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Elastic Correlation Adjusted 
Regression (ECAR) scores for high 
dimensional variable importance 
measuring
Yuan Zhou1,2, Botao Fa1, Ting Wei1, Jianle Sun1, Zhangsheng Yu1* & Yue Zhang1*

Investigation of the genetic basis of traits or clinical outcomes heavily relies on identifying relevant 
variables in molecular data. However, characteristics such as high dimensionality and complex 
correlation structures of these data hinder the development of related methods, resulting in the 
inclusion of false positives and negatives. We developed a variable importance measure method, 
termed the ECAR scores, that evaluates the importance of variables in the dataset. Based on this 
score, ranking and selection of variables can be achieved simultaneously. Unlike most current 
approaches, the ECAR scores aim to rank the influential variables as high as possible while maintaining 
the grouping property, instead of selecting the ones that are merely predictive. The ECAR scores’ 
performance is tested and compared to other methods on simulated, semi-synthetic, and real 
datasets. Results showed that the ECAR scores improve the CAR scores in terms of accuracy of variable 
selection and high-rank variables’ predictive power. It also outperforms other classic methods such as 
lasso and stability selection when there is a high degree of correlation among influential variables. As 
an application, we used the ECAR scores to analyze genes associated with forced expiratory volume in 
the first second in patients with lung cancer and reported six associated genes.

As a result of novel biotechnology such as next-generation sequencing (NGS) technologies, genomic and clini-
cal research have benefited dramatically from the steep increase in both quantities and quality of molecular 
data. Identifying important genomic factors correlated with phenotypes or clinical outcomes will help scientists 
investigate the genetic basis of traits or diseases and make targeted interventions possible. An example is the 
identification of cancer driver genes that are crucial for diagnosing and treating the disease. On the other hand, 
the data complexity challenges the analysis methods. In these data, the number of variables is often much larger 
than the number of individuals. For example, expression of > 20,000 mRNA transcripts can be measured using 
 microarrays1, but a few of the experiments have fewer than 100  samples2. More importantly, complex correlation 
 patterns3–5 and considerable  interactions6 are present between the variables (e.g., genes, SNPs). Additionally, the 
number of causal or relevant variables to clinical outcomes may be  small7–9.

Many computational tools have been developed to help the selection of genomic factors relevant to the 
quantitative traits or clinical outcomes. The most commonly used approach performs independent hypothesis 
testing on each variable, and keep those whose p values are below the significance threshold, which unavoidably 
leads to high rates of false positives. However, adjusting the threshold with multiple comparison criteria, such 
as Bonferroni or False Discovery Rate (FDR) correction, will cause variables of small to moderate effects to be 
erroneously  discarded10, thus introducing many false negatives. Another class of methods are penalized regres-
sion models (e.g.,  lasso11, elastic  net12, minimax concave  penalty13), which aim to select a small set of predictors 
that are associated with a trait. Despite their good performance in prediction, they face challenges in associa-
tion studies. For example, the lasso tends to select only one variable from a group of highly correlated genomic 
factors, and it cannot select more variables than the sample size. The elastic net addresses these two problems, 
but its result, like other well-known approaches (lasso, minimax concave penalty), can be numerically unstable 
when applying cross-validation to estimate the parameters. Some researchers also propose to rank and select 
variables based on their assigned scores. An example of this is the variable importance computed by random 
 forest14, which has been applied in  genetics15, gene  expression16,  methylation17,  proteomics18, and metabolomics 
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 studies19. Another example is stability  selection20, which is based on linear models and has flavors of both lasso 
and random forests. Comparing with the lasso, it is more suitable for variable selection, but the price to pay is 
the reduced power to identify the true signals. CAR  scores21 and CARS  scores22 also fall into this group, they are 
easy to calculate, but might not be flexible enough when the noise in data is too small or too large.

Due to these limitations of current approaches, we developed the Elastic Correlation Adjusted Regression 
(ECAR) score for simultaneously variable selection in high dimensional biological data. This method is an 
extension of the CAR  scores21 and improves over the CAR scores in terms of selection accuracy by adjusting the 
parameter according to different datasets’ characteristics. Specifically, the ECAR scores aim to rank the truly 
influential variables as high as possible. To determine the final selected set, we apply the adaptive false discovery 
rate density  approach23. We compared the ECAR scores’ performance to lasso, stability selection, ridge, CAR 
scores, and Sure Independence  Screening24 (SIS) on three classes of datasets: simulated datasets with a fixed 
correlation structure, semi-synthetic datasets generated from mRNA expression data, and real datasets from T3/
barley database. In our study, we showed that ECAR improves CAR and rivals popular methods like the lasso in 
terms of the variable selection accuracy and the predictive power of high-rank variables.

Results
The idea of ECAR scores. Suppose we have random variables ( Xp×1,Y1×1) , where X = (X1, . . . ,Xp)

T 
denotes the genomic features and Y  is the outcome, ECAR scores ω are defined as

where R is the correlation matrix of the feature space, and RXY is the Pearson correlation coefficient vector. R−α 
is the αth power of the real symmetric matrix R , which is obtained by first computing the spectral decomposition 
of R = Q�Q−1 , and subsequent modification of the resulting eigenvalues R−α

= Q�−αQ−1 . When α = 0 , the 
ECAR scores are equivalent to the Pearson correlation coefficients. When α = 1 , it is equivalent to the semi-
partial correlation coefficient. CAR fixes the parameter α at 0.5, and therefore it might be in the middle of the 
marginal method ( α = 0 ) and the conditional method ( α = 1).

We believe that it is not reasonable to fix α at either 0 (Pearson correlation) or 0.5 (CAR). A small example 
can illustrate this idea. Suppose X1 ∼ N(0, 1),X2 = X1 + ε,X3 ∼ N(0, 1),Y = X2 + 0.5X3 , where ε ∼ N(0, 1) . 
Figure 1 shows the diagram and contributions of the three variables. The area of the three circles represent three 
variables’ univariate contribution to Y  , which can be seen as the coefficient of determination ( R2 ) of 3 univari-
ate regressions. X1 circle overlaps with X2 circle since X1 is not in the data-generating model-its contribution is 
borrowed from X2 . Generate 1000 samples from our model and set α = 0 , the ECAR scores of X1 , X2 , X3 are 
0.56, 0.81 and 0.24 respectively. We noticed that even if X1 plays no role in generating Y  , its score is higher than 
X3 , which is in the model. Set α = 0.5 and this results in the scores of 0.3, 0.75, and 0.24. X1 ’s score is reduced, 
however, it is still larger than X3 ’s score. If we set α = 1 , the three scores will be − 0.03, 0.83, and 0.24, the absolute 
values of which are much more reasonable in terms of evaluating their actual contributions.

Fixing the α at one is also not ideal. In this case, the scores are equivalent to multiple regression coefficients 
when X and Y  are standardized. This seems to be more suitable to locate the truly influential variables, since the 
non-influential variables will contribute nothing to the outcome given other variables in theory. However, accu-
rate estimation of scores may be difficult as a result of the high degree of correlation among genomic  factors25. 
This problem can be solved by shrinkage methods, which means only a limited amount of information from the 
correlation matrix will be used, and this amount can be seen as parameter α in the ECAR scores.

α should be adjusted in each dataset to achieve a reasonable extent of compromise between two extremes 
(multiple regression coefficients and Pearson correlation coefficients). As α varies from 0 to 1, it borrows more 
and more information from the correlation matrix, and the ECAR scores tend to be more like multiple regres-
sion coefficients. The ECAR scores can also be seen as the correlation coefficient between the outcome Y  and the 
transformed features R−αX . The transformed features R−αX will tend to be more “dislike” its original version 
X as α increases, and this idea is illustrated in Fig. 2.

Best α moves towards 1 when R2 increases, which is a trend consistently observed in our simulations and 
applications. To estimate α of ECAR scores in different datasets, we proposed a method that can maximize the 
variable selection power, which is discussed in detail in the Methods section. In brief, first, we need to estimate 
the R2 and the number of influential variables s , and then we randomly select s variables and simulate a new 
dataset using a linear model which has the same X , R2 and s as the real dataset. The α which has the best variable 

(1)ω = R
−α

RXY ,

Figure 1.  Data generating diagram and univariate contribution of X1,X2,X3 to Y  . (a) The causal diagram of our 
data-generating model. (b) The univariate contribution of each variable. The overlapped area represents shared 
explained variance of each variable in univariate regression.
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selection performance measured by Area Under Prediction-Recall Curve (PR-AUC) can be found in the new 
dataset, as truly influential variables are known. This process is performed many times, and we take the median 
of the best α to be our final estimate, which performs well in general under different correlation structures. In 
this way, we can predict the α which ranks the influential variables as high as possible in the real problem. This 
method works well because while we know nothing about the truly influential variables and their correlation 
structure, we can estimate the parameter by simulating the possible scenarios. The estimated α would remain 
reasonable in the real setting as long as it is not too far from our simulated ones.

Comparison of feature selection accuracy on simulated datasets. We compared the performance 
of ECAR with CAR, SIS, ridge, lasso, stability selection (Details of these methods can be found in Methods sec-
tion) on 500 simulated datasets consisting of 200 observations and 600 features. The correlation matrix of the 
features is block diagonal with the compound symmetry structure which was used in the previous  research26. It 
is constructed by two equally sized blocks. In each block, the correlation between any two features is 0.25, while 
variables from different blocks are independent. We used the method described in the Methods section to deter-
mine the best α . Assume in the linear data-generating model (2) that there are 30 influential variables randomly 
selected from the first block, and their corresponding coefficients are sampled from the uniform distribution 
with minimum 0 and maximum 1. ε is normally distributed with mean 0 and variances σ 2.

We adjusted σ to synthetic five groups of datasets. Each group consisted of 100 datasets and achieved a dif-
ferent level of the R2 . Using the methods described in the Methods section to estimate α , we noticed that when 
R2 is controlled at 0.2, 0.4, 0.6, 0.8, 0.95, the medians and standard deviations of 100 best α are 0.225 ± 0.22, 
0.350 ± 0.17, 0.450 ± 0.13, 0.600 ± 0.10 and 0.750 ± 0.08, respectively. These median values were substituted into 
the ECAR scores for comparison with other methods on these datasets. The true positives path, as well as the 
medians and standard deviations of PR-AUC, are shown in Figs. 3 and 4 (a truncated version of Fig. 3) for each 
method. Under all R2 settings, the path of ECAR is among or near the highest paths. The results also demonstrate 
ECAR’s advantage of flexibility: as the R2 drops, SIS outperforms other methods and continues to extend its lead; 
meanwhile, the α in ECAR decreases, and therefore ECAR behaves more like SIS.

Since it seems too advantageous to SIS that the influential genes are all from the first block, we also tried to 
select the genes from the whole set randomly. Figure 5 shows that ECAR outperforms SIS, ridge, and stability 
selection consistently and is highly competitive to lasso except when noise is extremely low ( R2 = 0.95). The path 
of ECAR and CAR is very similar in the figure, which indicates the result is not very sensitive to α in this study. 
We also performed the sensitivity analysis in which different coefficient distributions are used to estimate α . We 
noticed that the result of ECAR may be affected when the coefficients of features in the test sets are generated 
from an entirely different distribution from the one (uniform distribution) we use in estimating α , the result may 
change a bit. For example, when the coefficients of features in the test sets are sampled from the standard normal 
distribution, the performance of lasso and stability selection is greatly enhanced. At the same time, ECAR, CAR, 
and ridge select fewer true positives. This decline of performance is due to their grouping property (positively 
correlated features tend to have the same scores). If the positively correlated influential features’ coefficients are 
sampled from the standard normal distribution and thus have different signs, these features’ scores would tend 
to cancel each other out, and this will undermine the performance of these methods. However, the effect is not 
significant, as can be seen in Supplementary Table S2.

(2)Y = Xβ + ε

Figure 2.  The correlations between 100 transformed gene expression profiles R−α
X and their original versions 

X as α moves from 0 to 1. Each line of different color represents an mRNA. The features are 100 gene expression 
profiles selected from The Cancer Genome Atlas (TCGA) LIHC cohort.
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Comparison of variable selection accuracy on real mRNA expression datasets with simulated 
phenotypes. We obtained mRNA expression datasets from 3 cancer projects (LUAD, LIHC, LUSC) from The 
Cancer Genome Atlas (TCGA) portal (https:// tcga- data. nci. nih. gov/ tcga/) using TCGA-Assembler27 (v1.0.3). 
We removed the genes with zero expression in more than 20% of the samples. For each expression data, 1000 
genes with the largest variance were selected, log-transformed and normalized to form the simulation dataset. 
The sample sizes of simulation datasets are 512, 369, and 497, respectively. The comparison method is the same 
as that in the previous section. Figure 6 summarizes the performance of feature selection for each method on the 
LUAD dataset (results on LIHC and LUSC are similar). The medians of the best α and corresponding standard 

Figure 3.  Comparison of feature selection performance on 500 simulated datasets. The median number of true 
positive variables as a function of the total number of selected genes as well as the median of PR-AUC and its 
standard deviation are shown for ECAR, CAR, SIS, ridge, lasso and stability selection under five R2 scenarios. 
The total number of influential genes is 30, which are randomly selected from the first 300 genes (first block). 
Parameter α of ECAR is estimated using the methods described in the Methods section. The regularization 
parameter of ridge and lasso is estimated using fivefold cross-validation and generalized cross-validation, 
respectively. As lasso cannot select more variables than the sample size, we let it choose genes randomly when all 
genes in the output selected set are chosen. (a) R2 is controlled at 0.95 for the 100 simulated datasets. (b) same as 
(a), R2 controlled at 0.8. (c) Same as a, R2 controlled at 0.6. (d) same as (a), R2 controlled at 0.4. (e) Same as a, R2 
controlled at 0.2.

https://tcga-data.nci.nih.gov/tcga/
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deviations when R2 = 0.2, 0.4, 0.6, 0.8 and 0.95 are 0.3 ± 0.13, 0.45 ± 0.07, 0.55 ± 0.05, 0.65 ± 0.05 and 0.80 ± 0.06, 
respectively. Figure 6 looks similar to Fig. 3, as ECAR still outperforms CAR when R2 is above 0.6 or below 0.4, 
and it selects more true positives than SIS and stability selection consistently. Compared with the more artificial 
examples in the previous section, lasso performs better as its advantage over ECAR maintains until R2 drops to 
0.6. When there is high noise ( R2 = 0.2), all methods behave similarly. These results further demonstrate that 
when the features have a general correlation structure, ECAR still improves CAR, and is competitive to some 
classic variable selection methods. We also performed several sensitivity analyses, in which we changed the dis-
tribution of coefficient, number of influential genes. It turns out the results are quite similar to those shown here 
(Supplementary Fig. S6–S8). Another interesting thing is that the best α seems to be insensitive to the dimen-
sion: when we increased the dimension to 4000, the best α under different R2 levels remains almost the same.

ECAR applied to barley dataset. The data we used were downloaded from the T3/barley database. The 
sequencing data are from a genotyping experiment, BarleyNB_9K (Platform: Infinium 9K). Barley samples have 
spike length information in the trial of experiment NSGC Spring Core Panel in 2012, and lodging degree and leaf 
width information in the trail of experiment UMN NSGC GWAS in 2015. Genotyping experiment BarleyNB_9K 
includes 2417 samples and 6913 markers. We cleaned this data by removing 63 markers with a minor allele fre-

Figure 4.  Comparison of feature selection performance on 500 simulated datasets. This figure is the same as 
Fig. 3 except that paths are truncated at 100 genes.
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quency (MAF) less than 1% and 429 markers which are missing for more than 3% of data. In the data, 1, 0, − 1 
represent AA, AB, BB respectively. The missing values were replaced by − 1. After removing samples with NA 
trait value and markers that are duplicated or have zero variance, the spike length dataset contains information 
for 1947 samples and 6583 markers; the lodging degree dataset has 712 samples and 6236 markers; the leaf width 
dataset has 738 samples and 6239 markers.

We applied ECAR, CAR, lasso, stability selection, SIS, ridge on these three datasets. Since we do not know 
the truly influential SNPs, we compared the mean square error (MSE) on the test set indexed by the number of 
SNPs in the model instead. For the spike length, lodging degree, and leaf width dataset, the R2 are estimated to 
be 0.4, 0.32, and 0.45; the numbers of influential variables are estimated to be 326, 152, and 145; parameter α is 
estimated to be 0.45 ± 0.03, 0.4 ± 0.07, and 0.5 ± 0.06.

Tables 1 and 2 summarizes the generalization performance of high-rank SNP features evaluated by lasso and 
ridge on the three datasets. The generalization performance is assessed by the MSE of lasso or ridge on the test 
sets. From the two tables, we can see that while none of these methods perform consistently well in every case, 
SNPs ranked by ECAR scores have relatively high prediction accuracy overall. The MSE of ECAR is less than 
CAR, lasso, and ridge in all cases except in the leaf width dataset where ECAR is equivalent to CAR (α = 0.5) . 
Stability selection seems to perform quite well in terms of prediction error among multivariate methods. We 

Figure 5.  Comparison of feature selection performance on 500 simulated datasets. This figure is the same as 
Fig. 3 except that the influential features are selected from the whole set of features randomly.
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noticed that in the lodging degree and the leaf width dataset, SIS has superior MSE over other methods. However, 
we showed that it has relatively lower feature selection accuracy compared to other methods in the previous 
sections. This phenomenon demonstrates that a feature with high predictive power does not necessarily have a 
causal relationship with the outcome. To sum up, these three examples show that even though ECAR is designed 
explicitly for selecting predictive variables, it is competitive to other classic multivariate methods in terms of 
predictive power.

Figure 6.  Comparison of variable selection performance on 500 semi-synthetic datasets. The median number 
of true positive variables as a function of the total number of selected genes as well as the median of PR-AUC 
and its standard deviation are shown for ECAR, CAR, SIS, ridge, lasso and stability selection under five R2 
scenarios. The total number of influential genes is 50, which are randomly selected from the 1000 genes. 
Parameter α of ECAR is estimated using the methods described in the Methods section. The regularization 
parameter of ridge and lasso is estimated using fivefold cross-validation and generalized cross-validation, 
respectively. As lasso cannot select more variables than the sample size, we let it choose genes randomly when all 
genes in the output selected set are chosen. (a) R2 is controlled at 0.95 for the 100 simulated datasets. (b) Same as 
(a), R2 controlled at 0.8. (c) Same as (a), R2 controlled at 0.6. (d) Same as (a), R2 controlled at 0.4. (e) Same as (a), 
R
2 controlled at 0.2.
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ECAR applied to the LUAD dataset. We analyzed forced expired volume in 1 s (FEV1) in 230 patients 
from the TCGA LUAD cohort (total n = 577). In the data preprocessing step, 3781 genes which have zero value 
for more than 20% of samples were removed. This results in a dataset of 230 samples and 16,750 genes. After the 
logarithmic transformation on both the gene expressions and FEV1, we performed ECAR on the data.

The R2 and the number of influential variables were estimated to be 0.1 and 9, respectively. In this data, α 
estimates had a median of 0.15 and a standard deviation of 0.28. Controlling the false discovery rate at 5%, ECAR 
selected six genes CHRM3, CTCFL, KCNE2, MLANA, MSMP, TTLL2, many of which have been reported to be 
associated with lung function or cancer. For example, CHRM3 encodes the muscarinic acetylcholine receptor 
M3, which is a well-characterized drug target for which many approved drugs exist, including for the treatment 
of asthma and obstructive lung  disease28. BORIS transcripts were expressed in lung carcinoma cell lines at high 
to moderate  levels29. KCNE2 and TTLL2 might be associated with pulmonary  function30,31. MSMP hindered 
the effect of anti-VEGF  therapy32, and it could promote xenograft PC3 growth and reduce the survival of PC3 
metastatic mice  model33. The genes selected by SIS and CAR are listed in Table 3.

Discussion
We developed the ECAR scores, which can simultaneously measure the importance of all the variables in regres-
sion models. We showed that by diligently searching the parameter which maximizes PR-AUC, ECAR can 
improve traditional methods like SIS, ridge, CAR in terms of the feature selection accuracy, while maintaining 
strong predictive power in high-rank features. ECAR is also highly competitive to popular variable selection 
methods like lasso, notably when influential factors are correlated. Moreover, it enjoys the grouping property that 
strongly correlated variables will tend to be selected together. Another advantage of ECAR is that its parameter 
is insensitive to the sampling setting: even the coefficients’ distribution used is different from the real one, the 
results would not be significantly different. The flexibility of ECAR not only enables it to perform well under 

Table 1.  Summary of the generalization performance of high-rank SNP features evaluated by lasso on the 
three datasets. Base lasso is the prediction performance of lasso on the test sets using all features as input. See 
the “Methods” section for further details.

Data Features’ number ECAR CAR Lasso Stability selection SIS Ridge Base lasso

Spike
Length
(R2= 0.4,
α=  0.45)

5 342.9 357.3 361.1 331.4 331.2 366.1 272.8

10 320.4 330.1 339.0 317.1 325.0 332.2 272.8

20 303.6 308.7 314.9 301.1 317.8 317.0 272.8

30 301.9 306.2 310.2 296.3 316.1 307.2 272.8

Lodging
Degree
(R2= 0.32,
α= 0.4)

5 3.48 3.56 3.57 3.51 3.15 3.80 2.91

10 3.42 3.54 3.49 3.35 3.10 3.75 2.91

20 3.36 3.39 3.46 3.30 3.14 3.60 2.91

30 3.28 3.43 3.47 3.27 3.12 3.52 2.91

Leaf
Width
(R2= 0.45
α= 0.5)

5 0.067 0.067 0.070 0.062 0.060 0.069 0.050

10 0.061 0.061 0.063 0.059 0.056 0.066 0.050

20 0.058 0.058 0.059 0.056 0.055 0.062 0.050

30 0.056 0.056 0.059 0.055 0.059 0.060 0.050

Table 2.  Summary of the generalization performance of high-rank SNP features evaluated by ridge on the 
three datasets. Base ridge is the prediction performance of ridge regression on the test sets using all features as 
input. See the “Methods” section for further details.

Data Features’ number ECAR CAR Lasso Stability selection SIS Ridge Base ridge

Spike
Length
(R2= 0.4,
α= 0.45)

5 344.5 350.5 361.6 336.6 337.8 350.1 268.3

10 326.5 329.4 340.4 319.7 331.8 331.4 268.3

20 303.8 305.7 317.9 300.9 324.6 310.1 268.3

30 297.7 301.4 305.5 297.2 324.8 303.1 268.3

Lodging
Degree
(R2= 0.32,
α= 0.4)

5 3.45 3.46 3.44 3.34 3.10 3.69 2.61

10 3.30 3.46 3.42 3.24 3.00 3.63 2.61

20 3.26 3.39 3.33 3.18 2.95 3.56 2.61

30 3.21 3.29 3.36 3.18 2.91 3.40 2.61

Leaf
Width
(R2= 0.45,
α= 0.5)

5 0.065 0.065 0.066 0.062 0.058 0.070 0.047

10 0.061 0.061 0.061 0.057 0.055 0.067 0.047

20 0.057 0.057 0.059 0.054 0.053 0.062 0.047

30 0.055 0.055 0.058 0.053 0.052 0.060 0.047
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settings that are unsuitable for CAR, but also ensure it has approximately equal performance when CAR works 
satisfactorily. Some researchers applied the CAR scores to SNP selection in the GAW17 dataset and found CAR 
performed much better than other classic  methods34. We tried to estimate α in this dataset, and it turned out the 
best α is very close to 0.5, which explains why CAR can perform better than those classic methods in this data.

One issue with ECAR is that it is computationally intensive when estimating the parameter α , since we have 
to compute the power of the correlation matrix 21 times. This process can be accelerated using the methods 
proposed by  Strimmer21, which enables substantial computational savings when the sample size is much smaller 
than the number of features. Another issue is that it is not a completely automatic method, which means we 
have to estimate some parameters like R2 and the number of influential variables. The estimation accuracy will 
affect the result, but luckily the effect is limited. Finally, when the data has a small R2 or number of influential 
variables, the standard deviation of α may be quite large, and it might be more secure to apply the more con-
servative SIS in this case.

Methods
Data. To evaluate the performance of the ECAR scores, we used three kinds of datasets. The first kind of data-
sets has 200 samples and 600 features which were split into two equal-sized groups. The datasets were generated 
from a multivariate normal distribution with mean zero. The correlations between any two features in the same 
group are 0.25, and features in different groups are independent. The outcomes were generated by a Gaussian lin-
ear model in which influential features are randomly selected. The second datasets we used were semi-synthetic 
datasets. We called it semi-synthetic datasets because the features are from real mRNA expression data obtained 
from 3 cancer projects (LUAD, LIHC, LUSC) from TCGA. The outcomes were generated in the same way as 
described above. We compared the variable selection accuracy on the datasets mentioned above. We also used 
three barley datasets downloaded from the T3/barley database whose sample and feature size ranged between 
712 to 1947 and 6236 to 6583, to evaluate the prediction performance of ECAR. We applied ECAR to the LUAD 
dataset and analyzed genes that influence forced expired volume in 1 s (FEV1). The information of datasets is 
shown in Supplementary Table S1.

Details of the ECAR scores. Our method takes genomic features and the outcome as input and returns 
scores that represent the importance of features. In ECAR scores R−αRXY (Eq. 1), the calculation of Pearson 
Correlation Coefficient RXY is straightforward. As for R−α , we need to estimate α from data, and then we can 
use function powcor.shrink from R package corpcor to calculate R−α . The procedures for estimating α is as fol-
lows. First, to simplify the computation, we limit the choice of α to an equally spaced sequence which contains 21 
numbers ranging between 0 and 1 (0, 0.05, 0.1, …,1). Second, we simulate 100 datasets using a Gaussian linear 
model Y = Xβ + ε , where ε ∼ Nn(0, σ

2In) . In this model, X is given and we need to predetermine β and σ 2 to 
generate Y  . If R2 and the number of influential variables s are already known approximately to us, we can just 
randomly select s variables whose corresponding β are sampled from the uniform distribution with minimum 
0 and maximum 1 (the rest of the β are 0); the σ 2 is set to be (1−R

2)βT

X
T

Xβ

nR
2

 so that the model can achieve the pre-
determined R2 . If R2 and s are not given, we can estimate them from the data. Many methods can be applied to 
estimate R2 , and refitted cross-validation35 is an example. The number of influential features s can be estimated 
based on the cardinality of lasso’s selected set, and the regularization parameter of lasso can be estimated by 
generalized cross-validation to avoid numerical instability. Our sensitivity analysis results showed that the result 
is not very sensitive to these estimates. To ensure that R is positive definite, we use the shrinkage approach 
proposed by Strimmer et al.36 implemented in R package corpcor. After generating the simulated datasets, the 
PR-AUC (Prediction-Recall Area Under Curve) can be computed at each value of α , and for each dataset the α 
that maximizes PR-AUC will be selected. We take the median of these α values to be the estimate for α . To work 
out a cutout for the scores and achieves false discovery control, we apply the adaptive false discovery rate density 
 approach23 (using function fdrtool from R package fdrtool).

Evaluation measures. The performance of ECAR was evaluated in terms of feature selection and pre-
diction accuracy. ECAR assigns a score to each feature in the dataset, and these features are later ranked and 
selected by the model in descending order according to the absolute value of their scores. For the evaluation of 
ECAR’s performance on simulated datasets whose true influential features are known, we used PR-AUC, which 
is the area under the precision-recall curve created by plotting the precision against the recall at various thresh-
old settings. The precision is the number of true positive factors divided by the number of selected factors, while 
recall is the fraction of true positive factors that are retrieved. We also plotted the number of true positive factors 
against the number of total selected factors. For the real data, we looked at the prediction performance of the 
selected SNP features. The whole data were randomly split into a training set of 2/3 of total samples and a test set 

Table 3.  Summary of selected genes for each method.

Methods Selected genes (FDR = 0.05)

ECAR CHRM3, CTCFL, KCNE2, MLANA, MSMP, TTLL2

CAR 
A4GNT, ALPL, ANKRD55, C3orf32, C5orf38, C6orf138, C9orf70, CEACAM7, CHRM3, COL11A2, CTCFL, GJC3, GRIN2A, 
GSTT2, KCNE2
LOC440461, MLANA, MSMP, MUC6, MYOT, NUDT12, POMZP3, PRR4, SRCRB4D, TRIM61, TTLL2

SIS MSMP
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of the remaining 1/3. We reported the test performance evaluated by MSE (mean square error) averaged across 
ten different random divisions of training and test sets. For all the methods, we showed the mean of MSE for the 
number of selected features s from the set (5, 10, 20, 30).

Sensitivity analysis. To test the stability of α under different sampling settings, we perform the sensitivity 
analysis in which three distributions (uniform, normal and folded normal) of coefficients are used as the real dis-
tribution, and in all cases we only use uniform distribution in estimating α . For the datasets mentioned above, we 
studied the influence of the misspecification of parameters to the feature selection performance (Supplementary 
Fig. S1–S8 and Supplementary Table S2).

Comparison with other methods. ECAR was compared with CAR, SIS, Ridge, Lasso, stability selection 
and random selection (randomly rank the features, denoted by RND) in terms of feature selection accuracy and 
generalization performance of high-rank features. The rank of the variables is based on their scores calculated 
from different methods. Sure Independence Screening (SIS) is a univariate correlation ranking method that 
ranks features’ importance according to their marginal correlation with the response variable. It is helpful in 
ultra-high dimension settings for screening irrelevant variables; however, it could lead to a high rate of false 
positives regarding importance ranking problems in moderately high dimension settings. In our study, the 
scores are the absolute value of Pearson Correlation Coefficient RXY . Lasso and Ridge are specific cases of bridge 
estimators β̂ = arg min

β∈Rp

1
n ||y − Xβ

∣

∣|
2
+ �

∣

∣|β| |
q
q when q = 1 and q = 2 , where X is n× p design matrix, and y 

is n× 1 response vector. When used for feature ranking, a two-stage variable selection (TVS) technique will be 
applied. The first stage computes the bridge estimators, and the second stage thresholds this estimate to rank the 
predictors. A critical difference between these two methods is that Lasso gives a set of zero regression coefficients 
and leads to a sparse solution. A well-known problem with Lasso is that it tends to select only one variable from 
a group of highly correlated genomic factors. Also, it cannot select more variables than the sample size. For Ridge 
and Lasso in this study, their parameter � are estimated by fivefold cross-validation and generalized cross-vali-
dation. Stability selection ranks each variable by the probability of being selected by specific selection methods 
such as Lasso. It is better suited for variable selection, but the price to pay is the reduced power to identify true 
signals. In stability selection, we first draw 100 subsamples of size n/2 without replacement, and then apply lasso 
on these subsamples and our scores are the frequency of each feature being selected. As for choosing the param-
eters, we set the number of false positives v to be 2.5 and the cutout πcut to be 0.7; therefore, the regularization 
parameter should be adjusted to ensure 

√

vp(2πcut − 1) ( p is the total number of variables) features are selected 
in the model in each replicate, according to the result in the  paper20. Another approach used for feature ranking 
is CAR scores, which are calculated based on the correlations between the de-correlated variables and the 
response variable. The calculation of CAR scores is relatively simple, which is R−0.5RXY , yet it performs well in 
some cases. However it could be too aggressive or conservative in real problems.

Software. R (v.3.6.0) was used for the development of ECAR; pROC (v.1.15.0) was used for computing PR-
AUC; corpcor (v.1.6.9) was used for calculating the α power of the correlation matrix. glmnet (v.3.0-2) was used 
for comparison with ECAR. mvtnorm (v.1.0-10) was used for generating random numbers for the multivariate 
normal distribution.

Data availability
The study used multiple publicly available datasets. The data for three cancer projects LUAD, LUSC and LIHC 
are obtained from The Cancer Genome Atlas (TCGA) portal (https:// tcga- data. nci. nih. gov/ tcga/). Three GWAS 
datasets are obtained from T3/barley database (https:// triti ceaet oolbox. org/ barley/).
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