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MicroRNAs (miRNAs) are small non-coding RNAs that participate in heart development

and pathological processesmainly by silencing gene expression. Overwhelming evidence

has suggested that miRNAs were involved in various cardiovascular pathological

processes, including arrhythmias, ischemia-reperfusion injuries, dysregulation of

angiogenesis, mitochondrial abnormalities, fibrosis, andmaladaptive remodeling. Various

miRNAs could regulate myocardial contractility, vascular proliferation, and mitochondrial

function. Meanwhile, it was reported that miRNAs could manipulate nutrition metabolism,

especially glucose and lipid metabolism, by regulating insulin signaling pathways,

energy substrate transport/metabolism. Recently, increasing studies suggested that

the abnormal glucose and lipid metabolism were closely associated with a broad

spectrum of cardiovascular diseases (CVDs). Therefore, maintaining glucose and lipid

metabolism homeostasis in the heart might be beneficial to CVD patients. In this

review, we summarized the present knowledge of the functions of miRNAs in regulating

cardiac glucose and lipid metabolism, as well as highlighted the miRNA-based therapies

targeting cardiac glucose and lipid metabolism.
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INTRODUCTION

Under normal physiological conditions, in order to fulfill a continuous demand for ATP, the heart
can metabolize a range of substrates via mitochondrial oxidative phosphorylation and substrate
level phosphorylation, such as fatty acids, glucose, lactate, and amino acids (1). Before feeding
into glycolysis or pentose phosphate pathway, glucose in cardiomyocytes is phosphorylated to
glucose-6-phosphate (G6P). Activated by acyl CoA synthetase (ACS), cytosolic free fatty acids
can form fatty acyl-CoAs, then could enter mitochondria for oxidation or form ceramides,
diacylglycerol (DAG) and triacylglycerol (TAG). Although, the adult hearts mainly use fatty
acids for ATP production, hearts demonstrate increased reliance on other substrates such as
glucose under pathological conditions (2). The glucose and lipid metabolism in the normal and
diseased heart have attracted increasing attentions. Under normal circumstances, except that the
sources are lactate, ketone bodies, and amino acids, more than 95% of all substrates are derived
from fatty acids and glucose to use for ATP generation for maintaining the function of the
heart (2). Importantly, the glucose and lipid metabolism could be changed under pathological
injury condition in the heart. It is well accepted, e.g., that hypertrophic heart undergoes
a reprogramming process in metabolism, characterized by the increased reliance on glucose
metabolism and decreased fatty acids oxidation, which is associated with an increase in glycolysis
in the hypertrophied heart (3–5). Cardiac ischemia would lead to poor oxygen supply, inadequate
washout of metabolic wastes, and increased glycolytic flux, because the amount of oxygen and
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metabolic substrates that delivered to the myocardium is
insufficient to meet the myocardial energy requirements
(6). Abnormal glucose metabolism has also been noted in
patients with diabetes mellitus and has been associated with
cardiac dysfunction (7). Cardiac glucose uptake in diabetic
cardiomyopathy is reduced despite hyperglycemia, which could
also contribute to the impaired myocardial glucose utilization in
diabetes due to decreased protein level of cardiac GLUT-4 (8).
MicroRNAs (miRNAs) are small conserved non-coding RNAs
which typically inhibits target mRNA translation or promoting
target mRNA degradation in physiological or pathological
processes (9, 10). Increasing evidence also suggests nuclear or
mitochondrial miRNAs could enhance target gene expression
through non-canonical mechanisms (11–13). During several
phases of cardiac development, many miRNAs have been
detected as important regulators to maintain the formation
of normal functional heart tissue (14). miR-17-92 cluster,
e.g., was suggested as a critical regulator of cardiomyocyte
proliferation and might be a therapeutic target for cardiac
repairing and heart regeneration (15). Cardiac miRNAs, such
as miR-1 (16), miR133a (17), miR-208a/b (18), and miR-499
(19) could enhance regenerative properties and contribute to the
reprogramming of mature non-cardiac cells to cardiomyocytes
(20). During the progression of various cardiovascular diseases
(CVDs), such as hypertrophy, diabetic cardiomyopathy, and
myocardial ischemia, many studies also reported that a variety
of miRNAs exerted important functions (21–23). Overexpression
of miR-297 was found to accelerate the progression of cardiac
hypertrophy by increasing the protein expression of ATF4,
Xbps1, chaperon Grp78, and calreticulin, the endoplasmic
reticulum stress markers (24). Overexpression of miR-200b was
reported to prevent diabetes-induced cardiac functional and
structural changes by inhibiting endothelial-to-mesenchymal
transition (25). Delivery of antisense microribonucleic acid (anti-
miR) against miR-21 improved cardiac function, as well as
reduced cardiac fibrosis and hypertrophy in a pig model of
myocardial ischemia/reperfusion injury (26).

Importantly, it has been reported that miRNAs possess
crucial roles in regulating the glucose and lipid metabolism
in a variety of organs. miR-146a, e.g., has been found to
improve lipid accumulation as well as glucose and insulin
tolerance via promoting the oxidative metabolism of fatty
acids in the liver (27). In the kidney, through blocking the
TLR4/NF-κB pathway, miR-140-5p protected renal tubular
epithelial cells against high glucose-induced injury (28).
Furthermore, in our recent study, we found miR-320a
significantly aggravated diet-induced hyperlipidemia and
hepatic steatosis (29). Importantly, the roles of miRNAs
in the pathological and physiological regulation of glucose
and lipid metabolism in the heart have also been gradually
discovered. We previously found that nuclear miR-320a
caused lipotoxicity in the diabetic heart and induced cardiac
dysfunction by activating transcription of fatty acid metabolic
genes (13).

In this review, we focused on the current knowledge to briefly
summarize and discuss the regulation of miRNAs in glucose and
lipid metabolism during the pathological processes of the heart,

and highlighting the potential therapeutic strategies for diseases
associated with abnormal cardiac glucose and lipid metabolism.

ROLES OF miRNAs IN GLUCOSE
METABOLISM IN THE HEART

In the heart, miRNAs are critical, which participate in cardiac
developmental and pathological processes (30). Blocking the
expression of all miRNAs in the cardiovascular system has been
reported to lead to death in early pregnancy due to severe heart
and vascular development defects (31). To support both electrical
and mechanical activities, the heart needs a continuous energy
supply which are mainly produced by mitochondrial oxidative
phosphorylation under normal circumstances (31). A growing
number of studies have also shown that miRNAs played crucial
roles in the diseased heart by regulating glucose metabolism.

Roles of miRNAs in Glucose Transport in
Heart
Glucose has been proven to be transported into cardiomyocytes
by the glucose transporters, glucose transporter 4 (GLUT-4)
or GLUT-1, in the sarcolemma (32). In response to various
stresses, such as insulin stimulation, increased energy demand,
or ischemia, GLUT-4 and GLUT-1 are transported from
intracellular vesicles to the sarcomembrane to increase the rate
of glucose uptake and glucose transport (33, 34). Moreover,
previous study has shown that the expression of GLUT4 in
cardiomyocytes could be regulated by miRNAs. Lu et al. found
that overexpression of miR-223 increased glucose uptake via
increasing the GLUT4 protein expression (35). It is worth
mentioning that whether miR-223 regulate glucose uptake in
cardiomyocytes only by targeting GLUT4 is not clear and remains
to be further studied.

Cardiomyocyte hypertrophy, which is characterized by
increased size of cardiomyocytes, is one of the compensatory
mechanisms of various CVDs (36). Changes in cardiac energy
metabolism and substrate utilization are hallmarks of a
hypertrophied heart, including increased dependence on glucose,
reduction in fatty acid oxidation rate, and decreased high-
energy-phosphate content (37). The shift of substrate preference
from fatty acid to glucose is therefore considered beneficial
in the hypertrophied heart because glucose has a higher
oxygen efficiency for ATP production (38). Moreover, many
studies suggested that promoting glucose utilization in the
hypertrophied heart could be beneficial (39, 40). Studies were
performed to explore whether miRNAs affect glucose transport
in the hypertrophic cardiomyocytes. Takahiro et al. found that
miR-133 decreased the protein level of KLF15 and the level of
its downstream target GLUT4, which was involved in metabolic
control in the hypertrophic cardiomyocytes (41). Interestingly,
Trotta et al. also found the melanocortin 5 receptor agonism
reduced the ratio of GLUT1/GLUT4 glucose transporters on the
cell membranes and increased the intracellular PI3K activity in
the hypertrophic H9c2 cells by decreasing of the levels of miR-
133a (42). The important roles of miR-133 in cardiomyocyte
glucose transport were confirmed in different models of cardiac
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hypertrophy. Moreover, Yang et al. found that miR-200a-5p
could disturb glucose metabolism by inhibiting selenoprotein
n (Seln), selenoprotein t (Selt), selenoprotein 15 (Sep15), and
selenoprotein p1 (Sepp1) expression to alter glucose transport,
which eventually induce cardiomyocyte hypertrophy (43).

Diabetic cardiomyopathy is a metabolism-related heart
disease, which is characterized by clinical heart failure and
diastolic relaxation abnormalities in the early stage in the absence
of dyslipidemia, hypertension, and coronary artery disease in
the advanced stage (43). Due to decreased protein level of
cardiac GLUT-4, cardiac glucose uptake is reduced despite
hyperglycemia which could also contribute to the impaired
myocardial glucose utilization in diabetes (8). Li et al. (44)
revealed that the level of let-7 was increased in themyocardium of
diabetic rats compared with non-diabetic rats, whereas improved
glucose uptake by inhibiting of the let-7 family miRNAs through
GLUT4 pathways. Similarly, Ju et al. (45) foundmiR-150 reduced
the glucose utilization by decreasing the translocation and
expression of GLUT-4 in the insulin-resistant cardiomyocytes.

In conclusion, miRNAs play important roles in the glucose
transport in cardiomyocytes under both pathological and
physiological processes (Figure 1A).

Roles of miRNAs in Glycolysis in the Heart
After glucose transport into cardiomyocytes, the first step of
glucose catabolism is glycolysis, which produces ATP (46).
Although, cardiomyocytes use ATP produced by glucose through
the process of glycolysis is limited under normal physiological
conditions, glycolysis is thought to facilitate some glucose
molecules to be diverted into macromolecular precursors
required for lipid, amino acid, and nucleotide biosynthesis and
the pentose phosphate pathway (47). Importantly, Mallet et al.
(48) suggested miRNAs play important roles in glycolysis of
normal cardiomyocytes. They found miR-378 inhibited LDHA
expression whereas miR-378∗ indirectly activated its expression
to balance between oxidative phosphorylation and glycolysis in
cardiomyocytes. However, the detail mechanism that miR-378
and miR-378∗ regulate the glycolysis pathway of cardiomyocytes
under physiological conditions remains to be further studied.

Most cancer cells rely on aerobic glycolysis, a phenomenon
known as the Warburg effect, which differs from the fact that
normally differentiated cells rely primarily on mitochondrial
oxidative phosphorylation to generate energy for cellular process
(47). Similarly, under pathological conditions of the heart,
the level of glycolysis would change in contrast to normal
physiological state in the heart (49).

During the early stage of myocardial ischemia, glycolysis
produces ATP and maintains ionic homeostasis, providing a
beneficial effect (50). However, under severe ischemia, glycolysis
becomes more harmful than beneficial (51). Importantly,
multiple studies have shown that miRNAs played two sides
function in glycolysis to regulate cardiac function after
myocardial ischemia. On one hand, by performing loss- and
gain-of-function experiments and glycolysis stress test, Lei et al.
(52) detected that miR-27a-3p restoration enhanced cell viability,
depleted cell apoptosis, and promoted glycolysis by targeting
TNFR-associated factor 5 (TRAF5) in hypoxia-induced AC16

cells. Borden et al. used AAV delivery system to deliver miR-
294 in mice and measured oxygen consumption rates (OCR) and
extracellular acidification rates (ECAR). They found that miR-
294 could significantly promote proliferation of cardiomyocytes
and enhance oxidative phosphorylation and glycolysis that
lead to improved cardiac function by targeting Wee1/CyclinB-
CDK1 complex after myocardial infarction (53). Bartman et
al. (54) performed loss- and gain-of-function experiments
and measured ECAR, which revealed that the upregulation
of miR-21 facilitated glycolysis and cardioprotection through
Per2-dependent mechanisms in myocardial ischemia. Pyruvate
dehydrogenase kinase 1 (PDK1), a phosphorylate kinase,
phosphorylates pyruvate dehydrogenase leading to elevated
anaerobic glycolysis. Zhu et al. (55) observed that miR-138
promoted mitochondrial respiration and inhibited glycolysis
through directly targeting PDK1 by measuring lactate product,
ECAR, and glycolysis key enzyme, which protected against
cardiac cell dysfunction during ischemia. On the other
hand, many studies have also shown that miRNAs play a
key role in glycolysis to deteriorate cardiac function after
myocardial ischemia. Fan et al. showed that miR-125b abolished
the beneficial effects of lncRNA-XIST in activating glucose
metabolism and cardiomyocyte protection under hypoxia by
directly targeting hexokinase 2 (HK2), the key enzyme of
glycolysis (56). Similarly, Zhang et al. (57) found that miR-
34a inhibited the restoration of glycolysis in dysfunctional
cardiomyocytes during ischemia reperfusion (I/R) injury.
Moreover, Rane et al. (58) detected that miR-199a was rapidly
downregulated in cardiomyocytes and the expression of HK2 and
pyruvate kinase-M2 (Pkm2) were enhanced during I/R injury.

It is well-known that there is a prominent metabolic shift
from fatty acid oxidation to glucose utilization during cardiac
hypertrophy and pathological remodeling, which is associated
with an increase in glycolysis in the hypertrophied heart (59, 60).
Moreover, it was suggested that the elevation of glycolysis during
cardiac hypertrophy and pathological remodeling was through
the activation of fructose 2,6-BP and phosphofructokinase-1
(PFK1) in response to cardiac pressure overload (59, 60). It
is worth mentioning that miR-135 was found to target PFK1
and inhibit aerobic glycolysis in pancreatic cancer cell, which
indicated the possible functions of miRNAs in cardiomyocyte
glycolysis (61). However, the role of miRNAs in glycolysis
during cardiomyocyte hypertrophy has not been fully revealed
(Figure 1B).

Roles of miRNAs in Aerobic Oxidation of
Glucose in the Heart
Glucose can be converted to pyruvate by glycolysis pathway. As
the end-product of glycolysis, pyruvate is ultimately transported
into mitochondria and is critical for mitochondrial ATP
generation. In mitochondria, pyruvate is the main fuel input to
drive several major biosynthetic pathways across the citrate cycle
and enhance the carbon flux of the citrate cycle (62).

In humans, the mitochondrial pyruvate carrier (MPC),
formed by two paralogous subunits, MPC1 and MPC2,
is required to deliver pyruvate from the mitochondrial
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FIGURE 1 | Roles of miRNAs in glucose metabolism in the heart. (A) miRNAs regulate glucose transport via modulating the expression of GLUT4 in the heart. (B)

miRNAs participate in glycolysis regulation in the heart. (C) miR-195 increased acetylation of PDH to promote pyruvate and NAD+ convert into acetyl-CoA. (D)

miR-181c and miR-210 involve in electron chain complex remodeling in cardiomyocytes by targeting and suppressing mt-COX1 and ISCU1/2. (E) miR-499, miR-761,

and miR-140 regulate aerobic glucose oxidation by directly affecting mitochondrial function in the heart. (F) miRNAs regulate glycogenesis in the heart. GLUT4,

glucose transporter type 4; PDH, pyruvate dehydrogenase complex; mt-COX1, cytochrome c oxidase subunit 1; ISCU1/2, iron-sulfur cluster assembly proteins.

intermembrane space to the mitochondrial matrix (63). In
response to cold and heat stress of common carp by performing
high-throughput sequencing, Sun et al. found that miRNAs
might regulate the expression of MPC in the liver of fish (64).
However, the effects of miRNAs onMPC expression and function
in the heart remained to be further explored.

After passing through MPC, pyruvate will be oxidized into
carbon dioxide by oxidative phosphorylation to ultimately
support the generation of ATP (65). Subsequently, pyruvate
and NAD+ are irreversibly converted into acetyl-CoA,
NADH, and carbon via the pyruvate dehydrogenase complex
(PDH), which serves for bridging glycolytic metabolism
in cytoplasm with oxidative phosphorylation and citric
acid cycle (66). Importantly, Zhang et al. (67) detected
that the expression of miR-195 was increased in failing
myocardium, which downregulated the expression of SIRT3
by enhancing global protein acetylation, including PDH

complex and ATP synthase directly targeting 3
′

-untranslated
regions that were essential for cardiac energy metabolism
(Figure 1C).

In the diseased heart, it was proven that the activity levels
of oxidative respiratory chain complex would also change (68).

Das et al. indicated that the expression of miR-181c was activated
under hypoxic conditions of HF and suppressed cytochrome
c oxidase subunit 1 (mt-COX1) to involve in electron chain
complex IV remodeling in cardiomyocytes, which in turn
increased the production of ROS in the heart (69). Similarly, miR-
210 suppressed iron-sulfur cluster assembly protein ISCU1/2
expression, which is a chaperone to assemble iron-sulfur clusters
and transport these clusters within the functional position in the
cell, in hypoxic conditions of heart (70) (Figure 1D).

The tricarboxylic acid (TCA) cycle, a central route for
oxidative phosphorylation in cells, depends on the oxidative
respiratory chain to fulfill bioenergetic, biosynthetic, and redox
balance requirements (71). The oxidative respiratory chain,
containing four complexes, establishes an electrochemical
gradient over the inner membrane to connect the transport
of electrons to oxygen for ATP synthesis (72). In a healthy
heart, the various complexes of the oxidative respiratory chain
perform their respective functions to maintain the oxidative
phosphorylation of glucose supporting cardiomyocytes.
Moreover, it has been suggested that many miRNAs play a
critical role in regulating mitochondrial function in the heart
(Figure 1E). The downregulation of miR-140, as well as the
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overexpression of miR-499 or miR-761, e.g., could prevent
apoptosis and mitochondrial fission in cardiomyocytes via
regulating mitochondrial fusion/fission-related proteins which
led to cardiomyocyte apoptosis, mitochondrial fragmentation,
and myocardial infarction (73, 74).

Roles of miRNAs in Glycogenesis in the
Heart
In addition to the glucose consumed by normal metabolism,
the excessive glucose can be converted to glycogen for storage
through the glycogen synthesis pathway in the heart (75). Cardiac
glycogen is an important source of glucose to support high-
energy demands of a normal heart (76). Several studies have
revealed that miRNAs played an important role in maintaining
the balance of glycogen synthesis in the heart. Wei et al.
(77), e.g., suggested that deletion of miR-1s led to a large
portion in upregulated genes which associated with the cardiac
fetal gene programing including glycolysis, cell proliferation,
fetal sarcomere-associated genes, and glycogenesis by massively
parallel sequencing. Moreover, they found that cardiac-specific
overexpression of Errβ, the primary target of miR-1, could induce
glycogen storage, cardiac dilation, and sudden cardiac death.

Several key enzymes such as glycogen synthase kinase-
3α (GSK3α) and glycogen synthase kinase-3β (GSK3β) are
involved in glycogen synthesis (78). It was reported that
miRNAs could target GSK3β in some cardiac pathological
processes, such as myocardial I/R injury, cardiac hypertrophy,
and cardiac fibrosis, which suggested that miRNAs might
be involved in glycogen synthesis. Our previous study, e.g.,
showed that miR-21-3p suppressed HDAC8 expression and
decreased phospho-Akt and phospho-Gsk3β expression to
attenuate cardiac hypertrophy (79). Moreover, miR-199a (80),
miR-26 (81), miR-378 (82), miR-29c-3p, miR-144-3p, miR-195a-
3p (83), and miR-126 (84) were reported to target GSK3β
in direct or indirect manners during the occurrence and
development of pathological cardiac hypertrophy, respectively.
Meanwhile, miR-99b-3p (85), miR-154 (86), miR-382-3p, miR-
3126-5p, and miR-450a-2-3p (87) were also found to target
GSK3β in the pathological process of myocardial fibrosis.
miR-122, miR-34a (88), miR-335 (89), miR-199a-5p (90,
91), miR-322/503 (92), miR-26a (93–95), miR-374 (96), and
miR-378 (97) were found to target GSK3β in I/R injury
model (Figure 1F). However, these studies did not explicitly
indicate that these miRNAs were participated in cardiomyocyte
glycogen synthesis during these cardiac pathological processes
(Table 1).

ROLES OF miRNAs IN LIPID METABOLISM
IN THE HEART

The heart uses ketone bodies, lactate, glucose, fatty acids, and
amino acids as energy-providing substrates, among which more
than 70% of all substrates are derived from fatty acids to generate
ATP in adult heart (98). Moreover, many studies indicate that
miRNAs are essential for lipid metabolism in the heart.

Roles of miRNAs in Fatty Acids Transport
in the Heart
Fatty acids (FAs) from albumin or lipoprotein triacylglycerol
enter cardiomyocytes through passive diffusion or by protein
carrier including fatty acid translocase (FAT)/CD36, fatty acid
transport protein (FATP), and plasmamembrane isoform of fatty
acid-binding protein (FABPpm) (99, 100). Importantly, CD36
could translocate FAs across the membrane of cardiac myocytes.
Many studies suggested that 50–60% of FA uptake and oxidation
in heart was facilitated by FAT/CD36-mediated transport (101,
102). Unlike FATP or FABPpm, in the regulatory control of FA
uptake, CD36 can translocate among the intracellular endosome,
the sarcolemmal membrane, and the membrane to promote FA
uptake (101, 102).

Many studies have reported that different miRNAs
targeted CD36 mRNA and regulated its expression at the
posttranscriptional level in a tissue-specific manner (103, 104).
For example, in the process of bone marrow cell differentiation
to the monocytic-macrophage line, Zhou et al. (105) reported
that CD36 was increased and its expression level was associated
with seven miRNAs, including miR-134, miR-130a, miR-199a,
miR-141, miR-152, miR-363, and miR-342-3p. During the
erythropoiesis, miR-26a, miR-22, miR-16, and miR-223 were
detected to correlate with the level and appearance of CD36 as an
erythroid surface antigen by performing the expression profiling
of miRNAs (106). It should be noticed that the role of miRNAs
targeting CD36 to regulate FA transport in the normal heart
remains to be further investigated (Figure 2A).

In the cardiac pathological processes, the FA transport would
be changed. During diabetic cardiomyopathy, e.g., energy source
will be shifted from glucose to FAs and the FA transport is
enhanced to meet the increasing demand of ATP (107). However,
lipid accumulation in cardiomyocytes might eventually lead to
lipid toxicity that promote contractile abnormalities and cell
death (108, 109). Therefore, exploring whether miRNAs are
involved in FA transport in diabetic hearts might be helpful in
discovering potential therapeutic strategies for diabetes-induced
cardiac dysfunction (Figure 2B). Our previous research showed
that miR-320 could target the CD36 promoter directly resulting
in increased transportation of FAs into diabetic cardiomyocytes
via enhancing CD36 transcription by forming a complex with
Ago2 (13). In addition, Xu et al. (110) also found miR-200b-3p
expression was significantly reduced in diabetic cardiomyopathy
tissues and cells, which could target CD36 directly to reduce
cardiomyocytes apoptosis in diabetic cardiomyopathy.

Roles of miRNAs in Fatty Acid Oxidation in
the Heart
FAs are the main energy source in adult heart. Acyl-CoA
synthetases (ACS) activate cytoplasmic FAs to acyl-CoA esters
and then imported into mitochondrion by two acyltransferases,
carnitine acyl-carnitine translocase (CACT) and carnitine
palmitoyl transferases 1 and 2 (CPT1 and CPT2). Acyl-CoAs
are degraded via β-oxidation, finally producing acetyl-CoA to
fuel the tricarboxylic acid (TCA) cycle inside the mitochondrion
(111). Impaired fatty acid oxidation (FAO) led to the decrease of

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 July 2021 | Volume 8 | Article 716213

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Du et al. MicroRNAs and Cardiac Metabolism

TABLE 1 | Roles of microRNAs in the glucose and lipid metabolism in the heart.

miRNA(s) Validated targets Key observation References

miR-223 Glucose transporter type 4 (GLUT4) Regulate glucose uptake in cardiomyocytes Cardiovasc Res. 2010;86:410

miR-133 Kruppel-like factor 15 (KLF15) Reduce the level of the downstream target

GLUT4

Biochem Biophys Res Commun.

2009;389:315

miR-133a Glucose transporter type 1/4 (GLUT1/GLUT4) Increase GLUT1/GLUT4 glucose transporters

ratio on the cell membranes

Front Physiol. 2018;9:1475

miR-200a-5p Stress-related selenoproteins Lead to glucose metabolism disorder J Cell Physiol. 2019;234:4095

let-7 Glucose transporter type 4 (GLUT4) Inhibition of the let-7 family microRNAs

improves glucose uptake

Ann Thorac Surg. 2016;102:829

miR-150 Glucose transporter type 4 (GLUT4) Reduce the glucose utilization Acta Biochim Biophys Sin. 2020;52:1111

miR-378/miR-

378*

Lactate dehydrogenase A (LDHA) Balance between oxidative phosphorylation

and glycolysis in cardiomyocytes

Mol Cell Proteomics. 2014;13:18

miR-27a-3p TNFR-associated factor 5 (TRAF5) Promote glycolysis of hypoxia-induced AC16

cells

Life Sci. 2020;262:118511

miR-294 Wee1/CyclinB-CDK1 complex Enhance oxidative phosphorylation and

glycolysis after myocardial infarction

Circ Res. 2019;125:14

miR-21 Period circadian clock 2 (PER2) Facilitates glycolysis and cardioprotection PLoS ONE. 2017;12:e0176243

miR-138 Pyruvate dehydrogenase kinase 1 (PDK1) Inhibit glycolysis but promotes mitochondrial

respiration

Biosci Rep. 2017;37

miR-125b Hexokinase 2 (HK2) Regulation of lncRNA-XIST in activating

glucose metabolism

In vitro Cell Dev Biol Anim. 2020;56:349

miR-34a Actate dehydrogenase-A (LDHA) Inhibited the restoration of glycolysis in

dysfunctional cardiomyocytes

Biosci Rep. 2017;37

miR-199a Hexokinase-2 (Hk2); pyruvate kinase-M2

(Pkm2)

Facilitate the upregulation of glycolysis EMBO J. 2015;34:2671, Circ Res.

2009;104:879

miR-135 Phosphofructokinase-1 (PFK1) Inhibit aerobic glycolysis in pancreatic cancer

cell

Nat Commun. 2019;10:809

miR-195 Pyruvate dehydrogenase complex (PDH) Increase acetylation of PDH and ATP synthase Circulation. 2018;137:2052

miR-499,

miR-761, miR-140

Mitochondrial fusion/fission proteins Prevent mitochondrial fission and apoptosis in

cardiomyocytes

Free Radic Biol Med. 2013;65:371

PLoS Genet. 2010;6:e1000795

miRNA-181c Cytochrome c oxidase subunit 1 (mt-COX1) Increase production of ROS in hypoxic

conditions of heart

Circ Res. 2012;110:1596

miR-210 Iron-sulfur cluster assembly proteins ISCU1/2 Suppress the iron-sulfur cluster assembly

proteins ISCU1/2

Cell Death Dis. 2014;5:e1090

miR-1s Estrogen-related receptorβ (ERRβ) Lead to glycogen storage, cardiac dilation, and

sudden cardiac death

Cell Res. 2014;24:278

miR-21-3p Histone deacetylase 8 (HDAC8) Attenuate cardiac hypertrophy Cardiovasc Res. 2015;105:340

miR-199a Glycogen synthase kinase-3β (GSK3β) Involved in glycogen synthesis Cell Death Differ. 2017;24:1205

miR-26 J Cardiovasc Pharmacol. 2013;62:312

miR-378 J Biol Chem. 2013;288:11216

miR-29c-3p,

miR-144-3p, and

miR-195a-3p

J Cell Physiol. 2016;231:1771

miR-126 Cell Mol Life Sci. 2013;70:4631

miR-99b-3p Glycogen synthase kinase-3β (GSK3β) Involved in the pathological process of

myocardial fibrosis

Acta Pharmacol Sin. 2021;42:715

miR-154 Eur Rev Med Pharmacol Sci. 2018;22:2052

miR-382-3p,

miR-3126-5p, and

miR-450a-2-3p

J Thorac Dis. 2020;12:5617

miR-122 and

miR-34a

Glycogen synthase kinase-3β (GSK3β) Involved in I/R injury Biol Trace Elem Res. 2020;196:1

miR-335 J Cell Mol Med. 2019;23:8420

miR-199a-5p Mol Med Rep. 2019;19:5335-5344

Cell Physiol Biochem. 2016;39:1021

miR-322/503 Am J Physiol Cell Physiol. 2019;317:C253

(Continued)
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TABLE 1 | Continued

miRNA(s) Validated targets Key observation References

miR-26a Eur Rev Med Pharmacol Sci. 2020;24:2659

Yonsei Med J. 2018;59:736

Eur Rev Med Pharmacol Sci. 2019;23:7073

miR-374 Cell Physiol Biochem. 2018;46:1455

miR-378 Cardiovasc Res. 2013;100:241

miR-130a,

miR-134,

miR-141,

miR-199a,

miR-363,

miR-152, and

miR-342-3p

Fatty acid translocase (FAT)/CD36 Involved in fatty acids transport Oncotarget. 2016;7:28806

miR-16, miR-22,

miR-26a, and

miR-223

Fatty acid translocase (FAT)/CD36 Regulate fatty acid transport Exp Hematol. 2007;35:551

miR-320 Fatty acid translocase (FAT)/CD36 Increase transportation of fatty acid into

diabetic cardiomyocytes

Circ Res. 2019;125:1106

miR-200b-3p Fatty acid translocase (FAT)/CD36 Regulate fatty acids transport and activate

PPAR-γ signaling pathway

J Cell Biochem. 2019;120:5193

miR-197,

miR-146b

Fatty acid binding protein (FABP4)/carnitine

palmitoyltransferase 1B (CPT1B)

Suppress genes that drive FAO in primary

cardiomyocytes

Sci Transl Med. 2018;10

miR-30c Peroxisome proliferator–activated receptors

(PPARs)

Improved lipid and glucose utilization, reduce

excessive ROS production

Cardiovasc Diabetol. 2019;18:7

miR-483-3p Growth/differentiation factor-3 (GDF-3) Modulated the capacity of adipocytes to store

lipids and differentiate

Cell Death Differ. 2012;19:1003

miR-107 Cyclin-dependent kinase 6 (CDK6) Attenuate differentiation and lipid accumulation Mol Cell Endocrinol. 2019;479:110

miR-494-3p Peroxisome proliferator-activated receptor γ

(PPARγ)

Prevented TG synthesis, uptake, hydrolysis,

and storage in the heart

Eur Heart J. 2019;40:997

miR-451 Calcium-binding protein 39 (Cab39) Ameliorate palmitate-induced lipotoxicity in

cardiomyocytes

Circ Res. 2015;116:279

the capacity for ATP production and accumulation of toxic lipid
intermediates in the heart, while enhanced FAO was associated
with increased oxidative stress (2, 112).

Ekaterina et al. found that miR-146b and miR-197 were
upregulation in the failing right ventricular of pulmonary
arterial hypertension patients and suppressed genes that
drive FAO (CPT1b and FABP4) in primary cardiomyocytes
(113). Peroxisome proliferator-activated receptors (PPARs),
a class of ligand-activated nuclear receptors, control FAO
enzymes expression, while PPARγ coactivator-1β (PGC-1β) is
an important coactivator of PPARs (114–116). Our previous
work showed that exogenous miR-30c delivery improved lipid
and glucose utilization, reduced excessive ROS production and
thereby attenuated cardiac dysfunction via PGC-1β/PPARα

signals in a mouse model of diabetic cardiomyopathy (117)
(Figure 2C).

Roles of miRNAs in Lipid Storage in the
Heart
Cardiomyocytes could reserve multiple energy substrates, among
which accumulation of non-polar and polar lipids could activate
intracellular signaling pathways (98). The FAs are stored as
triacylglycerol (TAG) in lipid droplets. The accumulation of
excess lipids is prevented by the physiological balance of lipid

uptake and oxidation (98). However, various processes that affect
this balance might lead to hypoxia, obesity, diabetes mellitus,
sepsis, cardiac dysfunction, and even heart failure.

Many studies suggested that miRNAs play an important role
in the lipid storage (Figure 2D). For example, Pegoraro et al.
(118) suggested that miR-133a, miR-133b, miR-1, and miR-206,
might be useful biomarkers for neutral lipid storage disease
with myopathy. Ferland-McCollough et al. (119) demonstrated
that miR-483-3p modulated the capacity of adipocytes to store
lipids and differentiation by manipulating growth/differentiation
factor-3 expression. Moreover, overexpression of miR-107
attenuated differentiation and lipid accumulation in pre- and
mature human adipocytes of Simpson-Golabi-Behmel syndrome
via regulating CDK6 and Notch signaling (120).

Considering the heart, metabolic cardiomyopathy is the

main cause of heart failure in obese patients characterized

by lipotoxic damage and intramyocardial triglyceride (TG)
accumulation (121). JunD could enable transcription of genes
involved in TG synthesis, uptake, hydrolysis, and storage by
directly binding to PPARγ promoter. Costantino et al. found
that miR-494-3p prevented TG synthesis, uptake, hydrolysis,
and storage in the heart from diet-induced obese mice by
suppressing JunD/PPARγ signaling, which was also associated
with myocardial left ventricular (LV) dysfunction and TG
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FIGURE 2 | Roles of miRNAs in lipid metabolism in the heart. (A) miRNAs regulate fatty acids transport via modulating the expression of CD36 in the heart. (B)

miR-320 and miR-200b-3p regulate fatty acid transport via PPARγ. (C) miR-197 and miR-146b modulate Acyl-CoAs by CPT1/2, while miR-30c regulates the

production of Acyl-CoAs through targeting PPARγ. (D) miR-206, miR-1, and miR-133a/b influence lipids storage in the heart. (E) miR-494-3p and miR-451 regulate

lipids storage via modulating the expression of PPARγ in the heart. CD36, fatty acid translocase (FAT)/CD36; CPT1/2, carnitine palmitoyltransferase 1/2; PPARγ,

peroxisome proliferator-activated receptors (PPARγ).

accumulation (122). Besides, increased miR-451 were reported
in the mouse heart with high-fat diet (HFD), while loss of miR-
451 alleviated palmitate-induced lipotoxicity in cardiomyocytes
via inhibiting calcium-binding protein 39 (Cab39), which is an
AMP-activated protein kinase (AMPK) upstream kinase (123)
(Figure 2E).

POTENTIAL miRNA-BASED THERAPY IN
CVDs

Therapeutic strategies targeting miRNAs for CVDs have been
highlighted in many studies (124). For instance, miR-15 family
was found to be consistently upregulated during postnatal
development of the heart and CVDs, knockdown of the miR-
15 family by anti-miRNAs could increase the number of mitotic
CMs and reduce the infarct size after ischemia-reperfusion injury
in neonatal mice (125–127). As miRNAs can affect different
genes simultaneously to alter glucose and lipid metabolism in the
pathological processes of diseased heart, they attracted increasing
attentions for potential therapeutic targets and treatments
(128, 129).

Various strategies were developed for the delivery miRNAs
into cardiomyocytes. A novel technique called ultrasound-
mediated sonoporation, which carry genetic material to
target sites, using albumin-shelled microbubbles, has been
considered for miRNA delivery in the myocardium (130).

Importantly, Su et al. (131) has used this approach to prevent
coronary microembolization-induced cardiac dysfunction by
delivering hsa-miR-21-5p in pig myocardium by ultrasound-
targeted microbubble. In addition, local injection is a
nicely method to overcome the systemic effects on other
organs and obtain better transfection efficiency. Many trials
have attempted to inject miRNAs via intramyocardial or
intracoronary directly during heart surgeries (132). Moreover,
with the development of new techniques such as positron
emission tomography and electromechanical mapping,
clinicians can achieve high efficiency around the site of
injection by better targeting site of myocardial ischemia
(7, 133).

However, there are limitations of miRNA-based therapy,
which should be solved before clinical use. Compared
with the physiological miRNA expression levels, gain- and
loss-of function assays using synthesized oligonucleotides
often induce very high abundance of miRNA into the
cells, which may lead to irreproducible and misguided
interpretation of the results. Most of miRNA studies
have been focused on site-specific phenotypic effects
in vivo, which might ignore the signaling pathways
responsible for their effects on other organs and the whole
genome targets. Moreover, the off-target effects cannot be
ignored. Thus, studies are needed to use both site-specific
deliveries and systemic approach to focus on the in vivo
miRNA effects.
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CONCLUSION

An increasing number of studies have provided important clues
of miRNAs and their potential roles in the glucose and lipid
metabolism in CVDs. Current studies revealed the biological
and pathological process that miRNAs involved, which might
broaden the treatment strategies for CVD patients with or
without metabolism disorders. In this review, we systematically
described the effects of miRNAs on the glucose and lipid
metabolism in cardiomyocytes and compared the advantages and
limitations in miRNA-based therapy in CVDs. In addition, we
provided a summary table to better illustrate the various miRNAs
that participate in glucose and lipid metabolism in the heart.
However, considering the multiple targets of one certain miRNA,
there are still uncertainties that remain regarding the systemic
effects of miRNAs on other organs and biological processes. In
summary, miRNAs play critical roles in the regulation of glucose
and lipid metabolism in CVDs. MiRNAs and miRNA-based
therapies are one of the most promising innovative applications
in CVD treatment in the future.
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