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Abstract

Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living 

organism represents the challenge for modern biochemistry and neuroscience. The idea of an 

association between age-related disease, neurodegeneration, and racemization originated from the 

studies of fossils and cataract disease. Under the pressure of new results, this concept has a 

broader significance linking protein folding, aggregation, and disfunction to an organism’s 

cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate 

balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/

developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is 

the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The 

collapse of homochirality by racemization is the result of the conformational phase transition. The 

racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal 

activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The 

phase transition is achieved through the intermediate state, where the chirality of alpha carbon 

vanished. From a thermodynamic consideration, the system in the homo-chiral (single 

enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein 

chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual 

information, adaptive associative learning, and cognitive laterality. The common pathological 

hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of 

protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The 

brain region, cell type, and age-dependent racemization critically influence the functions of many 

intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein 

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license 
(https://creativecommons.org/licenses/by/4.0/).
*Correspondence: victor.dyakin@nki.rfmh.org.
Author Contributions: V.V.D.: Conceptualization, writing review and editing, supervision. T.M.W.: Data curation, funding 
acquisition. A.L.: writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Symmetry (Basel). Author manuscript; available in PMC 2021 August 03.

Published in final edited form as:
Symmetry (Basel). 2021 March ; 13(3): . doi:10.3390/sym13030455.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


(APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The 

amyloid cascade hypothesis in Alzheimer’s disease (AD) coexists with the failure of amyloid beta 

(Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical 

factor of protein conformation with the potential for inducing order, disorder, misfolding, 

aggregation, toxicity, and malfunctions.
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1. Introduction

Under the pressure of previous and emerging results, the idea of the close association 

between age-related disease, neurodegeneration, and protein racemization shows a 

meaningful significance [1–7]. The diversity of neurodegenerative diseases possesses both 

specific and common features [8–485]. In our view, the most common causal mechanism 

underlying age-related protein misfolding, dysfunction, and aggregation is spontaneous 

racemization.

The accumulation of misfolded proteins (MPs) is recognized as the most characteristic 

manifestation of neurodegeneration. The search for the universal mechanism of 

neurodegenerative diseases eventually considers not only biochemical but also 

stereochemical processes. Molecular chirality is a critical feature of many biological events 

in the entire kingdom of life in its normal and pathological forms. Amino acids (AAs) 

profiles are an effective biomarker (BM) for cardio-genesis [8] and the level of D-amino 

acids (D-AAs) is increasingly recognized as a novel BM of kidney diseases [9] and 

neurodegeneration [10]. Chirality is an intrinsic property of peptides and proteins including 

amyloid beta (Aβ) and microtubule-associated protein TAU, both of which are potent 

towards the misfolding pathways [11]. It has been shown that dramatic structural 

perturbations could be triggered by chiral inversions of amino acid chain fragment and any 

alteration of the physicochemical environment. The effect of chirality perturbations is 

relevant for the main landmarks of the Alzheimer’s disease (AD): A-β plaques and TAU 

fibrillary tangles [11]. The racemization of AAs and proteins becomes appreciated as a 

determinant of most of physiological processes [12–14]. D-AAs have been shown to play an 

adverse role in the physiology of bacteria I [15], (I. D-AAs are found in the cell walls of 
bacteria, Bacteria are the primary sink for D-AAs contributing to their accumulation in the 
environments at toxic concentrations [15] and insects [16]).

It is reasonable to expect even more diverse function of D-AAs in animal brain. The 

biological significance of racemization neuropathogenesis of AD was assessed from as early 

as year 1994 [17] and remains important [5,18].

Dyakin et al. Page 2

Symmetry (Basel). Author manuscript; available in PMC 2021 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.1. Chiral Phase Transitions

The phase transitions associated with stereo-transformation (racemization and 

isomerization) of peptides and proteins, are driven by the force of increase in the entropy II. 

(II. In situations when we can disregard the contribution of other factors such as the enthalpy 
contribution from the heterochiral interaction [19].)

The first and second order phase transition III in AAs, peptides and proteins, despite being 

theoretically and experimentally explored, are just at the beginning stages of systematic 

studies [20–23]. (III. Phase transitions are classified according to Ehrenfest classification 
[24]. The order of a phase transition is defined to be the order of the lowest-order derivative, 
which changes discontinuously at the phase boundary).

The concepts of phase transition and chirality transfer are necessary for understanding the 

biochemistry of AA signaling and protein folding concerning the cell physiology. The 

effects of chirality transfer from photons to AAs have been recently reviewed [25]. The 

understanding, description, and interpretation of experiments of protein folding is based on 

the physics underlying the electron spin system called “spin-glass” paradigm [26–28]. The 

dynamic behavior of proteins exhibits multiple functional and inactive conformational 

configurations. The understanding of the structure–function relationship requires the study 

of kinetic and thermodynamic pathways. At the cellular level, the concept of phase 

transitions is relevant to the membrane-less organelles (MLO), which represent the coherent 

structures with the distinct biological functions. Well-known examples include the 

nucleolus, Cajal bodies, nuclear speckles, cytoplasmic stress granules, P-bodies, and germ 

granules. MLO molecular structures are environmentally responsive [26,29] and are 

implicated in the functional protein folding and protein aggregation diseases [30,31]. MLO, 

peptides, and proteins exhibit various forms of liquid–gel condensations including liquid–

liquid and liquid–crystal phase separation, and phase transitions [32,33]. According to [34], 

the autophagy is considered as a cellular phase transition which maintains the normal 

cellular functions. The dynamics of the cellular phase transition shown depend on the AAs 

parameters, however the chirality of AAs is frequently not taken to an account. From the 

thermodynamic perspective, the existence of a Gibbs potential barrier (energy barrier) 

between two chiral states is an internal determinant influencing the kinetics of AAs 

racemization and protein folding. Several external physical and chemical factors influence 

the rate of stereo-transformation including thermal modulation, photo-stimulation, acoustic-

chemical reactions [35], radical reactions, oxidation-reduction sequences, enzyme catalysis, 

nucleophilic substitutions, and pH of the media IV. (IV. The rate of aspartic acid 
racemization in the human connective tissue is about 1% per year [36–38]).

The widely appreciated “sequence–structure–function” paradigm, postulated by Anfinsen 

[39], has attracted attention to bio-molecular chirality [23,40]. Three major environmental 

factors influencing protein conformation are the cytosol, nucleus [30], and cell/organelle 

membrane. Accordingly, most, if not all, proteins contain segments which have the dual 

ability to fold into several distinct structures in aqueous and membrane environments [41]. 

The transport of proteins from the cytosol to the membrane phosphor-lipid or nuclear 

environment is accompanied by conformational phase transitions. The interplay of the 
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thermodynamic equilibrium and the fundamentally non-equilibrium nature of cellular 

biochemistry constitutes the basis for the non-equilibrium phase transitions [21,22,33,42].

1.2. Biomolecular Chirality

The major classes V of biomolecules influenced by the phenomena of chirality are: (i) AAs 

[9,43,44], (ii) peptides, and proteins [45–49], (iii) lipids [50–52], (iv) nucleic acids, (v) 

DNA, and (vi) RNA [53–55] group. (V. The most abundant biomolecules belong to four 
major classes: proteins, lipids, nucleic acids, and carbohydrates. The chirality of 
carbohydrates (despite its essential role) is beyond the scope of our consideration).

We will focus mainly on the link between AAs chirality and the protein structure–function 

relationship. Protein function will be considered with regard to the system of post 

translational modification (PTM-Sys).

1.3. D-Amino Acids in Proteins, Cells, and Neuronal Circuits

The presence of the D-aspartic acid (D-Asp) in myelin and myelin basic protein (MBP) was 

documented a long time ago [56]. However, the existence of D-AAs in the central nervous 

system was practically unknown (not discussed) until 2000. Due to the homochirality of 

biological AAs (L-isoform) in many publications, D-AAs are characterized as “non-

biological” [57] or “unnatural” [58]. Presently, diverse D-AAs are found in the body and 

brain of mammals including, D-serine, D-aspartate, D-alanine, and D-cysteine [59–67]. The 

current finding suggests that the biosynthetic pathway for D-AAs is conserved from bacteria 

to mammalian [68]. The aspartic acid and serine are among the most studied AAs due to 

their distinct role in biochemistry and neuroscience. Both are known as the phospho-

acceptors. This fact explains the impact of phosphorylation on the structure of corresponding 

proteins. AAs racemization (along with deamidation, hydrolysis of peptide bonds, breakage 

of disulfides, and others) is one of the most active mechanisms in the system of PTM 

associated with plasticity of protein functions [69,70]. The role of AAs in cell biology, to a 

significant degree, is determined by interplay between two (L and D) isoforms governed by 

the spontaneous racemization [18], evolutionarily conserved network of PTM [71–74], and 

under the environmental factors. Spontaneous, non-enzymatic reactions in proteins are 

relevant to aging and age-related diseases including AD and cataract. However, the AA-

specific mechanisms of spontaneous phase transition are not broadly studied. Recently it 

was shown that the racemization of the Ser residue occurs preferably in flexible regions of 

proteins [18]. The translation of peptides/proteins in the eukaryotes utilizes only L-amino 

acids (L-AAs). The productions of the D-amino acid-containing peptides/proteins through 

PTM occur via the isomerase enzymes. The isomerization mechanism serves as a yes/no 

switch of function in the peptide cell- signaling system. The functional significance of 

racemization is demonstrated by the fact that stereo-transformation modulates the peptide 

bioactivity in a motor circuit relevant to feeding motor behavior [75].

Growing evidence suggests a vital role of D-AAs not only at the cellular level, but also at the 

system level; this was shown for immune system [74–78], neuroendocrine system 

[64,79,80], neurotransmission [81], perception [82], and cognitive functions [83,84]. The 

ratio of D- AAs to L-AAs increases with the age of the fossil [85] due to the spontaneous 
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racemization VI. (VI. From a physical point of view, racemization is considered because of 
phase transition between the R and S enantiomers [22,86]).

The half-life of the spontaneous and enzymic PTM racemization can range from several 

days to 100,000 years [87–89].

The racemization has a relevance to the protein/organism aging and age-associated diseases 

[18], and protein aggregation. Proteins containing D-β- aspartyl (D-Asp) residues were 

observed in various tissues including cardiac muscle of the heart, blood vessels of the lung, 

chief cells of the stomach, longitudinal and circular muscle of the stomach, small intestine 

and large intestine [90]. The presence of free D-Asp in the CNS of rodents and humans was 

studied [91]. L-Serine (L-Ser) is a major brain metabolite covering functions “from one C-

metabolism to transsulfuration, to phospholipid/phosphoprotein function, and to D-serine 

biosynthesis [92].” The elevated and reduced D-serine level correlates with the progression 

of many neurological diseases including AD and schizophrenia. D-serine (D-Ser) VII (non-

essential AAs are available from the plant-based diet) is abundant in many regions of CNS 

including forebrain [93,94] cortex, hippocampus, hypothalamus, amygdala, and cerebellum 

[95]. (VII. Serine (Ser) is a non-essential nucleophilic α-AA, encoded by the codons UCU, 
UCC, UCA, UCG, AGU, and AGC, used in the biosynthesis of proteins [96,97]).

The distribution of D-Ser and corresponding PLP enzymes suggests an influence on cortico-

limbic brain functions [98]. D-Serine (D-Ser) is an endogenous AA implicated in the 

metabolism of neurons [99], astrocytes [100], oligodendrocytes [101], and microglia cells 

[102,103] via the variety of signaling pathways. D-Ser and D-Asp were identified as the 

neurotransmitters. D-Ser is an endogenous co-agonist of the N-methyl-D-aspartate (NMDA) 

type glutamate receptor at the glycine site [104,105].

Competitive antagonist of AMPA receptor [106] is a key receptor of excitatory 

neurotransmission in the brain. D-Ser interaction with APP is an essential modulator of the 

synaptic spine plasticity [107]. In the CNS, D-Ser has a dual (neuronal and glial) origin 

[105,108]. In addition, D-Ser mediates neurogenesis [109], cellular migration [110], cell 

proliferation [111], cell death [112], neurotoxicity [113], Neurodegeneration [105], 

respiratory regulation [114] cardiac activity [115], olfactory perception [116], neuro-

endocrine functions [64], immune system [117], learning/memory faculties [118,119] and 

motor behavior [120]. Proteins and peptides containing D-AAs play an important role in 

age-related alterations [121–125]. D-glutamic acid (D- Glu) was not believed to be present 

at any significant level in the brain [84]. However, this was contradicted by the numerous 

new findings. D-AAs appear to participate in the major biological and neurological 

mechanisms. D-AAs have been detected in a variety of animal cells’ peptides; these include 

opiate and antimicrobial peptides from frog skin, neuropeptides from snails, hormones from 

crustaceans, and venom from spiders. Mammalian hormones and signaling neuropeptides 

are known as the subject of the functional post-translational racemization (PTM) [126]. 

However, despite the obvious significance, the role of peptide racemization in cell signaling, 

aging and neurodegeneration remains the terra-incognito [127]. The presence of D-AAs is 

detected in brain tissues, cerebrospinal fluid [128], and blood [84,129,130]. Recent 

measurement suggests that AA levels in brain tissue are typically about 10 to 2000 times 
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higher than in blood [130]. Comparative measurements show that most D-AAs present in the 

hippocampus are significantly higher in the cortex. Regardless of brain region, the changes 

in AA chirality cause changes in protein structures (chirality transfer) including forming 

alpha-helical and beta-sheet structures resulting in changes in metabolic activity and 

function [19,21,131]. All changes in protein synthesis and degradation are accompanied by 

sequential spatial (chirality-dependent) transformations. Chirality is also a critical feature of 

molecular recognition that affects neurotransmission, enzyme activity, and immune 

functions.

Notably, the processes of protein synthesis and degradation are accompanied by the 

sequential spatial transformations. D-AAs in organisms are not metabolized by the same 

pathways as L-AAs and are usually removed by the kidney. In the CNS, an autophagy is 

known as a pathway for degradation of protein aggregates [132]. It was shown that 

autophagy, associated with the ubiquitinated aggregates of proteins, was attenuated by a D-

Ser in an N-methyl-D-aspartate receptor (NMDAR) pathway [133].

2. Chirality at Protein Level: Role in PTMs

2.1. Protein Racemization, Aging, Folding, Aggregation, and Degradation

The enormous complexity of a living organism, as the essential elements, includes: AAs 

metabolism, diversity of membrane- and cytosol-associated proteins, variation of proteins 

stereo-forms, and multiplicity of enzymes of PTM. The traditional view on PTMs should be 

complemented by the consideration of the spontaneous, irreversible protein conformations 

associated with AA racemization (Figure 1) [134].

The essential role of AAs is evident beginning from asymmetric cell division [135]. 

Biological racemization and isomerization are driven by the interplay of spontaneous and 

enzymatic mechanisms of PTMs. Enzymatic racemization, to a significant degree, is induced 

by external factors [136]. Three specific and interconnected forms of PTM such as AA 

racemization (AAR), isomerization (AAI), and phosphorylation (AAP) are routinely used as 

biomarkers (BM) of peptide degradation and protein aging [137] and aggregation [10]. The 

bio-catalysts, which decrease the energy barrier for the phase transition, accelerate 

racemization rate at least by 104–105 times [37]. A relevant example of such catalysts is 

serine/threonine phosphatase/kinase [138]. Notably, the majority of kinases act on both 

serine and threonine residues [139]. L-Ser as a central metabolite in cell biology [90] and 

phosphorylation is a major mechanism of activating/inactivating enzymes, explaining the 

role of protein kinases in signaling pathways. Due to the above-mentioned facts, we will 

focus primarily on the role of Ser residue VIII in the PTM of proteins. (VIII. The role of D-
aspartate (D-Asp) in racemization is covered in a recent review [67]).

The metabolism of polar AA D-serine (D-Ser) is highly cell-, organ- and brain region-

specific [140].

D-Ser metabolism in the brain is regulated by number of enzymes from which we are 

targeting to enzyme related to racemization and phosphorylation. IX (IX. Notably, serine is 
degraded by hydroxymethyltransferase to glycine. Their role in living organisms is 
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determined by the ability to catalyze a wide range of biochemical reactions including 
deamination and racemization [141]).

Pyridoxal phosphate (PLP) enzymes have multiple evolutionary origins [142]. PLP-

dependent enzymes exhibit unique catalytic versatility.

2.1.1. Pyridoxal Phosphate Enzyme—PLP enzymes X are involved in the 

biosynthesis of protein, glucose and lipid metabolism. We will focus primarily on the Ser 

racemization. (X. “The functional specialization of most B (6) enzymes seems to have 
already occurred in the universal ancestor cell before the divergence of eukaryotes, 
archaebacteria, and eubacteria 1500 million years ago” [142]).

The phosphate ion acts as one of the strongest modulators of biomolecular chirality, 

including Ser-residue. XI (XI. Phosphoric acid contains a four-coordinated phosphorus atom. 
Such molecules are tetrahedral. The four s-bonds with sp3 hybridization of the electron 
orbitals has tetrahedral orientation).

The stereo-configurations of Ser residues are sensitive to the effects of metal ions [143], and 

di-hydrogen phosphate ion {H2PO4 1-} [18,144]. Under the influence of the variety 

molecular environments, Ser undergos racemization as internally bound residues of peptides 

and proteins, providing an opportunity for the normal and pathological protein degradation 

and for appearance of D-enantiomers in mammalian cells [145]. However, the research 

devoted to neurodegenerative diseases has not studied the involvement of Ser racemization 

(along with the other forms of PTM) in the pathological protein misfolding and aggregation. 

In this review, we illustrate how current studies have examined racemization. The five 

families of PLP enzymes include: type I—aspartate aminotransferase family, type II—

tryptophan synthase family, type III—alanine racemase family (TIM-barrel), type IV—D-

amino acid aminotransferase family, type V—glycogen phosphorylase family [146]. The 

functions of PLP include influence on pi-electron systems and the chemical properties of 

contiguous sigma bonds [147]. The PLP acts as a coenzyme in all transamination reactions, 

and in certain decarboxylation, deamination, and racemization reactions of AAs. The 

aldehyde group of PLP forms a Schiff-base linkage (internal aldimine) with the ε-amino 

group of a specific lysine group of the aminotransferase enzyme. Transamination is involved 

in the ketamine production [148]. PLP is also involved in various beta-elimination reactions 

such as the reactions carried out by serine dehydratase [149]. Among the functions relevant 

to PLP activity are the following: (a) to react with glutamate, which transfers its alpha-amino 

group to PLP to make pyridoxamine phosphate (PMP) and (b) to provide the catalytic 

functions for PLP enzymes including serine racemase (SerR).

2.1.2. Serine Racemase—The attention to the significance of racemization in 

neurodegenerative diseases [17] and its association with proteins’ aggregation emerged a 

long time ago. Due to the chain of essential facts, we have mainly concentrated on the 

racemization XII of Ser residues in proteins involved in the neurodegeneration. (XII. The 
association of serine/threonine phosphorylation with protein disorder is a common landmark 
of neurodegeneration [150–154]).
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Among them are: APP(Aβ) [155,156], TAU [157–159], α-Synuclein (α-Syn) [160,161], and 

prion protein (PrP) [160,162] containing Ser residue in the AAs monomer sequence. An 

increasing number of experimental findings proves an assumption of the pivotal role of 

serine racemase (SerR) in the neuronal activity and neurodegeneration. Racemization of 

protein-bound AAs (including Ser) is important in the aging and pathologies of proteins. Ser 

undergoes racemization as internally bound residues of functional proteins [163]. 

Racemization of Ser and Asp residues differently impacts the hydrolysis of proteins. Serine 

racemase (SerR) is the brain-enriched glial (astro-and micro-glia) cells PLP enzyme 

[145,164–166] which catalyzes racemization of L-Ser to D-Ser. The catalytic mechanism of 

the SerR is similar to the alanine racemase. The unprotonated PLP-substrate intermediate is 

stabilized by the interaction of active-site residues with water molecules, contributing to the 

enzyme’s electrostatic environment. SerR is a homodimeric pyrixidal 5′-phosphate (PLP) 

dependent enzyme catalyzing beta-elimination of both L- and D-serine to pyruvate and 

ammonia [167]. The homo-dimer of SerR (each monomer 340 amino acids) consists of two 

domains (a small and a large) connected by a flexible loop [168,169]. Both mouse and 

human SR contains functionally active Ser residue (ValSerCys sequence) at their C-terminus 

[92,169–171]. This fact suggests that SR activity itself can be modulated by non-enzymic L-

serine racemization. The ValSerCys sequence resembles the (PDZ) domains for binding to 

PSD95 [170]. SerR is activated by binding to the PDZ6 domain of Grip. This complex of 

molecular interactions represents the pathway for modulation of synaptic spine activity 

through PSD95. Full activation of SeR requires binding to the remaining part of the C-

terminal region of GRIP [170]. The combination of above-mentioned facts provides the idea 

of the multiple pathways connecting Ser racemization with synaptic spine function through 

PSD95 [172,173]. It is notable that substrate of the SerR-protein PSD95 contains multiple 

Ser residues as active sites of PTM. Two evolutionarily conserved sites of serine 

phosphorylation (Ser-415 and Ser-418) signify the sensitivity of PDS95 signaling system to 

Ser racemization. [174]. The association of D-Ser and SeR with PSD-95 maintain an overall 

stability of glutamatergic synapse [175,176]. Ser-R regulated by many cofactors including 

phosphorylation [98]. Experimental results indicate that PKC phosphorylates SerR in serine 

residues and regulates D-Ser availability in the brain [177]. In more general terms, the 

inherent interaction between racemization and phosphorylation, in our view, is relevant for 

the regulation of physiological and pathological mechanisms of protein folding. XIII (XIII. 
The role of glycosylation in protein folding has been considered in a literature review [178]).

This hypothesis is supported by the fact that A-Beta aggregations into filaments become 

irreversible due to the combined force of several PTMs. The interplay between racemization 

and phosphorylation promotes incorporated A-β dimers and tetramers into resistant to 

proteolytic degradation filaments [179].

PLP enzyme serine racemase (SerR) catalyzed D-Ser synthesis [180,181] and D-amino acid 

oxidase (D-AAO) catalyzed D-Ser degradation [182]. SerR, in addition, degrades L- and D-

Ser to pyruvate and ammonia. As a residue prone to racemization and phosphorylation Ser is 

a primary suspect in protein aggregation. The activation barriers of Ser racemization, 

estimated in the presence of dihydrogen phosphate ion (H2PO4-), found were consistent with 

spontaneous rate of reactions occurring at physiological temperature [36,183]. The AAs 

racemization is driven by spontaneous (non-enzymic) and enzymic process. The rates of 
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AAs racemization in proteins are temperature/protein-dependent, and usually slow under 

physiological conditions. The progress in the measuring of AAs racemization rate elaborates 

the concept of protein aging. For aspartic acid (Asp) the rate of racemization occurs over the 

range from several days to more than 15,000 years [18,38,85,88,184–186]. The L-D 

conversion of aspartic acid in the proteins of human dental enamel (such as dentine) is 

relatively fast (about 8% conversion in 60 years) and correlates with a chronological age of 

the organism [187]. The Asp racemization was seen during ageing and cataract formation 

[188]. Due to a well-known succinimide-mediated mechanism, the Asp residues are the most 

racemization-prone [189–192]. Ser is known as one of the main AAs involved in 

racemization [145,193]. Accordingly, within the lifetime, these AAs residues of long-lived 

proteins (LLPs) are progressively racemized [18]. In the age-related diseases, this 

racemization process can be related to protein misfolding and dysfunction [194–196]. The 

idea of conjugality of SerR activity and APP-related AD pathology is supported by the fact 

that the level of a brain serine racemase expression can be induced by several seine-

containing peptides including the APP fragments such as sAPP [197] and pro-inflammatory 

stimulus including Aβ peptide [198]) and AP1 [197–199]. SerR is a component of the 

complex network PTM. The Ser residues of SerR are the targets of several protein kinases 

including PKC and PICK1 [200].

2.1.3. Serine Protease—Most of the metabolic enzymes recognize only substrates 

(proteins and peptides) composed exclusively of L-AAs [10]. Serine proteases (SerPs) are 

ubiquitous in all organisms. Insights into the atomic level of SerPs structure–function link 

reveal the significance of the catalytic Ser motions [201,202]. Notably, an evolutionarily 

conserved catalytic domain Ser–His–Asp contains Ser residue [203,204] providing 

sensitivity to the AAs racemization. It is in the agreement with a well-known fact that 

incorporation D-AAs into peptide chain diminishes their susceptibility to proteases [205]. 

The combination of experimental facts, as mentioned earlier, emphasizes a critical role of 

racemization on enzyme–substrate interaction. The functions of SerPs are closely associated 

with the degradative pathway of many PLP enzymes [206,207]. SerPs, representing about 

one-third of all proteases, serve as essential component of the intracellular and extracellular 

catalyzing hydrolytic reactions [208]. SerPs participate in many physiological processes 

including food digestion, embryo development and immune defense [209]. The fact that 

SerR is degraded through the ubiquitin-proteasomal system [210] and regulated by 

phosphorylation [180] points to crass-talk between Ser-associated forms of PTM 

emphasizing the physiologic importance of Ser residues. Quantum calculations reveal the 

mechanism of SerPs action including four specific residues in a water-containing 

environment [211–213]. SerPs enzymes are involved in the proteolysis of the diverse group 

of signaling peptides and functional proteins [204] including Aβ [214], APP XIV (XIV. 
Recent studies have reported that many proteases, besides the canonical α-, β- and γ-
secretases, cleave the APP [214], Aβ peptides [215], TAU, and tubulin [216–218]).

In humans SerPs comprise several groups: plasmin, acylpeptide, hydrolase, and myelin basic 

protein (MBP) [215,219]. The group of rhomboid SerPs belongs to the family of 

intramembranous proteases XV (XV. BACE1 is, known as membrane-associated aspartic 
protease 2 [220] and plays a key role in major cellular processes [221–223]).
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SerPs are involved with the degradation of aberrantly folded proteins [222,224]. Notably, the 

sequential cleavages of APP occur by β- and γ-secretases. Both secretases are members of a 

new class of intramembrane-cleaving proteases (I-CliPs). These proteases include β-

secretase 1 (BACE1) the Rhomboid family of SerPs, and two aspartyl proteases: the signal 

peptide peptidase (SPP) and γ-secretase. “In sharp contrast to Rhomboid and SPP that 

function as a single component, γ-secretase is a multi-component protease with complex 

assembly, maturation and activation processes” [221]. Aβ peptides are subject to proteolytic 

degradation by a family of peptidases and proteinases known under the common name Aβ-

degrading proteases (AβDP) [215]. Among them are SerPs, which are ubiquitous in all 

organisms. As most proteases SerPs are chiral, meaning they distinguish between L- and D-

enantiomers of the substrate. Apparently (based on the summary of experimental facts) that 

SerPs activity and protein folding and aggregation can be strongly affected by the Ser 

racemization.

2.1.4. D-Amino Acid Oxidase—The metabolism of D-AAs in a healthy organism is 

modulated by two stereo-specific enzymes: D-amino acid racemase (in the synthesis), and 

D-amino acid oxidase (D-AAO) XVI in degradation. (XVI. D-AAO regulates NMDA 
receptor function through AAs).

As a detoxification enzyme, the D-AAOs (in the presence of molecular oxygen) selectively 

degrade (by oxidative deamination) only D-enantiomers [28]. DAAO is involved in many 

aspects of cell physiology. As a detoxification enzyme, the D-AAO (in the presence of 

molecular oxygen) selectively degrades (by oxidative deamination) only D-enantiomers. D-

AAO involved in many aspects of cell physiology [225]. As a D-AAs degrading enzyme, D-

AAO is associated with many disease conditions including amyotrophic lateral sclerosis 

[226] and schizophrenia [227]. In the human brain, DAO expression was found to be both 

age- and brain region-dependent [140,228].

2.2. Protein Aggregation and Neurodegeneration

The current review focuses on the most common and basic mechanism of protein 

aggregation-molecular chirality and racemization. Protein aggregation is a prominent feature 

of many protein misfolding diseases causing neurodegeneration. Among them are 

Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD) diseases, amyotrophic lateral 

sclerosis (ALS), Lewy Body Dementia (LBD), progressive supranuclear palsy (PSP), 

spongiform encephalopathies (SE), cataracts, musculo-skeletal disease (MSD) and 

demyelination diseases (DD) [229–235]. In our view, racemization should be considered as a 

common and critical factor of protein conformational stability, potency to aggregation and 

toxicity [105]. In this review, we focus predominantly on AAs racemization. The first 

observation of AAs racemization was reported a century ago. The review of the earlier 

works can be found in [236,237]. AAs undergo spontaneous and catalytic racemization. Two 

distinct forms of catalytic racemization are base- and acid-catalyzed [19]. In the 1970s–

1980s, racemization was used to determine the age of AAs in the biological systems [238–

241]. However, the association of AAs racemization with the pathological protein 

aggregation and the neurodegeneration, during this period, did not attract attention. 

Structurally ordered protein aggregates (amyloids) are found in all living organisms 
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including the bacteria [7], plants [242] and animals [243]. Contrary to the common view, in 

humans they are involved not only in the aggregation-related diseases but also in normal 

physiological activities associated with cognitive function.

2.2.1. Structurally Ordered Proteins—The comparative studies of amyloids 

structures (fibrillar, cross beta-sheet quaternary forms) in the bacteria, fungi, insects, 

invertebrates, and humans reveal two sub-sets of fibrils: pathological and functional 

[244,245]. New findings suggest that the current knowledge regarding the variety of 

structural conformations of Aβ is far from complete and probably not enough for the 

development of an efficient therapeutic strategy. The existence of micelles in the fibrillo-

genesis of beta-amyloid peptide was proved by experimental results [246–248]. From the 

bio-physical point of view, it is the spatial distribution of positively and negatively charged 

domains over surface of protein and spatial orientation of electron spin that tunes the 

aggregation behavior of proteins [249,250]. Among the broadly studied protein aggregations 

are inclusion bodies, amyloid fibrils, and other misfolding aggregates. Most protein 

aggregates contain the secondary structural components such as helical and β sheets 

elements [251]. The primary hypothesis assumes that aggregation involves the partially 

folded intermediates and specific intermolecular interactions (molecular chaperones).

The discovery of D-Ser in the chaperone proteins (αA-crystalline) suggests an essential role 

of the molecular environment in the mechanism of protein folding and interaction [188,252].

2.2.2. Intrinsically Disordered Proteins—The elegant results of such attention to the 

nature of non-equilibrium phase transitions in proteins is the concept of intrinsically 

disordered proteins [234]. Intrinsically disordered (ID), intrinsically unstructured protein 

(IU), or natively unfolded (NA) protein or domain lack a unique three-dimensional structure 

and exist in a variety of conformations that are in dynamic equilibrium under physiological 

conditions. It was recognized that some functions of proteins can be associated with the 

dynamically unstructured conditions. About 40% of eukaryotic proteins have at least one 

long (>50 AAs) disordered domain [253–255]. The mutations within intrinsically disordered 

regions (IDRs) increase the aggregation propensity, such as those seen in the amyloid β-

peptide, α-synuclein, huntingtin, prion protein, and TAU have been directly linked to variety 

of above previously mentioned IDs. TAU is most studied IDP [256] but unfortunately the 

experimental design and analysis of experimental results frequently do not involve 

consideration of D-AAs residues. In this situation, the classification of IDP based on the 

AAs sequences reveals the roles of L- and D-Ser in the structure and functions relationships 

[257,258]. Recently the theoretical framework was introduced for the use of D-amino acids 

as a universal tool to the exploration the aggregation pathways of IDPs [11]. The study of 

non-equilibrium phase transition [22] in IDP and the role of L- D- AAs substitution is a 

matter of urgency. The rate of racemization of amino acids (AAs) is temperature dependent 

and under influence of external physical fields can be altered in the order of 104–105. The 

balance between physiological protein folding and aggregation relies on the competition 

between two pathways. The factors promoting aggregation prevent natural folding and vice 

versa [251]. The chirality of amyloid fibrils is well established [259,260]. The earlier 

intuitive ideas on the link between the spontaneous phase transition (chirality transfer and 
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chirality inversion) between the polymorphic forms of the amyloid fibrils XVII and protein 

aggregates have gradually gained objective confirmation [18,260–263] (XVII. The 
supramolecular chirality of the amyloid fibrils can be registered by variety of the methods 
including the microscopy (electron (EM), transmission (TEM), and scanning electron (SEM) 
microscopy) and vibrational circular dichroism (VCD) [261–264]).

2.2.3. Racemization Role in Protein Folding, Aggregation and 
Neurodegeneration—Several authors suggested that the “presence of the isomers may be 

one of the triggers of abnormal aggregation and may induce the partial unfolding of protein 

leading to a disease state” [88,90]. Recently, it was shown that amyloid fibrils of different 

nematic phases, including chiral protein-based systems, undergo liquid-crystalline phase 

transitions [265]. Spontaneous and enzymatic racemization reactions influence protein 

misfolding and aggregation associated with aging and age-related diseases [142,180]. The 

exploration of the AAs racemization [28,266] and protein aggregation phenomena within the 

bacteria cells opens an evolutionary perspective [267].

The amyloid-like properties of inclusion bodies and protein aggregation in bacterial cells 

have become the point of attention [268,269]. Spontaneous and enzymatic racemization 

reactions have relevance to the protein misfolding, aggregation associated with aging, and 

age-related diseases [267]. Gene mutation and spontaneous racemization of Aβ, TAU, PrP, 

Huntingtin, and alpha-synuclein proteins are determined as major limiting factors in natural 

peptide synthesis and incorporation of the peptide into functional proteins, leading to 

abnormal phosphorylation, aggregation, and deposition [14,270–273]. The investigation of 

the biochemistry of mandelic acid-base molecular structures reveals thhe effect of relative 

chirality of monomers on the aggregation patterns. The structure of dimers and 

supramolecular aggregates is strongly affected by the relative monomer chirality [274–276]. 

At the molecular orbitals level, the transmission of chirality occurs through the cooperation 

of hydrogen bonding and π − π stacking interactions [271,275]. The recent studies of L- and 

D- (Aβ) 42 peptide enantiomers confirm an assumption that the chirality of AAs is the key 

determinant of the oligomer’s solubility and aggregation [277,278].

3. Hypothesis of Protein Aggregation and Neurodegeneration

The metabolism of Aβ peptides (full length and the truncated forms), despite being a major 

target of neurodegenerative studies, remains to be elucidated. The various PTMs of Aβ 
peptides were explored and discussed during recentdecades, including racemization/

isomerization, oxidation, nitration, truncated reaction, glycation, and glycosylation. 

However, “no common perception of the essential foundation of the AD pathology was 

determinate” [131]. The overall structure of Aβ−40 and Aβ−42 peptides contains the distinct 

domains characterized by specific physicochemical properties and 3D structures [279]. In 

particular, Aβ−42 peptide contains hydrophobic regions (such as KLVFF residues 16–20) 

[280] and α-helical (right-handed) domains (13–26 residues) [281]. The intuitively attractive 

therapeutic strategy against amyloid-beta aggregation is based on assumption that drugs 

should exhibit molecular chirality [280]. In other words, the folding pathway of Aβ−42 is 

valued for its sensitivity to the chirality of the immediate molecular environment. The 

chirality of molecular environment, in turn, is mediated by the mechanism of PTM. 
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Therefore, the concept of AAs racemization allows the confluence of several hypotheses of 

protein aggregation and neurodegeneration.

3.1. Amyloid Cascade Hypothesis

The amyloid cascade hypothesis links the misfolding of the Aβ peptide to the cause of AD 

[282]. The spatial conformations of Aβ peptides are peptide-length specific [283,284]. The 

aggregation is contributed by multiple pathways directly related to the stereochemistry of the 

Aβ peptide or indirectly through interaction with aggregated TAU protein [284–286] and 

membrane lipids [287,288]. The Aβ peptide is prone to aggregation through calcium 

dysregulation [289], oxidative stress [290], phosphorylation [152,291,292], and 

inflammation [293]. The amyloid cascade hypothesis emphasizes the role of amyloid- β (A-

β) peptide aggregation in the pathogenesis of AD [294].

3.2. Glutamate Toxicity Hypothesis

The excitotoxicity of extracellular glutamate was associated with the numerous neurological 

diseases including ALS, AD, PD, HD, LBD, PSP, and cataracts. We will return to this 

hypothesis at the consideration of link between D-Ser and functions of glutamate receptors 

including NMDAR [295], mGluR [296], and AMPAR [106].

3.3. Post Translational Modification Hypothesis

The various PTMs of Aβ peptides were explored and discussed, including oxidation, 

nitration, truncated reaction, glycation, and glycosylation [130,297]. The Aβ is the product 

of the normal proteolytic processing of AβPP, a type 1 trans membrane glycoprotein [298] 

whose gene is located on chromosome 21 [299,300]. The class of intrinsically disordered 

(ID) amyloid peptides and proteins includes Aβ, TAU, islet amyloid polypeptide, and α-

Synuclein [301–305]. Amyloid consists of linear, unbranched protein or peptide fibrils of 

approximately 100 Å diameters.

The fibrils are composed of a wide variety of proteins that have no sequence homology and 

no similarity in three-dimensional structures. However, fibrils share a common secondary 

structure, the beta-sheet [302–306]. PTM in general and in racemization increases the 

heterogeneity of protein conformation and, consequently, the diversity of a protein’s 

physiological functions and pathological pathways. The illustration of protein chirality-

related effects is the physiological stereo transformations of the amyloid precursor protein 

(APP) and TAU. The processing of APP and PTM of amyloid-beta (Aβ) peptides along with 

the oxidation, phosphorylation, nitration, pyroglutamylation, and glycosylation include 

racemization and isomerization [307,308]. The racemization of Aβ peptides generates APP 

fragments with different physiological and pathological properties modulating disease 

progression. It is important to emphasize the interconnected chain of events.

i. The accumulation of Aβ and TAU trigger the perturbations in the glutamatergic 

synapse.

ii. The pre-synaptic and post-synaptic sides of the glutamatergic synapse are 

modulated by many D-AAs including D-Ser [104,309,310]
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iii. The regional distribution of D-Ser in the brain follows the distribution of NMDA 

receptors [311,322].

iv. D-Ser is found in the synaptosomal fraction isolated from rat brain tissues 

[104,313].

v. Glial-neuronal interaction XVIII at the glutamatergic synapses is a major 

influence of short- and long-term potentiation responsible for different memory 

functions [314,315] (XVIII. S-NMDAR receptors primarily use D-serine, 
released by neighboring astrocytes [314]).

vi. SerR is transcriptionally induced by sAPP [197].

vii. The NMDA receptor hypofunction is associated with aging, neurodegeneration 

leading to the impairments of memory, learning and psychosis [316].

viii. Modified form of TAU in PHFs contains more D-Asp that TAU proteins from 

normal adult brains (N-TAU) [317]. The chain of the physiological molecular 

events is inherently linked to the mechanism of racemization. The concept of 

AAs racemization allows the confluence of three above-mentioned hypotheses of 

neurodegeneration and protein aggregation. In our view, the racemization is the 

common relevant factor for the widely circulating hypotheses including the 

amyloid cascade hypothesis, glutamate toxicity hypothesis [229,231] and 

hypothesis associated with the functions of PTM network. In support of universal 

significance of AAs chirality and racemization is speaking the facts that a 

gradual racemization of peptide and proteins has been observed in aging 

populations [318], and that mixed chirality proteins evade the known pathway of 

proteosomal degradation [319]. Notably, the age-related racemization of AAs is 

critical for function of both the enzymes and their substrates.

4. Racemization Role at Molecular, Cellular, and System (Organ) Levels

4.1. Molecular Level

Aberrant PTM Resulting in Resistance to Proteolytic Degradation—The 

mechanisms of protein modifications comprise co-translational, post-translational and 

spontaneous types. The stereo selectivity of the translational machinery of protein synthesis 

provides reliable defense against the accidental incorporation of D-AAs. It was shown that 

chirality discrimination occurs at three successive steps (initiation, elongation, and 

termination) involving tRNA and ribosomal interaction [320–322].

The homochirality sustained by the translational machinery provides the platform for the 

activity of the post-translational modification (PTM).

Following the translation of polypeptide chain, XIX determined by the DNA, most proteins 

undergo evolutionarily conserved PTM (XIX. Even changing just one AA in a protein’s 
sequence can affect the protein’s overall structure and function).

For example, phosphoserine is a component of many proteins as the result of post 

translational modifications [323,324]. Neuronal protein phosphatases in cell signaling 
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pathways are represented by phosphoserine phosphatases XX (PSPs) [325]. (XX. Full 
activation of SerR requires binding to the remaining part of the C-terminal region of GRIP 
[170]).

There are several mechanisms of PTM including: covalent modifications (phosphorylation 

[326,327], methylation [328], glycosylation XXI [329,330]), proteolysis [331], oxidation 

[332–334], deamination [335], cross-linking [336,337], and racemization (enzymic and non-

enzymic). The phosphorylation of D-AAs residues is a common way to regulate the activity 

of proteins. (XXI. “Glycosylation is one of the most common, and the most complex, forms 
of post-translational modification of proteins” [337]).

The source of phosphate for phosphorylation is ATP. The cross-linking PTM is observed for 

APP and TAU proteins [337]. The variety of forms of PTM is considered as the mechanism 

of adaptation to the stereochemistry of the environment. For the purpose of our review, it is 

essential to note that PTM was linked to abnormal deposition of peptides in the brain tissue 

[338]. The structural heterogeneity of peptide in the aggregations was associated with 

structural rearrangements of the L- and D- isoforms of aspartyl residues. The localization of 

D-AAs in peptide chain (N- and C-terminus, or intermediate position) provides an 

opportunity for modulation of diverse pathways of PTM. All known mechanisms of PTM 

directly or indirectly involve racemization. D-AAs containing peptides (characterized by 

altered 3-D shape and charge distribution) show an increase in resistance to proteolytic 

degradation of molecular aggregation comprised of insoluble depositions [331,339,340] The 

stereochemical nature of PTM is most evident in the case of racemization. The modulation 

of AAs chirality influences the spatial transformation of proteins and distribution of 

hydrophobic/hydrophilic domains. The increase in “hydrophobicity” results in deposition 

from aqueous media [341]. This in turn changes the balance of soluble and insoluble 

components in the cytoplasm and in the intracellular space. The physiology of 

phosphorylation, oxidation, glycation, and ubiquitination is inevitably influenced by the age-

associated, cell-specific racemization [36,100,342–346]. Thus, racemization of AAs could 

be a common mechanism for many pathogenic pathways. Protein misfolding and 

aggregation are responsible for the brain neurofibrillary tangles (NFT) and neuritic plaques 

(NP). Protein aggregates and excitotoxicity, representing the common landmarks of major 

NDs including ALS, AD, PD, LBD, PSP, HD and cataracts, are inevitably linked to the AAs 

racemization. For the heat shock proteins in the lens (αA-crystallin (αA) and αB-crystallin 

(αB)) it was shown that an aggregation and deposition is significantly contributed by several 

types of PTM. Among them are oxidation, C- and N-terminal truncation, deamidation, 

phosphorylation, and methylation [333,334]. As we mentioned before, many forms of PTM 

are directly associated with the protein racemization [194].

4.2. Cellular Level

4.2.1. D-Seine and NMDA-Dependent Neurotransmission—NMDA receptor and 

corresponding neurotransmitters are one of the best examples of stereoselective interaction. 

D-AAs (including D-Ser and D-Asp) are involved in many aspects of the brain’s excitatory 

and inhibitory neurotransmission [67]. For example, in neurons D-Asp serves as a 

neurotransmitter delivered to NMDA receptor site in synaptic vesicles [67,347,348]. The 
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convincing way to illustrate the role of AAS chirality in the glutamatergic system is to 

review NMDA receptor ligands.

NMDA receptor agonists and partial agonists include: L-glutamate, D-glutamate, N-methyl-

D-aspartate (NMDA), N-methyl-L-aspartate, D-aspartate, L-aspartate, and many others 

[60,66,67] The co-agonists of NMDA receptors include D-serine, L-serine, D-alanine, and 

L-alanine [62,63]. In the central excitatory and inhibitory synapses of the mammalian brain, 

L- and D-isoforms of Ser play a key role in signal transduction [193]. D-Ser participates in 

the synaptogenesis, synaptic transmission (NMDA and AMPA [106]), synaptic remodeling 

[349], and spine plasticity [107,350]. In the tripartite synapse, the downregulation of 

neuronal D-Ser levels under any pathological conditions is naturally associated with an 

enhanced production and release of D-Ser by astrocytes. The physiology of neuronal-

astroglia loop is regulated by the interplay of the enzymes including SerR and D-AAO. The 

disruption of the natural feedback mechanisms regulating cell–cell and enzyme–enzyme 

interaction can accelerate the neurodegeneration [351]. As an example, we can point on 

moto-neuronal death in the mouse model of amyotrophic lateral sclerosis [352]. Astrocytes 

(as the source of D-Ser) possess the vesicles sequestering and storing D-Ser as 

gliotransmitter [353,354] The Ser-containing vesicles undergo calcium-dependent exocytosis 

modulating synaptic NMDA transmission. The activation of opening of the NMDA receptor 

requires coincidence in occupation of the glutamate and the glycine site. At the post synaptic 

dendritic spines, an NMDA-dependent endocytosis of GABAB receptors requires the 

phosphorylation of its intracellular C terminus domain serine 867 residue (Ser867) in the 

intracellular C terminus [355]. The attenuation of the neuronal nicotinic acetylcholine 

receptors (nAChRs) by receptor antagonist alters the function and expression of SerR [356] 

suggesting involvement of cholinergic circuits in modulation of D-serine level. The review 

of current publications related to the mechanism of Glu-receptors internalization suggests an 

active role of D-Ser in mediating NMDA and AMPA receptors endocytosis [357]. 

Pathological roles of free extracellular D-Ser mediating NMDA receptor overactivation are 

suggested in studies using in vitro culture systems [358]. The internalization of cell 

membrane receptors involving Ser activity is observed in many cell types. We provide 

several examples. (1) In liver, parenchymaglucagon-mediated internalization of the serine-

phosphorylated glucagon receptor is mediated by serine-phosphorylated residue [359]. (2) 

Phosphorylation Ser-789 in the C-terminal tail of fibroblast growth factor receptor 

1(FGFR1) is required for receptor endocytosis [360]. (3) The low-density lipoprotein 

receptor-related protein (LRP), which participates in endocytosis, signaling pathways, and 

phagocytosis of necrotic cells, is mediated by phosphorylation of the serine residues within 

the LRP receptors cytoplasmic domain by PKCα [361]. (4) The carboxyl-terminal Ser 

residues (Ser-355, Ser-356, and Ser-364) play a critical role in G protein-coupled receptor 

kinase (GRK)-mediated phosphorylation and desensitization of β2-adrenergic receptors 

(β2Ars) [362]. (5) The endocytosis of CD4 (cluster of differentiation antigen is activated by 

Ser phosphorylation [363,364].

4.2.2. Racemization-Prone Ser Residues—The Ser residues appear more 

racemization-prone than other residues [5]. The racemization–deracemization dynamics are 

a natural discriminant between the healthy physiological state, aging, and disease condition 
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[18,267]. For example, D-Ser promotes adult hippocampal neurogenesis enhancing cell 

proliferation and increase in the survival of new neurons [109]. At the same time, D-Ser is 

known as a key determinant of glutamate toxicity [352] and D-AAO enzyme-mediated 

metabolism, results in reduction in the reactive oxygen species (ROS) [365].

SerR/D-Ser/NMDA-receptor pathway is recognized as a regulator of apoptosis and necrosis 

shift during different forms of excitotoxicity involving microglia activation [102,366,367]. 

SerR belongs to the class of co-factor-dependent AA racemase enzymes. Accordingly, the 

activity of SerR is mediated by many co-factors including divalent cations (Mg. Mn, Ca, Fe 

Ni Cu, Co and Zn) [368,369], nucleotides (ATP, ADP or GTP) [180], and sulfhydryl groups 

[369,370].

The binding of ATP to serine racemase links the production of D-serine to the energy 

metabolism [157,371–373]. Consequently, racemization, of any origin (spontaneous and 

induced), will interfere with the cell aerobic metabolism [374]. The presence of D-AAs 

detected in plants, bacteria, and mammals is associated with the diverse range of biological 

functions [375]. “The levels of D-Ser in the brain are higher than many L-AAs and account 

for as much as one-third of L-serine levels” [376]. Free D-aspartic acid and D-alanine are 

found in the white and gray matter of healthy human brains [377]. d-Ser is known to be 

involved in glutamate transmission and plays a role in long-term potentiation [378]. D-AAs 

found in many AD-related proteins including neuronal-specific neurofilament-L [379], MBP 

[56], and in protein phosphatase PPC1 [380,381]. PPC1 and PPC2 are involved in TAU de-

phosphorylation at multiple serine/threonine sites [382,383]. D-Ser was found to be involved 

in moto-neuron degeneration [384].

4.3. System Level: Morphological and Cognitive Aspects

4.3.1. Aging, Long-Lived Proteins (LLP), and Racemization—“D-amino acids 

…. play a role in aging-related diseases associated with gradual protein racemization” [318].

Brain laterality is a complex phenomenon widely studied at molecular, cellular, brain 

morphological and functional levels. Age-related bio-chemical alterations of brain laterality 

are region, cell-type, and molecular biomarker (type/function) dependent and vary from 

increase, decrease, and reversal of hemispheric asymmetry [18,385]. Molecular and cellular 

determinants of an organism aging are evident from asymmetric cell division in embryo 

[135]. The proteins with a long lifetime have recently become the subject of increasing 

attention. The nucleoporins [386] and myelin-related proteins of oligodendrocytes [387,388] 

were identified as the most long-lived proteins in rodent brains. Age-related reduction in D-

Ser level with age has been associated with deficiencies in cognitive ability [18,388–390]. 

The intracellular, membrane-bound, and extracellular proteins with long lifetime have been 

linked to the age-dependent cellular and organism levels of events including fertility and 

neurodegeneration [387]. Among known LLPs are α-synucleins [391], APP [392], and TAU 

[393], PrP [394], huntingtin [235], MBP [387] and collagen [87,381]. An accumulation of 

the altered forms of functional LLPs with aging [18,395] as well as age-dependent protein 

racemization are considered well-established facts [252]. Aging, at a molecular level is 

considered a collapse of homochirality of the entire organism including the eye (lens, ciliary 

body, drusen, and sclera), skin, cardiac muscle, blood vessels of the lung, and heart, stomach 
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(chief cells, longitudinal and circular muscles), small and large intestines, and kidney 

[396,397]. In Fujii expression, molecular chirality is an “index of aging”. LLPs containing 

D-AAs are present at many sites in the human body including CNS. However, little is known 

about the major pathways of PTM that affect protein structure and function in the brain and 

the studies of link between the racemization, aging and aggregation of proteins are 

practically absent [194]. The modification and aggregation of functional proteins can be 

significantly influenced by age-related accumulation of abnormal enzymes [398]. In the 

prefrontal cortex of mammals (mouse, rat, human) at 1/3 gestation period, more than 50% of 

the aspartic acid is in D-configuration [399,400]. However, at the time of birth it becomes 

undetectable. It has been suggested that there is a role for D-Ser in the mechanism of 

neuronal death in the nervous system [113] that is also associated with pathological protein 

aggregation. Over the lifetime, a stochastic process leads to alteration of molecular chirality 

at the DNA and protein levels. The “molecular clock” of aging is influenced by the complex 

of genetic and epigenetic factors [401,402]. Particularly, a gradual racemization of peptide 

and protein has been observed in aging populations [318,403] both in humans and animals 

[379].

Both the proteins relevant to AD (such as TAU and Aβ), have been shown to contain many 

racemized AAs in brain tissue from elderly human donors [404,405].

The racemization of AAs affects TAU proteolysis and aggregation [317]. Age-related neuro-

degradation processes are, to a significant degree, associated with the age-related protein 

degradation leading to accumulation of misfolding, dysfunctional aggregates. However, it is 

essential to understand that “protein aggregation is a normal physiological event” with an 

evolutionarily conserved mechanism balanced by the proteins degradation system [406,407]. 

It is obvious that distortion of the protein degradation systems will inevitably accelerate 

neurodegeneration. Autophagy is one of the cell type-specific degradation systems. 

Autophagy can be up/down-regulated upon many factors including starvation [408] and 

dietary exposing to environmental toxins [409].

Notably, such toxins can include the environmental/dietary D-AAs. The idea that AAs 

racemization can modulate proteolytic protein degradation is supported by many facts, some 

of which are indicated below.

I. It is known that AAs composition is critical for aggregation-prone proteins [410] 

and PTM of AAs dramatically influences autophagic proteolysis [411,412].

II. It was shown that the racemization results in the accumulation (aggregation) of 

altered proteins, accompanied by neurodegeneration [413,414].

III. The serine-threonine kinase regulated autophagy and serine-proteases are 

functions in the signaling pathways [415–418].

IV. The specific serine proteases family (granzymes) which are expressed 

exclusively by cytotoxic T-lymphocytes and natural killer (NK) cells play a key 

role in apoptosis [419,420].
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4.3.2. Proteolysis vs. Aggregation: APP, Aβ and TAU—In the brain of AD 

patients, the Aβ peptide’s structural transition is initiated by the monomer to oligomer 

transition followed by conformation of the oligomers, protofibrils, fibrils, and plaques 

[3,421]. The detection of D-AAs in the A-β depositions and an affinity of A-β to D-peptides 

suggest the distinct role of L/D isomerism in the stages of the pathogenesis of 

neurodegeneration. The stages include a protein aggregation and plaque deposition 

[422,423]. D-AAs can be localized at the different positions in a peptide chain, including N- 

and C-termini. The D-AAs-containing peptides are resistant to proteolytic degradation 

suggesting the possibility of molecular aggregation and creating insoluble depositions 

[176,339,340]. The racemization of A-β and MBP was observed under different 

experimental conditions [101,424,425]. The increased level of DAAO was associated with 

the severity of the cognitive deficits in individuals with mild cognitive impairment and AD 

[83]. In brains of individuals with AD, D-Alanine (D-Ala) concentration is elevated more 

than twice [426]. D-Ser levels in the hippocampus and parietal cortex of AD patients are 

higher than in control subjects [427]. The comparison of physical and biological properties 

the all-D- and all-L-stereoisomers of Aβ (Aβ25–35) and the full-length peptide (Aβ1–42) 

reveal practically identical structural and assembly characteristics as well as similar levels of 

toxicity [428]. The deposition of abnormal protease-resistant proteins is presumably 

associated with the generation of D-AAs configuration [429]. The distribution of D- and L- 

aspartic and isoaspartic acids was studied in amyloid β peptides and TAU, designating new 

potential of the chiral biomarkers [430]. In 2006, Kokkoni et al. showed that ideal inhibitors 

of Aβ fibril are D-peptides [431] the conclusion is supported by later experiments [280,432]. 

The discovery of the effect of D-AAs peptides on beta-amyloid aggregation offers an 

attractive therapeutic strategy against protein misfolding diseases. Replacement of serine 

422 with glutamic acid in TAU increases the propensity of TAU aggregation into insoluble 

fibril deposits of paired helical filaments (PHF) associated with neurodegeneration [433]. If 

we assume that D-AAs have function, then it is reasonable to link the decline of cognitive 

function with the changes in the balance between L- and D- AAs.

At present, the multiple isoforms of A-beta [434] and microtubule-associated proteins [435] 

are useful as biomarkers of neurodegenerative diseases. However, the potential usefulness of 

examining stereoisomers in protein synthesis and degradation pathways has far been under-

appreciated. Recent developments reveal that the morphological and functional hemispheric 

lateralization and asymmetry originate from spontaneous intracellular symmetry breaking at 

the molecular and cellular level [436]. As a result, the primary physiological functions of the 

brain are asymmetrical between the left and right hemispheres. The morphological brain 

asymmetry correlates with cognitive functions [437,438]. A chain of lateralization is 

believed to originate from genetic as well as from epigenetic impact [21,439].

4.3.3. Proteolysis—The degradation of proteins is modulated by many PTM pathways 

including AAs racemization. The specific SerPs family (granzymes) which are expressed 

exclusively by cytotoxic T-lymphocytes and natural killer (NK) cells play a crucial role in 

apoptosis [419,420]. It was shown that the racemization results in the accumulation of 

altered proteins, accompanied by neurodegeneration [413,414]. In AD, the general 

acceptance of the amyloid cascade hypothesis coexists with the failure of Aβ targeting drug 
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therapy. Resolving this situation requires a broader view on the link between the variety of 

protein stereo-transformations and the multiplicity of degradation pathways. For example, 

the heterogeneity of cleavage sites of APP leads to a variety of Aβ peptides forms, of which 

only a small part of each (such as Aβ1–40 (Aβ40) and Aβ1–42 (Aβ42)) have been currently 

studied at the stereochemical level [440]. Only close attention to the interaction between the 

cleavage site of substrate and active site of enzyme will provide an insight to the molecular 

mechanism of enzyme activity and bring the key for predictive drug therapy [441–443]. One 

of the studies of pathways of APP proteolysis XXII involves the sequential cleavage by two 

aspartic proteases: β- and γ- secretases. (XXII. Currently about 570 human proteases listed 
in the human Degradome Database).

However, it has become obvious that the β-/γ- secretases pathway of protein degradation 

represents only the “tip of the iceberg” complemented by many alternatives. Among them 

are the proteinase families of hydrolytic enzymes including SerPs, glutamic acid proteases, 

and metallo-proteinases. All SerPs enzymes (including trypsin, chymotrypsin, elastate, 

thrombin, subtilisin, plasmin, TPA, and factor D) contain a “catalytic triad” of Ser, His, and 

Asp. From this perspective, SerPs represent an attractive subject of exploration due to the 

combination of two facts: (1) their role in the lysosomal-endosomal protein degradation, and 

(2) expected effect of the racemization. However, SerPs role in the APP and TAU processing 

is not clearly understood. The SerPs (cathepsin A and G), aspartic proteases (cathepsin D 

and E) and cysteine proteases (cathepsins (B, C, L, F, H, K, O, S, V, X, and W) belong to 

proteinase families of hydrolytic enzymes. The proteinase families of hydrolytic enzymes 

are classified based on the mechanism of catalytic activity as aspartic, metallo, cysteine, 

serine, or threonine proteases [444,445]. The cathepsins are expressed in the brain in a cell 

type-specific manner. The activity of serine-cysteine protease was detected within the 

phagosomes of macrophages [446].

The enzyme activity is strongly influenced by the racemization of active AAs residues such 

as aspartic acid, threonine, and serine, causing AAs cross-linking and aggregation. It is 

believed that the deposition of abnormal protease-resistant proteins is associated with the 

generation of D-AAs [329].

4.3.4. Revision of Aggregation Hypothesis—“Protein aggregation may be exploited 

by nature to perform specific physiological functions” [406].

“Replacement of serine 422 with glutamic acid in TAU increases the propensity of tau 

aggregation associated with neurodegeneration” [272].

“TAU Phosphorylation at Ser 422 is observed from the earliest stages of TAU aggregation” 

[447].

Close attention of researchers to the link between protein aggregation and PTM associated 

with the Ser residues is evident in the current flow of publications [262,406,447]. We 

mentioned before that the various PTMs of proteins and peptides (including Aβ) were 

explored regarding age-related degradation processes [297]. It is not surprising that all 

hypotheses of protein aggregation in AD are directly or indirectly associated with D-AAs 
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metabolism. Among them are the following: amyloid [448], cholinergic [449,450], proteases 

[451], N-terminal [452,453], oxidative stress [454,455], branched-chain AAs [456], and 

amyloid-β crosslinking [457] hypotheses. In these circumstances, the racemization 

hypothesis of protein aggregation naturally gains its legitimacy. Recent results show that the 

mutation in D-amino acid oxidase (D-AAO) gene associated with familial ALS impairs D-

Ser metabolism and causes protein aggregation [120], suggesting a close association 

between protein folding and D-AAs metabolism.

It is notable that D-Ser is predominantly released from glia cells (protoplasmic type II 

astrocytes). These cells enclose nerve terminals and are enriched in specific regions of the 

gray matter including cerebral cortex, hippocampus, anterior olfactory nucleus, olfactory 

tubercle, and amygdala [98,228,458,459]. In the brain of AD individuals, the chain of Aβ 
peptide structural transitions is initiated by the monomer to oligomer transition followed by 

the protofibrils, fibrils, and plaques formation [3,421]. The studies of the early stage of 

Aβ42 monomer aggregation reveals the co-existence of two distinct pools of stereo 

conformation: locally structured “A” and disordered “B” states [460]. The detection of D-

AAs in the A-β depositions and an affinity of A-β to D-peptides suggest the distinct role of 

L/D isomerism in the stages of neurodegeneration. These stages include protein aggregation 

and plaque deposition [422,423]. D-AAs can be localized at the different position in a 

peptide chain, including N- and C-termini. The D-AAs-containing peptides are resistant to 

proteolytic degradation suggesting the possibility of molecular aggregation and insoluble 

depositions [321,339,340].

The increased level of DAAO was associated with the severity of the cognitive deficits in 

individuals with mild cognitive impairment and AD [83]. In brains of AD individuals with 

D-Alanine (D-Ala), the concentration is elevated more than twice [426]. D-Ser levels in the 

hippocampus and parietal cortex of AD patients are higher than those in control subjects 

[427]. Comparison of the physical and biological properties of all-D- and all-L- 

stereoisomers of Aβ (Aβ25–35) and the full-length peptide (Aβ1–42) reveals practically 

identical structural and assembly characteristics as well as similar levels of toxicity [428].

5. Treatment of Protein Aggregates

The discovery of the effect of D-AAs on Aβ aggregation offers an attractive therapeutic 

strategy against protein misfolding diseases. Notably, Ser is one of three AA residues (in 

addition to threonine, and tyrosine) commonly phosphorylated during cell signaling in 

eukaryotes. Phospho-serine is a component of many proteins as the result of PTM by various 

types of kinases (more than 50) [461,462]. Hyper phosphorylated TAU is the second major 

feature of AD. According to contemporary view the network of PTM of TAU protein 

(monomer) is causal for the assembly of monomers into diverse forms [159,463]. The major 

forms of aggregation are: oligomers, paired helical filaments (PHFs) and neurofibrillary 

tangles (NFTs). At a structural level, NFTs consist of PHFs. Among the different TAU 

isoforms are the neuron-protective and neuron-toxic subsets [464–466]. Side-specific 

phosphorylation of TAU can lead to formation of functional and neuro-protective (inhibits 

amyloid-β toxicity) iso-forms [465]. Neurodegenerative TAU-pathy is characterized by the 

hyper-phosphorylation of all TAU isoforms. The PHFs and NFTs do not play a role as the 
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toxic entities leading to disease. The toxicity is ascribed primarily to the TAU oligomer 

[464]. Hyper-phosphorylated forms of TAU were identified in neuronal somata, neuropil 

threads, and plaque-like clusters of neuritis [467]. Ser and threonine residues are among the 

primary targets of phosphorylation. A serine/threonine-proline kinase phosphorylates TAU 

proteins stereo-transformation forming a paired helical filament [468]. The phosphorylation 

of TAU is required for hippocampal LTD [469]. TAU protein contains serine 202, 395, and 

404 and threonine 205 and 394 residues as targets of differential PTMs [469–471]. The 

replacement of AAs in TAU increases the propensity of TAU aggregation [433].

In summary, the above-mentioned factors play a role in the evolution-supported association 

between biochemical events, behavioral patterns, and cognitive functions. The aggregation 

of the β-amyloid (Aβ) peptide into toxic oligomers is a key pathogenic event in the AD. The 

fact that dietary exposure to the L-Ser containing products reduces the risk of NFT and β-

amyloid deposits in the brain suggests the essential role of AAs racemization on 

neurodegenerative diseases (NDs) [409]. The current strategy for prevention and treatment 

of existing protein aggregates and their toxicity is aimed at the stereoselective properties of 

the D-enantiomeric acids and peptides for TAU and Aβ [423,472] associated depositions.

The essential finding is that Aβ42 exhibits an affinity to the D-AAs peptides [472]. The 

molecules that interfere with aggregation and toxicity potentially may act as therapeutic 

agents for the treatment of the disease. Many D-AA peptides exhibit an ability to inhibit or 

promote protein aggregation depending on the binding site [473–475]. The studies of the 

molecular inhibitors of A-beta aggregation successfully used the short peptide fragments 

homologous to the specific fragment-sequence of full-length wild-type A-beta. It was shown 

that the effectiveness of the inhibitors is strongly attenuated by replacement of L- to D-AAs 

or methylation of Aβ fragments [65,431,476].

6. Racemization Hypothesis

Biological evolution has predominantly selected one structural form for AAs (L- levorotary 

form not the D- dextrorotary form). The consequence of this selection is that proteins being 

formed will primarily consist of L-AAs. Correspondingly, the enzymes involved in PTM and 

metabolism of proteins will primarily handle and metabolize (although not completely 

exclusively) the L- form.

Contemporary studies have revealed that the presence of D-AAs in the organism is not 

accidental and has fundamental importance for the function of the CNS and adaptation of 

the single cell and entire organism to the stereochemical environment. The genetic and 

epigenetic disturbance of the natural balance in the concentration of the free and protein/

peptide bound L- and D- AAs in the brain (and or in peptide composition) leads to the 

misfolding of the D-AAs-containing proteins. This is incompatible with the evolutionary 

design of protein synthesis, degradation, and repair mechanisms including autophagy [478]. 

The interference of the spontaneous, enzyme-driven, and environmentally induced 

racemization can disrupt the functional structure of proteins leading to adverse effects on 

biological activity [244]. The exploration of the AAs racemization [28,266] and a protein 

aggregation within the bacterial cells opens an evolutionary perspective on human 
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pathology. The combination of new results suggests specific attention to AAs racemization. 

It is obvious that along with the functional proteins, most of the enzymes, including Ser-

proteases [202] and gamma-secretase [50,479] are involved in the process of AA 

racemization and APP proteolysis in proteins containing Ser and Asp residues. The fact that 

both residues are the subject of age dependent racemization allows one to assume an aging 

effect in enzyme activity. Indeed, it has been found that enzymes undergo age-related 

modifications which include structural changes and their specific affinity [480–482]. The 

prevalence of proteins receiving non-enzymatic PTM was found to be “increased with aging 

and is thought to be closely related to age-associated changes” [89]. Since 1975, the 

racemization of AAs in proteins has been used as a means of assessing the “age” of proteins 

[89,483]. However, in the current research, the aging of enzymes is not considered usually in 

respect to the process of racemization and protein aggregation.

7. Conclusions

The internal molecular environment of living systems is characterized by the specific 

structure–function relationships evident in the activity of signaling proteins, transporters, 

enzymes, DNA, and RNA. The discovery of a “shape-shifting” molecule (SSM) that is 

capable of interconversion among thousands of structural isomers has ascertained the 

dynamic nature of molecular chirality [14]. The stereoselective metabolism of chiral 

biomolecules emphasizes the significance of the effect of racemization in protein misfolding 

and aggregation.

We want in this overview to draw attention to the need to further examine the following 

points:

What is the mechanism linking the residue-specific protein racemization with aggregation?

How does racemization at specific sites contribute to protein aggregation, deposition, and 

toxicity associated with the major neurodegenerative disorders?

What are the functional consequences of site-specific racemization of A-beta, TAU, 

Huntingtin, α-synuclein, PrP, and MBP?

Do the residue-specific modulators (inhibitors and enhancers) of racemization have 

beneficial therapeutic effects?

How does the interplay between the enzymatic and spontaneous PTMs influence protein 

aggregation in neurodegenerative diseases [484].

For several decades, most treatments for AD have been targeted against the amyloid-β (Aβ) 

peptide. The frequently asked question is “why this strategy fails” [485–487]. The answer 

lies in the neglect of the link between AAs chirality, the stereochemistry of protein folding, 

neurodegeneration, and cognitive decline.

We are confident that the review of available information provides the conceptual and 

experimental background to understand the phenomena of protein aggregation indicating 

that racemization significantly contributes to brain pathology, and its integrated study would 
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reveal novel therapeutic procedures. The role of racemization in decline of cognitive 

functions should be studied in conjunction with the major cellular players of protein 

aggregation pathology. Among them, prior consideration should be given to the trans-

membrane receptors (NMDA, AMPA, mGlu5, α7, nAChRs, NGF, and apoE receptors 

(including receptors in neurons of the olfactory epithelium) [116]), glycoproteins [48], and 

cell membrane constituents (including cholesterol, and collagen).

The chiral cholesterol was shown to be a mediator of the stereoselective interaction between 

the cell membrane and proteins [488]. Therefore, the cholesterol of synaptic spine 

underlines the mechanism of glutamatergic neurotransmission. At the extracellular domain, 

the molecular mechanisms involved in the collagen aging and aggregation (cross-linking) 

are also significantly contributed by racemization [87,381]. The dynamic protein chirality, in 

our view, is a significant determinant of lateral asymmetry of neurotransmitters in the human 

brain [488].
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Abbreviations

AAs Amino Acids

Aβ Amyloid beta

APP Amyloid precursor protein

BACE1 β-secretase 1

BM Biomarker

D-Ala D-Alanine

D-AAs D-amino acids

D-Ser D-serine

EM Electron microscopy

ND Neurodegenerative diseases

TEM Transmission electron microscopy

SEM Scanning electron microscopy

VCD Vibrational circular dichroism

MPs Misfolded proteins

PHFs Paired helical filaments

PTMs Post-translational modifications
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PTM-Sys System of post translational modification

SerR Serine racemase

SSM Shape-shifting molecule
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Figure 1. 
Diversity of post-translational modifications. The spontaneous symmetry breaking in 

molecular systems resulting in the transfer from the state of thermodynamic equilibrium to 

the fluctuating non-equilibrium state () is associated with the origin of life. The spontaneous 

asymmetry breaking in the bio-molecular system resulting in the transfer from the dynamic 

non-equilibrium state to the state of thermodynamic equilibrium is associated with the decay 

of life. Part of image is adopted from [134].
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