cb represent the average gray levels of the outside
and inside areas of the curve C, respectively; LðCÞ represents
the length of the closed curve C; SbðCÞ represents the area of
the inner area of C; and u, v, λ0, and λb represent the weights
of items in the energy function.

(2) Introduce the level set method, set wðx, yÞ as a sign
distance function with positive, negative, zero repre-
senting inside, outside, and right on the curve C,
respectively:

C = x, yð Þ: w x, yð Þ = 0f g,
inside Cð Þ = x, yð Þ: w x, yð Þ > 0f g,
outside Cð Þ = x, yð Þ: w x, yð Þ < 0f g:

8>><
>>:

ð6Þ

Introduce the following H and δ functions:

H wð Þ =
1,w ≥ 0,
0,w < 0,

(
ð7Þ

δ wð Þ = d
dw

H wð Þ: ð8Þ

Rewrite the energy function as a level set equation:

F C, c0, cbð Þ = u ·
ð
δ wð Þ ∇wj jdxdy + v ·

ð
H wð Þdxdy

+ λ0

ð
outside

I x, yð Þ − c0j j2 1 −H wð Þð Þdxdy

+ λb

ð
inside

I x, yð Þ − cbj j2H wð Þdxdy,

ð9Þ

where λb and λ0 are the iterative parameters in the C-V
model, and their values affect the evolution rate of the curve
C. When the curve C contains the segmentation target, the
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Figure 1: The clipping process of CLAHE.
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internal homogeneity of the curve C is low; thus, it is
necessary to enlarge λ0 to accelerate the evolution of the
curve C to the target, and vice versa.

(3) The energy minimization problem can be solved by
minimizing the level set equation iteratively

The C-V model minimizes the energy function to obtain
the evolution curve that approaches the edge of the blood
vessels and finally segments the target. Compared with other
methods, it has better effects on the continuous gradient.

4. Improved Adaptive Tracking

In this section, we will propose an improved adaptive track-
ing method, which is more robust and has fewer misjudg-
ments in the tracking process, to automatically extract the
skeleton of the coronary blood vessels.

4.1. Ridge Point Detection. Ridge point detection is
important for seed point selection, blood vessel tracking,
and bifurcation point detection. Ridge point is the local gray
maximum point of the two-dimensional image. After multi-
scale enhancement, a ridge point of the blood vessel is
usually located at the maximum point perpendicular to the
direction of the blood vessel. The gradient of the local max-
imum point in the image is zero, and its Hessian matrix is
negative [38]. Since the coordinates of image pixels are all
integers, according to the principle of linear interpolation,
if the point ðε, ηÞ ðx < ε < x + 1, y < η < y + 1Þ satisfies the fol-
lowing conditions:

∇ x, yð Þ∇ x + 1, y + 1ð Þ < 0 or
∇ x + 1, yð Þ∇ x, y + 1ð Þ < 0,
λi x +m, y + nð Þ < 0, i = 1, 2,m = 0, 1, n = 0, 1ð Þ,

ð10Þ

where ∇ðx, yÞ is the gray gradient of point ðx, yÞ and λiðx, yÞ
are the eigenvalues of the Hessian matrix of point ðx, yÞ;
then, ðε, ηÞ can be considered as a local maximum point,
and the pixel ðx, yÞ, as its approximate solution, is defined
as a ridge point.

The ridge points may be misjudged due to the image
noise caused by the uneven distribution of contrast agents
and other factors. Thus, a gray threshold is used to screen
out those misjudged ridge points. This method can
effectively remove most of the ridge points outside the
blood vessel.

4.2. Tracking Process. The tracking algorithm starts from a
seed point and gradually tracks to the end of the vessel,
extracting the blood vessel skeleton. We randomly select
the seed point from the detected ridge points.

The initial tracking direction can be calculated from the
gray information around the seed point. According to [38],
take the seed point as the center and search for the gray
maximum point P+ on the circle with radius d. P+ is the first
point of forward tracking, the forward initial tracking direc-
tion u+ and angle θ+ can be expressed as

u P+ð Þ = P+ − P
∥P+ − P∥

= cos θ+, sin θ+
� �

: ð11Þ

After obtaining the forward tracking direction, we search
for the local maximum point P− on arc lð2π − θ+ − Δθ,
2π − θ+ + ΔθÞ centered in the opposite direction ð2π − θ+Þ

l

P
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Figure 2: Initial direction detection.
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Figure 5: Vascular branch detection.
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of the forward tracking angle θ+. The search area is shown
in Figure 2.

The backward direction of the initial trace u− can be cal-
culated as

u P−ð Þ = P− − P
∥P− − P∥

: ð12Þ

Tracking from the current point forward to the next
point is the main step of this algorithm. The current tracking
direction is determined by the direction from the previous
point Pk−1 to the current point Pk:

uk =
Pk−1 − Pk

∥Pk−1 − Pk∥
: ð13Þ

After determining the tracking direction, we search for
the local maximum point Pk+1 on arc lk(θk − Δθ, θk + Δθ)
and the following conditions should be met:

I Pk+1ð Þ > I0,
NP Pk+1ð Þ < τP ,

(
ð14Þ

where IðPk+1Þ is the gray of Pk+1, NPðPk+1Þ is the number of
tracking points around Pk+1, and I0 and τP are two thresh-
olds. The first condition is to prevent the overtracking
beyond the vessel area, while the second condition can avoid
repeatedly tracking the vessel and being trapped in a local
endless loop. If both conditions are satisfied, we continue
to track from Pk+1. Otherwise, Pk+1 is the endpoint of the
vessel. We illustrate the tracking process in Figure 3.

Due to the noise and other issues mentioned above, a few
tracking points may deviate from the center of the vessel.
The tracking point can be adjusted to the center by center
adjustment, which combines the blood vessel contour and
tracking direction information. The specific steps are as fol-
lows: get the normal line of the vessel through the vertical
direction of the current tracking direction and find the inter-
section points G1,G2 of the normal line and the blood vessel
contour;, then tracking point Pk can be adjusted to

P′k =
G1 + G2

2 , ð15Þ

meanwhile, change the tracking direction uk to

u′k =
P′k − Pk−1
∥P′k − Pk−1∥

: ð16Þ

The adjustment process is illustrated in Figure 4.
Bifurcation detection is another important process of the

tracking algorithm. Ideally, we only need to distinguish two
different vessel branches at the vessel bifurcation. However,
in the actual tracking process, the accurate positions of vessel
bifurcations are usually unknown. Thus, bifurcation detection
is required at each point of the tracking process. We propose a
robust bifurcation detection method. It includes two main
steps: first, obtain one branch point (tracking point) Pk by
the tracking method, and second, search in the fan ring area
between angle (θk − Δθ′,θk + Δθ′) and radius ðr1, r2Þ to find
a ridge point that satisfies the following conditions:

θb − θkj j > τ1,
θb − θk−1j j > τ2,
∥Pb − Pk∥>d,
NB Pbð Þ < τB,

8>>>>><
>>>>>:

ð17Þ

where Pb and uðPbÞ represent the detected ridge point of the
new branch (the branch point) and its direction, respectively;
NBðPbÞ is the number of bifurcations around Pb; and τB is a
threshold. The first three conditions mean that when uðPbÞ
significantly differs from uðPkÞ and uðPk−1Þ and the distance
between Pb and Pk is large enough, the new branch has a large
gap with the former branch. The last condition indicates that
NBðPbÞ should be smaller than τB to avoid duplication with
existing tracking. If all the conditions are satisfied, Pb is
detected as a bifurcation point and we keep tracking the
branch vessels. The schematic diagram of bifurcation detec-
tion is shown in Figure 5.

(a) (b) (c)

Figure 6: Three selected original images.
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(a)

(b)

(c)

Figure 7: Experimental results of three original images obtained by applying the proposed method. (a) Images preprocessed. (b) Vascular
contour segmentation. (c) Improved adaptive tracking (red dots are bifurcation points, green dots are normal tracking points).

(a) (b)

Figure 8: Comparison of the tracking effect between our proposed method and the method of [38]. (a) Results of [38]. (b) Results of the
proposed method.
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In addition, before tracking, the ridge image can be prepro-
cessed to remove the scattered and distributed ridge points, it
can also reduce the misjudgments of bifurcations. The specific

steps areas follows: set a threshold τR, count the number of sur-
rounding ridge points for each ridge point NRðPÞ, and then
remove this ridge point if NRðPÞ < τR and keep it otherwise.

(a) (b)

Figure 9: Experimental results of different seed points (blue). (a) The method of [38]. (b) The proposed method.
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5. Results and Analysis

In this section, we will conduct several experiments to justify
the effectiveness of the proposed method. All the images are
captured from the video data of coronary angiograms pro-
vided by Qilu Hospital (Qingdao). The experiments are
implemented on an Intel Core i5-8300H and 8GB of RAM
processor using MATLAB software of version 2019b.

We carefully selected the parameters used. In multiscale
enhancement, we set β, c, and σ to 0.5, 20, and [1 : 10]. In the
proposed tracking method, we set the radius to 5 pixels and
Δθ to 45° in forward tracking. For bifurcation detection, it
needs a larger area for searching; thus, we set the radius
ðr1, r2Þ to ð7, 12Þ pixels and Δθ′ to 135∘ which can avoid
backward tracking. Note that we set other thresholds I0,
τ1, τ2, d, τP, τB, and τR to 10, 45∘, 30∘, 5, 4, 2, and 3.

Three images with the different vascular structures were
selected for independent experiments, which are shown in
Figure 6. We applied our methods for these images, and
the results are shown in Figure 7.

As can be seen from Figure 7, even though the vascular
structures in the images are very different, the proposed
method still has a nice experimental effect. From the images
preprocessed (a), we can find that after the image prepro-
cessing, the vascular structures were successfully highlighted
and the background was restrained. The extraction of vessel
contours (b) obtained vascular contours accurately and
completely. The improved adaptive tracking method (c) is
a core part of our work: compared with the original adaptive
tracking method of [38], one of the main improvements in
this approach is the bifurcation point detection part. We
changed the originally fixed search radius to a proper search
scope, which enhanced the capacity of the retrieval of bifurca-
tion, and we used four conditions in Equation (17) to judge
bifurcation point instead of only using the first condition,
which greatly improved the detection accuracy and reduced
the misjudgment. The results can be seen in Figure 8.

To achieve the completely automatic identification of
vessels, we need to test the robustness of the proposed track-
ing method for randomly selected seed points from the
detected ridge points. Taking Figure 6(c) as an example,
three seed points were selected from different positions.
The experimental results are shown in Figure 9. It can be
seen that the results of the proposed method have strong
robustness; that is, our method is generally applicable for
automatically selected seed points. Meanwhile, our method
is more accurate than the method of [38], which is clear in
Figure 9 that the points of different types we identified are
more approaching to the real vessel.

Even though our method has an improvement in accuracy
and robustness compared to the former one, it still has some
shortcomings. For example, the image preprocessing method
is not effective enough for some images with complex vascular
structures. Although the detection of bifurcation points has
been improved compared with the method in [38], there are
still a few misjudgments. This phenomenon can be seen in
Figure 8(b). In the case of a more complex vascular structure,
the tracking effect varies with the selection of seed points, and
some vessel segments may be lost, as shown in Figure 7(c2).

6. Conclusion

In this paper, we designed a scheme of image preprocessing,
used the C-V model, and proposed an improved adaptive
tracking method, with which we can realize segmentation
and automatic identification of vessels in coronary angio-
grams. Among these methods, the improved adaptive track-
ing method contains our major innovations that can
enhance the capability of identifying vessels. Besides, we
did many experiments to test our proposed method and
the results turned out that our method is more robust and
accurate than the former method.

Due to the complexity of coronary angiograms described
above, traditional image processing methods are not effec-
tive enough. Hence, in the following work, we will continue
to optimize the tracking algorithm and carry out image pro-
cess research on deep learning to achieve a better effect.
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