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Abstract

Background

Higher maternal plasma glucose (PG) concentrations, even below gestational diabetes mel-

litus (GDM) thresholds, are associated with adverse offspring outcomes, with DNA methyla-

tion proposed as a mediating mechanism. Here, we examined the relationships between

maternal dysglycaemia at 24 to 28 weeks’ gestation and DNA methylation in neonates and

whether a dietary and physical activity intervention in pregnant women with obesity modified

the methylation signatures associated with maternal dysglycaemia.

Methods and findings

We investigated 557 women, recruited between 2009 and 2014 from the UK Pregnancies

Better Eating and Activity Trial (UPBEAT), a randomised controlled trial (RCT), of a lifestyle

intervention (low glycaemic index (GI) diet plus physical activity) in pregnant women with

obesity (294 contol, 263 intervention). Between 27 and 28 weeks of pregnancy, participants

had an oral glucose (75 g) tolerance test (OGTT), and GDM diagnosis was based on diag-

nostic criteria recommended by the International Association of Diabetes and Pregnancy

Study Groups (IADPSG), with 159 women having a diagnosis of GDM. Cord blood DNA

samples from the infants were interrogated for genome-wide DNA methylation levels using

the Infinium Human MethylationEPIC BeadChip array. Robust regression was carried out,
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adjusting for maternal age, smoking, parity, ethnicity, neonate sex, and predicted cell-

type composition. Maternal GDM, fasting glucose, 1-h, and 2-h glucose concentrations

following an OGTT were associated with 242, 1, 592, and 17 differentially methylated

cytosine-phosphate-guanine (dmCpG) sites (false discovery rate (FDR) � 0.05), respec-

tively, in the infant’s cord blood DNA. The most significantly GDM-associated CpG was

cg03566881 located within the leucine-rich repeat-containing G-protein coupled receptor

6 (LGR6) (FDR = 0.0002). Moreover, we show that the GDM and 1-h glucose-associated

methylation signatures in the cord blood of the infant appeared to be attenuated by the

dietary and physical activity intervention during pregnancy; in the intervention arm, there

were no GDM and two 1-h glucose-associated dmCpGs, whereas in the standard care

arm, there were 41 GDM and 160 1-h glucose-associated dmCpGs. A total of 87% of the

GDM and 77% of the 1-h glucose-associated dmCpGs had smaller effect sizes in the

intervention compared to the standard care arm; the adjusted r2 for the association of

LGR6 cg03566881 with GDM was 0.317 (95% confidence interval (CI) 0.012, 0.022) in

the standard care and 0.240 (95% CI 0.001, 0.015) in the intervention arm. Limitations

included measurement of DNA methylation in cord blood, where the functional signifi-

cance of such changes are unclear, and because of the strong collinearity between treat-

ment modality and severity of hyperglycaemia, we cannot exclude that treatment-related

differences are potential confounders.

Conclusions

Maternal dysglycaemia was associated with significant changes in the epigenome of the

infants. Moreover, we found that the epigenetic impact of a dysglycaemic prenatal

maternal environment appeared to be modified by a lifestyle intervention in pregnancy.

Further research will be needed to investigate possible medical implications of the

findings.

Trial registration

ISRCTN89971375.

Author summary

Why was this study done?

• The incidence of gestational diabetes is increasing worldwide, concurrent with a rise in obe-

sity with children born to mothers with gestational diabetes mellitus (GDM) having a height-

ened risk of obesity and metabolic disease, perpetuating an intergenerational cycle of

metabolic disease.

• High circulating levels of glucose in mothers with GDM have been suggested to trigger epi-

genetic changes (chemical modifications that affect gene activity and the amount of protein

produced from them) during development of the fetus, resulting in an increased susceptibil-

ity to metabolic disease in later life.
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• As little is known of the epigenetic changes induced by maternal GDM within mothers with

obesity, a high-risk population for GDM, we examined relationships between DNA methyla-

tion in infants born to mothers with obesity who developed GDM and those who did not

and the mother’s blood glucose concentration. We then examined whether a dietary and

physical activity intervention during pregnancy, designed to improve maternal glycaemia,

modified the DNA methylation changes in the infant associated with maternal GDM

exposure.

What did the researchers do and find?

• Using samples from the UK Pregnancies Better Eating and Activity Trial (UPBEAT), a ran-

domised controlled trial (RCT) of lifestyle intervention (low glycaemic index (GI) diet plus

physical activity) versus standard care in pregnant women with obesity, we investigated cord

blood DNA methylation levels from 557 newborn infants.

• Maternal GDM status and high circulating maternal glucose levels were associated with

modest changes in DNA methylation in the infants.

• The methylation changes observed in the infant associated with maternal GDM exposure

appeared to be reduced by the pregnancy lifestyle intervention.

What do these findings mean?

• These findings suggest that the impact of high maternal circulating glucose levels on DNA

methylation in the infant can be modified by a lifestyle intervention in pregnancy.

• Follow-up studies are needed to establish whether the reduction in DNA methylation

changes observed in infants from mothers with GDM undertaking the lifestyle intervention

is accompanied by improved health outcomes of the children in later life.

Introduction

Maternal obesity is a major risk factor for the development of gestational diabetes mellitus

(GDM) [1,2], which is defined as diabetes that develops during pregnancy. Concomitant with

the rising prevalence of maternal obesity, the incidence of GDM is increasing [3–5]. Women

with GDM are at high risk from pregnancy and delivery complications including infant

macrosomia, neonatal hypoglycaemia, and cesarean delivery [6]. Additionally, children born

to mothers with GDM have a heightened risk of obesity and metabolic disease, which may lead

to an intergenerational cycle of metabolic disease [7]. Recent studies have shown that maternal

GDM and dysglycaemia even below GDM thresholds are associated with adverse offspring

outcomes, including increased neonatal and childhood adiposity, altered neurodevelopment,

greater insulin resistance, and a lower disposition index in childhood, a key risk factor in the

development of type 2 diabetes (T2D) [8–14].

One of the mechanisms by which maternal GDM increases the risk of metabolic disease in

the child is suggested to be through stable modifications of the offspring’s epigenome as a

result of in utero exposure [15]. Epigenetic processes, which include DNA methylation,
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histone modification, and noncoding RNAs, induce heritable changes in gene expression with-

out a change in nucleotide sequence. DNA methylation can be influenced by both genotype

and the environment [16]. Substantial evidence from human epidemiological studies is accru-

ing to suggest that the in utero environment can alter the epigenome of the infant. Maternal

undernutrition [17] and micronutrient status [18], maternal obesity [19,20], and socioeco-

nomic status[21] have all been associated with changes in the methylation status of the off-

spring epigenome. Both candidate gene [22–24] and genome-wide studies [25–31] have

reported that GDM exposure is associated with significant changes in the infant’s or child’s

methylome, and a recent meta-analysis of 7 pregnancy cohorts identified differentially methyl-

ated regions (DMRs) associated with GDM within OR2L13 and CYP2E1 [32]. However, the

majority of these studies have focussed on GDM versus no GDM, rather than the continuous

relationship between maternal glucose levels and DNA methylation [33,34], and none has

studied the GDM-associated signal within a high-risk population of women with obesity; thus,

the relationship between the degree of maternal dysglycaemia and the contribution of mater-

nal post-challenge/postprandial glucose excursions to the infant’s methylation signature in this

high-risk group remains unknown.

To date, direct evidence linking maternal GDM exposure to adverse health outcomes in the

offspring through an epigenetic mechanism is lacking, as most studies have been observational

[25,27,28]. Thus, there is a need for appropriately designed randomised control intervention

studies that examine the causal link between dysglycaemia and induced changes in the fetal

epigenome. Lifestyle interventions, particularly those designed to improve glycaemic control

in women with GDM or those at risk of GDM, offer a promising strategy to improve outcomes

for the mother and child. The UK Pregnancies Better Eating and Activity Trial (UPBEAT) is

the largest randomised controlled trial (RCT) of a complex lifestyle intervention (low glycae-

mic index (GI) diet, reduced saturated fat intake, and increased physical activity) in pregnant

women with obesity and has shown improvement in certain maternal and infant outcomes

[35,36]. Obesity is a major risk factor for GDM[5], and 26% of the women in this study devel-

oped GDM. Although the lifestyle intervention did not prevent the 2 primary outcomes of the

trial—the incidence of GDM and large-for-gestational-age (LGA) infants, it reduced maternal

glycaemic load, saturated fat intake, gestational weight gain and adiposity, and improved the

maternal metabolome [35,37]; in the infants, adiposity at age 6 months was reduced [36].

Here, utilising samples from the UPBEAT trial, we sought to (1) identify the DNA methylation

changes in cord blood associated with maternal GDM, as well as relationships with fasting,

and post-challenge 1-h and 2-h glucose concentrations; and (2) investigate whether a lifestyle

intervention in pregnancy focussed on improving maternal glycaemic control modifies the

methylation signature in the infant associated with maternal GDM or dysglycaemia.

Methods

Design of the intervention study

The present study used samples from the UPBEAT RCT (isrctn.org 89971375). Details of the

study design have been reported previously [35]. Briefly, UPBEAT was a multicentre (8 inner-

city National Health Service (NHS) Trust Hospitals in the United Kingdom—London (3 cen-

tres), Bradford, Glasgow, Manchester, Newcastle, and Sunderland) RCT, designed to test the

effectiveness of a complex dietary and physical activity intervention in preventing GDM in

women with obesity and reducing the incidence of LGA infants [35]. Women with underlying

medical conditions and those prescribed metformin were excluded. The trial comprised 1,555

women�16 years of age, recruited between 2009 and 2014; all had a prepregnancy BMI�30

kg/m2 and a singleton pregnancy. Participants were randomised between 15+0 and 18+6 weeks
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gestation to either a lifestyle intervention (low GI diet, reduced saturated fat intake, and

increased physical activity) or standard antenatal care. The primary outcomes of GDM and

LGA did not differ significantly between the control and intervention arms, but there were

improvements in some predefined maternal secondary outcomes in the intervention group,

including reduced dietary glycaemic load, gestational weight gain, maternal sum-of-skinfold

thicknesses, and increased physical activity [35,36], as well as an improved metabolome [37].

Ethics statement

All aspects of the trial, including the analyses in the present study, were approved by the NHS

Research Ethics Committee (UK Integrated Research Application System; reference 09/

H0802/5), and all participants provided informed written consent, including women aged 16

and 17 using Fraser guidelines. This study is reported according to the “Strengthening the

Reporting of Observational Studies in Epidemiology (STROBE)” guidelines (S1 Text).

Clinical procedures

Clinical information was ascertained at time point 1 (15+0 to 18+6 weeks’ gestation). The trial

protocol required an oral glucose tolerance test (OGTT) at 27+0 to 28+6 weeks’, but for this

study, a clinically pragmatic approach was adopted with OGTTs at 23+2 to 30+0 weeks’ (mean

27+5) included. Diagnosis of GDM was according to International Association of Diabetes and

Pregnancy Study Groups (IADPSG) criteria (fasting glucose�5.1 mmol/l and/or 1-h�10.0

mmol/l and/or 2-h�8.5 mmol/l in response to a 75 g oral glucose load) [38,39]. Blood was

kept on ice, processed within 2 h and stored at −80˚C. Women with a positive diagnosis of

GDM were treated using standard protocols, with GDM treatment predicated on the severity

of the hyperglycaemia, beginning with dietary advice, followed by metformin with the addition

and/or replacement with insulin if control was not achieved. There were no significant differ-

ences in the number of women receiving each treatment regime in the control and interven-

tion arms of the study.

DNA extraction

Genomic DNA (gDNA) was extracted from the buffy coat of umbilical cord blood samples

using the QIAamp Blood DNA Mini Kit (Qiagen, UK). The quality of the gDNA was assessed

by agarose gel electrophoresis, and the quantity of gDNA was checked on the NanoDrop ND-

1000 (ThermoFisher Scientific, United States of America).

Infinium Human OmniExpress genotype arrays

Single nucleotide polymorphism (SNP) genotyping was carried using Illumina Human

OmniExpress 24v1.2 (Illumina, California, USA) at Edinburgh Clinical Research Facility, with

imputation carried out using the EAGLE2 imputation pipeline (https://imputation.sanger.ac.

uk) with the UK10K [40] and 1000 Genomes Phase 3 [41] reference panels.

Infinium Human MethylationEPIC BeadChip array

DNA methylation using the Infinium Human MethylationEPIC BeadChip array was used to

interrogate DNA methylation in 608 buffy coat samples, which included 14 technical repli-

cates. These represented all participants with buffy coat samples available. A total of 1 μg of the

gDNA was treated with Sodium Bisulfite using Zymo EZ DNA Methylation-Gold Kit (Zymo

Research, Irvine, California, USA, D5007), and processing of the HumanMethylation850
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(Infinium Methylation 850K; Illumina, California, USA) platform was carried out by the Cen-

tre for Molecular Medicine and Therapeutics (CMMT) (http://www.cmmt.ubc.ca).

Infinium Human MethylationEPIC BeadChip array data processing

Infinium 850K data were processed using the Bioconductor package minfi [42] in R (version

3.4.2). Beta-mixture quantile (BMIQ) normalisation was applied to remove array biases and

correct for probe design. Probes with a detection p-value >0.01 (n = 12,165) and beadcount

<3 (n = 297) were removed from the dataset. Cytosine-phosphate-guanine (CpGs) known to

cross hybridise to other locations in the genome [43] (n = 14,759), coinciding with SNPs

[43] (n = 77,261), aligning to the sex chromosomes (n = 17,063), and non-CpG probes

(n = 2,905) were also removed from the dataset. Probes with an absolute methylation range

<10% were removed from the dataset, leaving 387,569 probes for differential methylation

analysis. In total, 14 duplicate samples were included, for which the Euclidean distance was

calculated, and hierarchical clustering, using complete linkage as implemented in the

“hclust” function in R, was used. This grouped duplicate pairs together. The sex of samples

were predicted using the “getSex” function, and 14 samples with discrepancies in assigned

and predicted sex were removed from the dataset. Data were further assessed by visualisation

of methylation density plots and calculation of median absolute deviation (MAD) scores.

Duplicates were removed after normalisation, but before inference, the duplicate with the

lowest MAD score was removed. A total of 22 samples showed aberrant methylation densi-

ties, and MAD scores lower than −5 were removed from the analysis, while 6 samples

showed aberrant grouping on a multidimensional scaling (MDS) plot, separated by infant

sex, and were removed from subsequent analysis. This resulted in 557 samples that were

taken forward for further analysis. ComBat was applied to remove chip effects [44], and the

batch-corrected methylation values used for downstream analysis. Model assumptions were

assessed by visual inspection of quantile–quantile (Q–Q) plots, p-value histograms, and cal-

culation of genomic inflation factor lambda (λ) values, which was below 1.2 for all analyses.

DNA methylation microarray data have been deposited into Gene Expression Omnibus

under accession no. GSE141065.

Infinium Human MethylationEPIC BeadChip array data analysis

To adjust for differences in cellular heterogeneity, a reference-based prediction of the cell com-

position was carried out using the algorithm by Houseman and colleagues and the FlowSorted.

CordBlood.450k package in R that utilises the reference for cord blood cell compositions esti-

mated by Bakulski and colleagues [45,46]. Regression models using limma [47] were run with

methylation as the outcome variable. We used the directed acyclic graph (DAG) approach [48]

to select the covariates from a list compiled from the literature. The covariates selected by

DAG and included in all models were maternal age and the predicted values for B cells, CD4 T

cells, CD8 T cells, granulocytes, monocytes, natural killer cells, and nucleated red blood cell

composition as continuous variables; and smoking (yes/no), ethnicity (white/African/Asian/

other), parity (primi-/multiparous), and neonate sex (male/female). The analysis was con-

trolled for multiple testing with the Benjamini–Hochberg adjustment for false discovery rate

(FDR). Sensitivity analyses were carried out to determine the effect of baseline maternal BMI,

the intervention and gestational age at OGTT on any genome-wide methylation changes

observed by including these variables individually as covariates in the regression models.

Methylation QTL (mQTL) analysis was carried out using the Genotype-Environment-Methyl-

ation (GEM) package in R [16].
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Network and gene ontology enrichment

Protein–protein interaction (PPI) networks were examined using the Search Tool for the

Retrieval of Interacting Genes/Proteins (STRING). Genes associated with a differentially

methylated CpG (dmCpG) (FDR < 0.1) were entered into STRING and visualised in Cytos-

cape. The properties of the PPI network were calculated under default parameters, and only

connected nodes were retained for further analysis. Large networks were further segmented

using the Molecular Complex Detection (MCODE) algorithm in Cytoscape using default

parameters. Enriched gene ontology (GO) terms were determined using the Biological Net-

works Gene Ontology tool (BiNGO) [49] to examine overrepresented GO terms. To account

for the multiple CpGs per gene, methlglm from the methylGSA [50] package in R was used to

investigate enriched GO terms, to compare to the STRING/BiNGO analysis.

Enrichment of dmCpGs among chromatin enhancer states and histone

modifications

We obtained the ChIP-sequencing (ChIP-seq) peak regions in the broadPeak format for pro-

cessed Encyclopedia of DNA Elements (ENCODE) ChIP-seq experiments in human umbilical

vein endothelial cells (HUVECs) as a surrogate for cord blood from the ENCODE data portal

(https://www.encodeproject.org). The expanded 18-state model for HUVECs was obtained

from the Epigenome Roadmap. We assessed the enrichment of dmCpGs among the chromatin

states and histone modifications using Fisher exact tests, with all Illumina Infinium Human-

Methylation 850 BeadChip CpGs as a background.

Quantitative DNA methylation validation analysis by pyrosequencing

A total of 1 μg of gDNA was bisulfite-converted using the EZ DNA Methylation Gold Kit

(Zymo Research) according to the manufacturer’s protocol. PCR primers specific for bisulfite-

converted DNA were designed using the PyroMark Assay Design Software (Qiagen). Primer

sequences are shown in Table A in S1 Data. Quantitative DNA methylation analysis was car-

ried out by pyrosequencing.

Statistical analysis

All statistical analyses were carried out in R (version 3.4.2). Missing data were handled on a case-by-

case basis, using a listwise deletion strategy. The hypergeometric distribution probability test was used

to test the significance of the overlap between dmCpGs associated with GDM and different measures

of maternal dysglycaemia. Fisher exact tests were used to test the enrichment of dmCpGs among the

different histone modifications and chromatin enhancer states. Linear models were fitted to the pyro-

sequencing data adjusting for the following covariates: maternal age, smoking, ethnicity, parity, neo-

nate sex, and the predicted values for B cells, CD4 T cells, CD8 T cells, granulocytes, monocytes,

natural killer cells, and nucleated red blood cell composition. Regression diagnositics (Q–Q plots, het-

eroscedasticity, and Cook’s distance and residuals) were checked for the top 5 dmCpGs in each epi-

genome-wide association study (EWAS) analysis and for all pyrosequencing regressions. The analysis

plan used in the design of this study is provided as a supporting information file (S2 Text).

Results

Participant characteristics

Table 1 shows characteristics of the 557 participants; women from the UPBEAT study for

whom cord blood samples were available. Compared to those who did not develop GDM,
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women diagnosed with GDM (n = 159) were older, had a higher BMI, and were more likely to

be multiparous. As expected, those who developed GDM had higher fasting plasma glucose

(FPG) concentrations, together with increased plasma glucose (PG) concentrations at 1-h (1-h

PG) and 2-h (2-h PG) during the OGTT. Predicted cell composition of the cord blood showed

that, compared to women without GDM, offspring of women who developed GDM had higher

proportions of B lymphocytes and monocytes in cord blood. Comparison of the participants

in this study to those without cord blood samples revealed that the mothers were on average 7

months older (p = 0.02), more likely to have GDM (29% versus 23%, p = 0.01), less likely to be

multiparous (52% versus 59%, p = 0.01), and had a lower ethinic diversity (p< 0.001) (Table B

in S1 Data).

Identification of dmCpGs in cord blood associated with maternal GDM

and dysglycaemia

DNA from 557 cord blood samples were interrogated for genome-wide DNA methylation lev-

els using the Infinium Human MethylationEPIC BeadChip array. Maternal GDM was

Table 1. Participant characteristics.

No GDM (n = 383) GDM (n = 159) All (n = 557†)

Neonate sex Male (%) 56.7 47.8 54.1

Maternal ethnicity White (%) 75.7 64.2 72.3

Asian (%) 5.0 5.7 5.2

Black (%) 15.9 22.0 17.7

Other (%) 3.4 8.2 4.8

Intervention Intervention (%) 46.7 48.4 47.2

GDM treatment No treatment (%) NA 13.2 NA

Diet only (%) 31.4

Metformin (%) 20.8

Insulin (%) 14.5

Insulin + metformin (%) 13.8

Parity Primiparous (%) 50.9 40.9 48.0

Smoking Smoker (%) 17.2 15.1 16.6

Maternal BMI (kg/m2) 36.13 ± 4.5 37.27 ± 5.11 36.47 ± 4.74

Maternal age (years) 30.38 ± 5.47 32.28 ± 5.04 30.95 ± 5.42

Fasting insulin (mU/ml) 35.5 ± 42.3 (missing n = 7) 40.3 ± 52.7 (missing n = 20) 36.9 ± 45.5 (missing n = 34)

Fasting glucose (mmol/L) 4.5 ± 0.3 5.3 ± 0.6 4.8 ± 0.6 (missing n = 8)

1-h glucose (mmol/L) 7.3 ± 1.41 (missing n = 22) 10.1 ± 2.0 (missing n = 5) 8.1 ± 2.1 (missing n = 36)

2-h glucose (mmol/L) 5.5 ± 1.1 (missing n = 1) 7.0 ± 1.7 (missing n = 1) 6.0 ± 1.5 (missing n = 10)

Predicted cord blood cell proportions
B cell 0.11 ± 0.05 0.13 ± 0.06 0.11 ± 0.05

CD4 T cells 0.14 ± 0.07 0.13 ± 0.08 0.13 ± 0.08

CD8 T cells 0.13 ± 0.04 0.12 ± 0.05 0.12 ± 0.04

Granulocytes 0.45 ± 0.13 0.43 ± 0.14 0.44 ± 0.13

Monocytes 0.10 ± 0.04 0.11 ± 0.05 0.10 ± 0.04

Natural killer cells 0.01 ± 0.03 0.02 ± 0.03 0.02 ± 0.03

Nucleated red blood cells 0.10 ± 0.07 0.11 ± 0.08 0.10 ± 0.07

†A total of 7 women were diagnosed as having GDM at their hospital choice, although under IADPSG, definition were not classed as having GDM. Therefore, these 7

samples were removed from the GDM analysis for consistency in the statistical analysis.

GDM, gestational diabetes mellitus; IADPSG, International Association of Diabetes and Pregnancy Study Groups.

https://doi.org/10.1371/journal.pmed.1003229.t001
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associated (Benjamini–Hochberg FDR adjusted p< 0.05) with altered methylation status of

242 CpG loci in cord blood (Tables 2 and 3 and Table C in S1 Data, Figs 1A, 1B and 2C), of

which 7 remained significant after Bonferroni adjustment for multiple testing. The top 2

dmCpGs associated with maternal GDM were cg03566881, located within the body of the leu-

cine-rich repeat-containing G-protein coupled receptor 6 (LGR6) gene (Fig 1D), and

cg16536918, located within 200 bp of the transcription start site (TSS) of the arginine vasopres-

sin (AVP) gene (Table 3). In total, 72.7% of the dmCpGs showed hypermethylation in those

diagnosed with GDM, with an overrepresentation of dmCpGs in the OpenSea regions (Fig

1C). Adjustment for baseline maternal BMI in these analyses led to a small increase in the

number of dmCpGs associated with maternal GDM status to 282 dmCpGs (adjusted p-value

<0.05), with an 81.6% overlap (p-value < 1 × 10−308) between the GDM-associated dmCpGs

with and without adjustment for maternal BMI (Table D in S1 Data). Adjustment for gesta-

tional age at OGTT resulted in 288 dmCpGs (FDR < 0.05) associated with GDM, with 86% of

the intial 242 GDM-associated dmCpGs remaining significantly associated with GDM after

gestational age adjustment.

Different pathophysiological pathways are implicated in abnormal fasting and post-chal-

lenge glucose concentrations at 1 h versus 2 h; to gain insight into whether these might induce

differential effects on the infants epigenome, we analysed cord blood DNA methylation with

respect to continuous measures of maternal FPG, 1-h PG, and 2-h PG concentrations post-

OGTT. There was 1 dmCpG associated with maternal FPG, 592 dmCpGs associated with 1-h

PG (Figs 1E, 1F and 2C), and 17 associated with 2-h PG (Tables 2 and 3 and Tables E and F in

S1 Data). The dmCpG associated with FPG was cg03750061, located in the body of the PDZ

domain containing 8 gene (PDZD8); for 1-h PG, the top 2 dmCpGs were cg0896944, located

within an intergenic region on chromosome 17 (Fig 1H), and cg08960443, located within

1,500 bp of the TSS of the transmembrane protein 210 (TMEM210) gene (Table 3); for 2-h PG,

the top 2 dmCpGs were located in the body of the proteasome 26S subunit, non-ATPase 12

(PSMD12) gene (cg07552638) and the GTP cyclohydrolase 1 (GCH1) gene (cg01899130).

There was an overrepresentation of dmCpGs associated with 1-h PG in the OpenSea regions

(Fig 1G), with 102 of the 1-h PG-associated dmCpGs overlapping with the GDM-associated

dmCpGs (p = 8.76 × 10−222). There was 1 dmCpG associated with both maternal GDM and

FPG and 4 dmCpGs associated with both GDM and 2-h PG (Fig 2A, Table G in S1 Data). Fur-

thermore, there was significant overlap between the 1-h PG (58%), 2-h PG (82%), and FPG

(100%) dmCpGs with the dmCpGs after additional adjustment of the regression models for

gestational age at OGTT (Table H+I in S1 Data).

As there is accumulating evidence for sex differences in DNA methylation changes associ-

ated with adverse prenatal exposures [51–54], we explored differences in the methylation sig-

natures associated with GDM exposure in male versus female infants (Table J in S1 Data). In

Table 2. Summary table of EWAS analysis.

Phenotype dmCpGs (FDR� 0.05)

No adjustment for intervention (n = 557) Adjustment for intervention (n = 557) Control arm (n = 294) Intervention arm (n = 263)

GDM 242 254 41 0

FPG 1 1 1 0

1-h PG 592 704 160 2

2-h PG 17 18 78 1

dmCpG, differentially methylated CpG; EWAS, epigenome-wide association study; FPG, fasting plasma glucose; GDM, gestational diabetes mellitus; PG, plasma

glucose.

https://doi.org/10.1371/journal.pmed.1003229.t002
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the males, 4 dmCpGs were associated with GDM and 75 dmCpGs with 1-h PG (FDR< 0.05). In

females, there were no dmCpGs associated with GDM, and 112 dmCpGs associated with 1-h PG

(FDR< 0.05). There was no overlap between the dmCpGs associated with 1-h PG in the males

and females. Similarly, examining the top 250 dmCpGs associated with GDM and 1-h PG in the

males and females, there was no overlap between the GDM-associated dmCpGs, and only 3/250

(1.2%) of the 1-h PG-associated dmCpGs in common between male and female infants.

Table 3. Top 10 dmCpGs with an FDR of�0.05 in the infant cord blood associated with maternal GDM, FPG, 1-h, and 2-h PG.

Probe logFC Average methylation Adjusted p-value Gene

GDM

cg03566881 0.0135 0.8733 0.0002 LGR6

cg16536918 0.0226 0.6758 0.0010 AVP

cg16063640 −0.0159 0.3656 0.0025

cg12148585 0.0218 0.4922 0.0056 KLF7

cg03750061 0.0170 0.6931 0.0056 PDZD8

cg08726900 0.0242 0.4018 0.0056 ANKRD11

cg08450478 0.0187 0.7011 0.0059 PTGFR

cg11646706 0.0280 0.5653 0.0066 ACOX2

cg13608623 0.0218 0.6277 0.0066 PBX1

cg18317026 0.0184 0.8285 0.0066 UNC13C

Fasting glucose levels

cg03750061 0.0148 0.6930 0.0047 PDZD8

1-h glucose levels

cg26027170 0.0036 0.3015 0.0041

cg08960443 0.0056 0.4756 0.0060 TMEM210

cg14656043 0.0044 0.3289 0.0060 CREM

cg10020892 0.0045 0.1443 0.0060 BCL9

cg18422587 0.0046 0.1130 0.0060

cg19736654 −0.0019 0.8336 0.0060 TRIP10

cg16581631 0.0015 0.9176 0.0066

cg25049210 0.0084 0.6921 0.0066

cg01346147 0.0030 0.8027 0.0066

cg06356306 0.0036 0.7917 0.0066 SNAP91

2-h glucose levels

cg07552638 0.0048 0.3658 0.0395 PSMD12

cg01899130 0.0105 0.4350 0.0395 GCH1

cg22407111 0.0057 0.3213 0.0395 PPP2R2C

cg00327947 0.0045 0.3136 0.0395

cg07495470 0.0035 0.5169 0.0395 POLDIP3

cg23108535 0.0069 0.5687 0.0395 MBNL1

cg07302471 0.0055 0.8310 0.0395 RAD54L2

cg15617775 0.0039 0.1476 0.0395 MAD1L1

cg18724135 0.0022 0.9237 0.0408

cg02868516 0.0041 0.5936 0.0408 RPA1

Regression models included maternal age, smoking, ethnicity, parity, neonate sex, and the predicted values for B cells, CD4 T cells, CD8 T cells, granulocytes,

monocytes, natural killer cells, and nucleated red blood cell composition. p-values were adjusted for multiple testing using the Benjamini–Hochberg correction. Average

methylation represents the average beta value across all samples.

dmCpG, differentially methylated CpG; FDR, false discovery rate; FPG, fasting plasma glucose; GDM, gestational diabetes mellitus; logFC, log fold change; PG, plasma

glucose.

https://doi.org/10.1371/journal.pmed.1003229.t003
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Fig 1. Differential methylation results with respect to GDM and 1-h PG. (A+E) Manhattan plots highlighting GDM and 1-h PG-associated dmCpGs. The black line

represents p = 1 × 10−5, while the red line represents Bonferroni p = 1.29 × 10−7. (B+F) Volcano plot of the methylation results with respect to GDM and 1-h PG levels,

with significant dmCpGs highlighted in red. (C+G) Pie chart showing the proportions of dmCpGs showing increased or decreased methylation (left panel) and showing

the proportions of the locations relative to CpG islands (right panel). (D+H) Plot of the top dmCpG associated with GDM (cg03566881) and 1-h PG (cg26027170) as
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GDM-associated dmCpGs are enriched in active enhancer regions and

regions overlapping H3K4 methylation/H3K27 acetylation

To investigate the functional significance of the methylation changes associated with maternal

dysglycaemia, we examined the chromatin landscape surrounding the GDM and dysglycae-

mia-associated dmCpGs, using the ENCODE Hidden Markov Model (ChromHMM). There

was a significant enrichment of GDM- and 1-h PG-associated dmCpGs overlapping active/

weak enhancers, DNase hypersensitivity sites, as well as regions of H3K4me1/3, H3K79me2,

H3K27, and H3K9 acetylation, with an underrepresentation in heterochromatin and quiescent

inactive regions. The 1-h PG-associated dmCpGs were also enriched in regions overlapping

H3K4me2, H4K20me1, and H2A.z modification, whereas 2-h PG-associated dmCpGs were

enriched only at regions overlapping H3K79me2 modification (S1 Fig).

Maternal GDM and dysglycaemia-associated dmCpGs were enriched in

networks associated with cell signalling and cell division

To determine whether sites of differential methylation were associated with specific gene networks,

the 665 GDM-associated dmCpGs at an adjusted p-value<0.1 were inputted into STRING to gen-

erate a PPI network (Fig 3A). Of 665 dmCpGs, 318 were associated with a gene. There was signifi-

cant biological connection between the genes (p = 0.00161), with 23 significant GO terms

overrepresented in the PPI network (FDR< 0.05), with the top term being intracellular signal

transduction (FDR = 1.68 × 10−4). To determine key modules, the network was subdivided

into clusters using the MCODE algorithm, with 8 individual clusters identified. The significant

GO terms associated with the clusters included multi-organism process (FDR = 1.70 × 10−3),

chromatin remodelling complex (FDR = 1.70 × 10−7), chromosome, centromeric region

(FDR = 2.76 × 10−7), antigen processing and presentation (FDR = 1.20 × 10−6), DNA repair

(FDR = 1.55 × 10−6), and positive regulation of gene expression (FDR = 5.45 × 10−6) (Fig 3,

Table 4). Network analysis for 1-h PG-associated dmCpGs (Table 4) showed an overrepresenta-

tion of GO terms associated with transcription cofactor activity (FDR = 3.03 × 10−6), histone

deacetylase complex (FDR = 1.45 × 10−6), ligase activity (FDR = 1.99 × 10−6), integral to plasma

membrane (FDR = 3.55 × 10−6), DNA metabolic process (FDR = 4.61 × 10−6), and regulation of

transcription (FDR = 2.53 × 10−6) (Fig 3, Table 4). FPG and 2-h PG dmCpGs were not enriched

for specific GO terms.

In addition, to adjust for the bias of multiple CpGs per gene, the GDM-associated dmCpGs

were also inputted into methylglm function from the methylGSA package in R. MethylGSA

analysis showed similar pathways enriched, with the GDM-associated dmCpGs showing

enrichment for the GO terms cell surface receptor signalling pathway (FDR = 0.00082) and

cytosol (FDR = 0.00362), while the 1-h PG-associated dmCpGs were enriched for the GO terms

nuclear part (FDR = 4.91 × 10−10) and nucleoplasm (FDR = 1.14 × 10−9) (Table K in S1 Data).

Maternal dysglycaemia is associated with differentially methylated regions

in the infants’ methylome

DMRs associated with maternal GDM exposure and dysglycaemia were identified using

DMRcate (Tables L–N in S1 Data). GDM was associated with 47 DMRs, FPG with no DMRs,

1-h PG with 114 DMRs, and 2-h PG with 5 DMRs (Stouffer�0.05). Of the GDM-associated

measured on the EPIC. CpG, cytosine-phosphate-guanine; dmCpG, differentially methylated CpG; FDR, false discovery rate; GDM, gestational diabetes mellitus; logFC,

log fold change; PG, plasma glucose.

https://doi.org/10.1371/journal.pmed.1003229.g001

PLOS MEDICINE GDM methylation signature attenuated by lifestyle intervention

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003229 November 5, 2020 12 / 29

https://doi.org/10.1371/journal.pmed.1003229.g001
https://doi.org/10.1371/journal.pmed.1003229


Fig 2. Visualisation of the overlap of dmCpGs between GDM and the continuous glucose measures. (A) Venn diagram of the overlap of the

dmCpGs (FDR< 0.05) associated with maternal GDM exposure and fasting, 1-h and 2-h PG levels. (B) Venn diagram of the overlap of the

DMRs associated with maternal GDM exposure, 1-h and 2-h PG. There were no DMRs associated with fasting glucose levels. (C) RCircos plot

showing the distribution in the genome of the top 50 dmCpGs associated with GDM and 1-h PG levels. Track 1 (outer track) shows chromosome

number, and track 2 shows the chromosome banding. Track 3 highlights the GDM-associated dmCpGs. Manhattan plots are shown for GDM

(track 4) and 1-h PG (track 5) analysis, with dmCpGs FDR< 0.05 shown in red. DMRs associated with GDM (track 6) and 1-h glucose levels

(track 7). Overlapping dmCpG names, between GDM and 1-h glucose, shown on the inside, with the innermost track highlighting whether the

association between the dmCpGs and GDM are positive (red) or negative (blue). dmCpG, differentially methylated CpG; DMR, differentially

methylated region; FDR, false discovery rate; GDM, gestational diabetes mellitus; PG, plasma glucose.

https://doi.org/10.1371/journal.pmed.1003229.g002
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DMRs, 20 of the 47 DMRs also had significant dmCpGs associated with GDM overlapping the

reported DMR location (Table O in S1 Data).

Fig 3. PPI networks and clusters. Networks associated with (A) GDM and (C) glucose levels 1-h post-OGTT and the top 2 modules associated

with (B) GDM dmCpGs and (D) 1-h PG levels dmCpGs. dmCpG, differentially methylated CpG; GDM, gestational diabetes mellitus; OGTT, oral

glucose tolerance test; PG, plasma glucose; PPI, protein–protein interaction.

https://doi.org/10.1371/journal.pmed.1003229.g003
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Table 4. GO terms associated with GDM and 1-h PG clusters.

GO

ID

FDR Description Genes in test set

GDM cluster 1

51704 1.70E-03 multi-organism process STAT5B|PTGFR|MDFIC|IDE|AVP|ESR1|B2M|TRIM22

60089 2.67E-03 molecular transducer activity GNAO1|STAT5B|PTGFR|PLCB4|GNG7|MLNR|HLA-DRA|IDE|AVP|ANTXR2|

ESR1

GDM cluster 2

775 2.76E-07 chromosome, centromeric region RCC2|MAD1L1|NSL1|CLASP2

280 7.10E-07 nuclear division RCC2|MAD1L1|NSL1|CLASP2

GDM cluster 3

19882 1.20E-06 antigen processing and presentation HLA-DMA|TAP2|TAP1|HLA-DRA|B2M

2474 9.08E-05 antigen processing and presentation of peptide antigen via

MHC class I

TAP2|TAP1|B2M

GDM cluster 4

10628 5.45E-06 positive regulation of gene expression EBF1|PRDM1|TCF3|FGF2|ETS1|FOXO1

10604 3.92E-05 positive regulation of macromolecule metabolic process EBF1|PRDM1|TCF3|FGF2|ETS1|FOXO1

GDM cluster 5

16043 2.04E-02 cellular component organisation SYK|FNBP1|TRIP10|BAIAP2|VAV2

30031 2.04E-02 cell projection assembly BAIAP2|VAV2

GDM cluster 6

6281 1.55E-06 DNA repair GEN1|RAD51B|MGMT|MSH3|MLH3

6974 3.12E-06 response to DNA damage stimulus GEN1|RAD51B|MGMT|MSH3|MLH3

GDM cluster 7

16585 1.28E-07 chromatin remodelling complex NCOR2|HDAC4|SMARCD3|ESR1

8134 1.70E-04 transcription factor binding NCOR2|HDAC4|SMARCD3|ESR1

1-h glucose

cluster 1

118 1.45E-06 histone deacetylase complex NCOR2|HDAC10|CSNK2A1|CHD3|HDAC9|PHF21A

16585 6.28E-05 chromatin remodelling complex NCOR2|HDAC10|CSNK2A1|CHD3|HDAC9|PHF21A

1-h glucose

cluster 2

16563 2.69E-06 transcription activator activity NR5A1|NCOA2|RBM14|SMARCD3|MED24|MAML2|TBL1XR1|MAML3|

MED26|FOXO1

3713 2.69E-06 transcription coactivator activity NR5A1|NCOA2|RBM14|SMARCD3|MED24|MAML2|MAML3|MED26

1-h glucose

cluster 4

6259 4.61E-04 DNA metabolic process GEN1|RAD51B|PAPD7|ERCC4|RPA1|DNTT|NUP98|MLH3

6996 7.52E-04 organelle organisation ACTA1|PAPD7|ERCC4|LMNA|H3F3A|RPA1|EHMT1|PTK2B|NUP98|JARID2|

MLH3

1-h glucose

cluster 5

5887 3.55E-05 integral to plasma membrane CHRNB4|ADCY9|ADORA3|CCRL2|CTLA4|STOM|PTH2R|ADRB1|PTH1R|

IL12RB1|CCR5

31226 3.55E-05 intrinsic to plasma membrane CHRNB4|ADCY9|ADORA3|CCRL2|CTLA4|STOM|PTH2R|ADRB1|PTH1R|

IL12RB1|CCR5

1-h glucose

cluster 7

3712 3.03E-07 transcription cofactor activity NCOA2|RBM14|MED24|MAML2|TBL1XR1|MAML3|MED26

3713 3.22E-07 transcription coactivator activity NCOA2|RBM14|MED24|MAML2|MAML3|MED26

1-h glucose

cluster 9

(Continued)
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DMRs within Pleckstrin Homology Domain Containing B1 (PLEKHB1) and Zinc Finger

MYND-Type Containing 8 (ZMYND8) were associated with GDM, 1-h PG, and 2-h PG levels,

while DMRs within the Bromodomain Containing 2 (BRD2) and TMEM210 genes were asso-

ciated with both 1-h and 2-h PG levels; 26 DMRs were associated with both GDM and 1-h PG

levels, including Thymocyte Selection Associated Family Member 2 (THEMIS2), 1-phosphati-

dylinositol 4,5-bisphosphate phosphodiesterase eta-1 (PLCH1), AVP, spondin 1 (SPON1), and

oxytocin (OXT) genes (Table P in S1 Data, Fig 2B).

Validation

Sodium bisulfite pyrosequencing was used to validate AVP cg16536918 (Fig 4A–4D) and

LGR6 cg03566881, the top hits associated with GDM; both CpGs were also associated with 1-h

PG (Table 5). Consistent with the findings from the array, pyrosequencing showed that meth-

ylation of AVP cg16536918 and LGR6 cg03566881 were significantly associated with GDM

exposure (AVP cg16536918, r2 = 0.334, p = 0.012; LGR6 cg03566881, r2 = 0.263, p = 0.049) and

1-h PG (AVP cg16536918, r2 = 0.343, p = 0.0034; LGR6 cg03566881, r2 = 0.272, p = 0.019). For

both CpGs, there were strong correlations between the methylation levels of the CpGs on the

EPIC array and the pyrosequencer (AVP cg16536918: ρ = 0.7944, p< 2.2 × 10−16; LGR6
cg03566881: ρ = 0.5093, p< 2.2 × 10−16) (Fig 4A–4D).

In addition, a CpG within the BRD2 DMR (Fig 4E–4H), which was associated with both

1-h and 2-h PG levels, was validated; cg26953232 methylation was associated with 1-h PG (r2 =

0.273, p = 0.013) and strongly correlated with the methylation levels measured on the EPIC

array (ρ = 0.6785, p< 2.2 × 10−16). In total, 3 flanking CpGs not covered on the EPIC array

were also measured on the pyrosequencer, and all 3 were associated with 1-h PG (CpG2 r2 =

0.135, p = 0.047; CpG3 r2 = 0.204, p = 0.029; CpG4 r2 = 0.134, p = 0.037) (Fig 4E and 4F). All

the assays analysed by pyrosequencing validated the results obtained from the array.

The effect of the lifestyle intervention on the methylation signature

associated with maternal dysglycaemia and GDM

The UPBEAT dietary and physical activity intervention did not reduce the incidence of GDM

or the number of LGA infants, but improvements in maternal diet, physical activity, and a

decrease in skinfold thickness and gestational weight gain [35] and improved metabolome

[37] was observed in the mothers, while in the infants, there was a reduction in subscapsular

skinfold thickness z-score at age 6 months [36]. Here, we found that the intervention itself was

not associated with significant changes in DNA methylation (FDR� 0.05) in cord blood, but

examination of the modifying effects of the intervention on the methylation signatures

Table 4. (Continued)

GO

ID

FDR Description Genes in test set

16874 1.99E-05 ligase activity ZNRF1|HERC3|FBXW11|SIAH2|FBXO11

16881 5.96E-05 acid-amino acid ligase activity HERC3|FBXW11|SIAH2|FBXO11

1-h glucose

cluster 11

6355 2.53E-03 regulation of transcription, DNA dependent NFIB|DNMT3A|ABL1|HMGA2|ESR1

51252 2.53E-03 regulation of RNA metabolic process NFIB|DNMT3A|ABL1|HMGA2|ESR1

For the GDM cluster 8 and 1-h PG clusters 3/6/8/10, there was no significant enrichment of GO terms.

FDR, false discovery rate; GDM, gestational diabetes mellitus; GO, gene ontology; MHC, major histocompatibility complex; PG, plasma glucose.

https://doi.org/10.1371/journal.pmed.1003229.t004
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Fig 4. Validation results of the array using bisulphite pyrosequencing. (A–D) Validation of cg16536918, in the AVP gene, by pyrosequencing,

showing (A) the location of the CpG in the AVP DMR found associated with GDM, (B) the significant association with 1-h PG levels, (C) GDM

status, and (D) the correlation between methylation levels measured on the pyrosequencer and beta values on the array. (E–H) Validation of

cg26953232, a CpG in the DMR, found associated with 1-h PG levels, showing (E) the location of the CpG in the genome, (F) the significant

association with 1-h PG, (G) GDM status, and (H) the correlation between methylation levels measured on the pyrosequencer and beta values on

the array. (A+E) Diagrams of the dmCpGs and the location of the (A) AVP and (E) BRD2 pyrosequencer assay. Red circles indicate CpGs on the

array identified as part of the DMR. Purple circles indicate extra CpGs measured on the pyrosequencer, with the location of the 3 sequencing

primers used (Seq1–3). AVP, arginine vasopressin; BRD2, Bromodomain Containing 2; CpG, cytosine-phosphate-guanine; dmCpG, differentially

methylated CpG; DMR, differentially methylated region; GDM, gestational diabetes mellitus; PCR, polymerase chain reaction; PG, plasma glucose.

https://doi.org/10.1371/journal.pmed.1003229.g004
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associated with maternal dysglycaemia showed an increase in the number of dmCpGs associ-

ated with maternal 1-h PG concentrations after adjustment for intervention compared to the

unadjusted analysis (Table 2); 704 dmCpGs were associated with 1-h PG (Table Q in S1 Data)

in the intervention adjusted analysis compared to 592 in the unadjusted analysis (Table 2),

with a significant overlap between the dmCpGs (82%, p< 1 × 10−308). There was also a small

increase in the number of dmCpGs associated with maternal GDM (Table R in S1 Data) and

2-h PG after adjustment for intervention but no effect of adjusting for intervention in the anal-

ysis between maternal FPG and cord blood DNA methylation. The increase in number of

dmCpGs associated particularly with 1-h PG levels after adjustment for intervention may

imply a better model fit after adjustment, suggesting that the intervention might modify the

1-h PG-associated methylation signature in the infant. To investigate this further, the effects of

maternal GDM exposure and dysglycaemia on cord blood DNA methylation were analysed in

the standard care and intervention arms of the UPBEAT trial separately (Table 2). Here, we

found there were marked differences in the number of dmCpGs associated with maternal

GDM and dysglycaemia in the 2 arms of the trial (Table 2), even though there were no differ-

ences in the number of women with or without GDM, or in fasting, 1-h or 2-h PG concentra-

tions between the standard care and intervention arms (Table 6, S2 Fig). There were 160

dmCpGs (FDR� 0.05) in cord blood associated with maternal 1-h PG concentrations in the

standard care arm and only 2 dmCpGs associated with 1-h PG in the intervention arm; 41

dmCpGs were associated with GDM in the standard care arm but no dmCpGs associated with

GDM in the intervention arm; 78 dmCpGs associated with 2-h PG in the standard care arm

and 1 in the intervention arm, while for FPG, there was 1 dmCpG in the standard care arm

and no dmCpGs in the intervention arm (Tables S and T in S1 Data). Furthermore, compari-

son of the effect sizes for the 41 dmCpGs associated with GDM in the standard care and inter-

vention arms of the study showed that for 87.8% of these CpGs, there were reductions in the

effect size in the intervention arm compared to the standard care arm (Table U in S1 Data).

Similarly, analysis of the 160 dmCpGs associated with 1-h PG showed that the effect sizes were

reduced in the intervention arm compared to the standard care arm for 77.5% of the dmCpG

sites. For cg03566881(LGR6) and cg16536918 (AVP), 2 of the top hits associated with GDM,

Table 5. Validation of dmCpGs by pyrosequencing.

CpG Gene Position Array analysis Pyrosequencing analysis (with respect to

1-h glucose levels)

Array vs

pyrosequencing

correlation

n beta p-value 95% CI n beta p-value 95% CI n rho p-value

cg03566881 LGR6 chr1:202210983 521 0.0026 3.17E-07 0.0016 0.0036 341 0.1976 0.03049 0.0187 0.3765 362 0.5093 <2.2E-16

cg16536918 AVP chr10:3065403 521 0.0043 2.80E-06 0.0025 0.0061 443 0.3986 3.39E-05 0.2116 0.5856 458 0.7944 <2.2E-16

cg26953232 BRD2 DMR chr6:32942495 521 0.0031 3.27E-04 0.0014 0.0048 331 0.4231 0.01238 0.0922 0.7541 345 0.6785 <2.2E-16

CpG2 chr6:32942508 - - - - - 316 0.4386 0.04738 0.0051 0.8721 - - -

CpG3 chr6:32942591 - - - - - 321 0.3618 0.02907 0.0372 0.6865 - - -

CpG4 chr6:32942628 - - - - - 299 0.4343 0.03710 0.0261 0.8424 - - -

CpG Gene Position Array analysis Pyrosequencing analysis (with respect to

GDM)

n beta p-value 95% CI n beta p-value 95% CI

cg03566881 LGR6 chr1:202210983 383 vs 159 0.0128 2.12E-08 0.0084 0.0173 263 vs 97 0.7141 0.04914 0.0027 1.4256

cg16536918 AVP chr10:3065403 383 vs 159 0.0215 1.57E-07 0.0136 0.0295 259 vs 96 1.2632 0.01178 0.2820 2.2443

CI, confidence interval; CpG, cytosine-phosphate-guanine; dmCpG, differentially methylated CpG; GDM, gestational diabetes mellitus.

https://doi.org/10.1371/journal.pmed.1003229.t005
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the adjusted r2 in the analysis stratified by intervention showed a decrease in effect size from

0.317 to 0.240 and from 0.292 to 0.258, respectively, in the intervention arm compared to the

standard care arm, with similar decreases in the 1-h PG analysis.

Influence of genetic variation on the dysglycaemia-associated dmCpGs

As DNA methylation can be driven by genotype [30,31], we investigated the potential influ-

ence of genetic variants on the 160 1-h PG-associated dmCpGs in the standard care arm of the

UPBEAT RCT by carrying out a genome-wide mQTL screen using the GEM package[16]. For

the majority of dmCpGs associated with 1-h PG, there was no significant association with

genotype, but significant mQTLs associations between 666 genetic variants and 18 of the 160

dmCpGs (Fig 5, Table V in S1 Data) was observed. Of these, the majority (613) of the mQTLs

were trans-mQTLs, with 53 cis-mQTLs. Comparison with the ARIES mQTL dataset in cord

blood, generated using the Illumina 450K methylation array, revealed only 6 of the 18

dmCpGs, identified as being associated with genetic variation in this study, were found on the

Illumina 450K array; none had previously been reported as mQTLs, although cg12053291 and

cg06388350 showed weak mQTLs in the ARIES dataset (FDR< 0.1). The remaining 12 of the

18 dmCpGs had not previously been interrogated in cord blood.

Table 6. Cohort characteristics separated by intervention group.

Control (n = 294) Intervention (n = 263)

Neonate sex Male (%) 53.7 54.4

Maternal ethnicity White (%) 71.8 71.5

Asian (%) 4.4 5.7

Black (%) 18.7 17.9

Other (%) 5.1 4.9

GDM GDM (%) 38.7 30.1

GDM treatment (% of GDM participants) No treatment (%) 15.7 12.3

Diet only (%) 36.8 30.1

Metformin (%) 18.4 26.0

Insulin (%) 11.8 19.2

Insulin + metformin (%) 17.1 12.3

Parity Primiparous (%) 50.9 40.9

Maternal smoking Smoker (%) 17.0 16.0

Maternal BMI (kg/m2) 36.33 ± 4.42 36.62 ± 5.09

Maternal age (years) 30.91 ± 5.46 30.99 ± 5.38

Fasting glucose (mmol/L) 4.7 ± 0.1 (missing n = 3) 4.8 ± 0.2 (missing n = 5)

1-h glucose (mmol/L) 8.2 ± 0.3 (missing n = 21) 8.0 ± 0.2 (missing n = 15)

2-h glucose (mmol/L) 5.9 ± 0.1 (missing n = 4) 6.0 ± 0.2 (missing n = 6)

Predicted cord blood cell proportions
B cell 0.11 ± 0.05 0.12 ± 0.05

CD4 T cells 0.13 ± 0.08 0.13 ± 0.08

CD8 T cells 0.12 ± 0.05 0.12 ± 0.04

Granulocytes 0.44 ± 0.13 0.45 ± 0.13

Monocytes 0.11 ± 0.04 0.10 ± 0.04

Natural killer cells 0.02 ± 0.03 0.02 ± 0.03

Nucleated red blood cells 0.11 ± 0.08 0.10 ± 0.07

GDM, gestational diabetes mellitus.

https://doi.org/10.1371/journal.pmed.1003229.t006
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Discussion

There is increasing evidence that maternal dysglycaemia has adverse effects on the health of

the offspring, predisposing the infant to developing obesity and metabolic disease in later life

[11,13,55]. The mechanisms by which the maternal environment may induce such long-term

effects on the offspring have been suggested to involve the altered epigenetic regulation of

genes [56]. Here, we show that maternal GDM, FPG, 1-h, and 2-h PG levels were associated

with significant changes in the cord blood DNA methylome, with dmCpG loci being primarily

associated with genes involved in cell signalling and transcriptional regulation. Moreover, we

show that a maternal lifestyle intervention in pregnancy appeared to attenuated the GDM, 1-h,

and 2-h PG-associated methylation changes in cord blood, demonstrating that the epigenetic

impact of a dysglycaemic prenatal maternal environment can be modified by a maternal life-

style intervention in pregnancy.

The methylation signature associated with maternal GDM status overlapped at both the

dmCpG and DMR level with the methylation changes associated with maternal FPG, 1-h and

2-h PG, the 3 definitional components of GDM. The majority of the dmCpGs associated with

GDM or 1-h PG were hypermethylated and enriched among enhancers, DNaseI hypersensi-

tive sites, and sites of K4me1/3 and K79me2—activating histone promoter-associated marks

[57], suggesting that maternal dysglycaemia is associated with increased gene silencing at sites

of active gene transcription or regulation. Moreover, as the GDM and 1-h PG-associated

dmCpGs were enriched in pathways associated with cell signalling and chromatin remodel-

ling, this may suggest dysregulation of such pathways in GDM infants. DMRs within

ZMYND8 and PLEKHB1 were common to GDM, FPG, 1-h, and 2-h PG; ZMYND8 is an

Fig 5. RCircos plot showing the influence of genetic variation on the dysglycaemia-associated dmCpGs

distribution. The outer track (track 1) indicates chromosome number with track 2 showing the chromosome banding.

Track 3 names the dmCpGs that show a significant influence of genetics and marked on track 4. Track 5 indicates the

SNPs that are significantly associated with the dmCpGs. The genes that are associated with the dmCpGs are

highlighted in red on track 6 and named on the inner side of track 5. The inner track shows the significant links

between the CpGs and the SNPs. Blue links indicate trans-CpG–SNP associations, while red links indicate cis-CpG–

SNP associations. CpG, cytosine-phosphate-guanine; dmCpG, differentially methylated CpG; SNP, single nucleotide

polymorphism.

https://doi.org/10.1371/journal.pmed.1003229.g005
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epigenetic reader that provides a structural template for histone peptide recognition [58] and

is known to be involved in coordinating gene expression programs associated with cell prolif-

eration, migration, and DNA repair. Interestingly, BRD2, which contained a DMR associated

with both 1-h and 2-h PG, is known to interact with ZMYND8 [59] and was previously

reported by Houde and colleagues to be associated with maternal hyperglycaemia [60]. BRD2
has been reported to play a major role in metabolism [61]; it is highly expressed in pancreatic

“beta” cells, where it inhibits “beta” cell mitosis and insulin transcription. BRD2 also plays a

key role in B lymphocyte cell expansion [62]. Interestingly, B lymphocyte cell number was

increased in the cord blood of infants born to GDM mothers, but whether this is related to

altered BRD2 methylation in these cells requires further investigation.

There were differences in the number and location of dmCpGs associated with maternal

FPG, 1-h, and 2-h PG concentrations. The strongest signal was observed with maternal 1-h PG

levels, with weaker signals associated with FPG and 2-h PG. This is unlikely to reflect a differ-

ence in the number of individuals with FPG, 1-h, or 2-h PG levels above the IADPSG GDM

cutoffs, as in this study there were more women with a FPG�5.1 mmol/l than women with a

1-h PG�10.0 mmol/l. Rather, these differences in methylation may arise from differences in

the aetiology of the dysglycaemia; higher maternal 1-h PG levels concentrations reflect

impaired insulin secretion [63–65], and our data suggest this may be a stronger driver of epige-

netic change in the fetus. In the Hyperglycemia and Adverse Pregnancy Outcome (HAPO)

cohort, Lowe and colleagues also reported that maternal 1-h PG levels, but not maternal FPG

levels, were positively associated with the child’s FPG, 1-h, and 2-h PG levels at age 10 years,

and negatively associated with their disposition index [12]. As children with low disposition

index are most likely to progress to T2D [9,66,67], this suggests the importance of maternal

1-h PG levels as a long-term risk factor and is consistent with the more pronounced epigenetic

changes seen in the infant at birth associated with this measure of maternal dysglycaemia.

The neonatal methylation signature associated with maternal GDM/dysglycaemia differed

between the sexes. A growing literature suggests sexual dimorphism in the association between

maternal GDM and childhood outcomes [7–14], with a report from the OBEGEST cohort

showing that exposure to GDM is a risk factor for childhood overweight in boys but not in

girls [68]. Here, we found marked differences in the cord blood DNA methylation patterns

associated with maternal GDM/dysglycaemia between male and female infants. Follow-up

studies to investigate sex differences in the anthropometric and metabolic characteristics of the

older children are therefore indicated, together with further studies to determine whether the

dysglycaemia-associated dmCpGs in males and female infants are associated with specific met-

abolic characteristics of the children.

The lifestyle intervention did not induce significant changes in the cord blood methylome

but appeared to be associated with marked attenuation of the methylation signature linked to

maternal GDM, 1-h, and 2-h PG concentrations. This may reflect recommendations for

decreased consumption of high GI foods in the intervention arm, leading to lower glycaemic

excursions in those individuals metabolically susceptible to high early postprandial glucose

concentrations; although not influencing the OGTT result, over the time frame of the inter-

vention the low GI diet may be sufficient to lessen the impact on the offspring’s methylome.

Some human studies and experiments in animal models have suggested that the epigenome is

most susceptible to environmental factors during the periconceptional period [69,70]. For

example, in the Dutch Hunger Winter cohort, offspring DNA methylation changes were only

observed in those exposed to famine during the periconceptional period rather than during

the second or third trimester [71]. However, the fact that the UPBEAT lifestyle intervention

appeared to attenuate the dysglceamia associated methylation signature in cord blood suggests

that there is a plasticity in the cord blood methylome in the later stages of pregnancy, and
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targeting interventions at the second trimester of pregnancy may have beneficial effects on off-

spring outcomes.

DNA methylation can be influenced by the genotype of the individual, with sequence varia-

tion at specific loci resulting in different patterns of DNA methylation [72]. These sites are

called methylation quantitative trait loci (meQTLs) and contribute to interindividual differ-

ences in DNA methylation and differential response to environmental factors. Here, we found

that 11% of the 1-h PG-associated CpGs were influenced by genotype; of these, the majority

were trans-meQTLs rather than cis-meQTLs. Whether the SNPs affecting these trans-meQTLs

represent sequence variations within genes associated with the methylation machinery or in

regions spatially linked to the dmCpGs is unknown. Given that the majority of 1-h PG-associ-

ated dmCpGs were located within intergenic regions and linked to enhancer regions, an

understanding of the spatial 3D relationship between the meQTLs and associated SNPs may

provide novel insights into the regulation of these dmCpGs.

There are several strengths to this study. Firstly, this is the largest study to date where DNA

methylation changes have been examined with respect to maternal GDM exposure in obese

women, a high-risk group, and all pregnancies with available cord blood were included rather

than a case control design. Previous genome-wide studies investigating methylation changes

associated with GDM exposure have also identified GDM-associated dmCpGs; Finer and col-

leagues identified 1,485 dmCpGs associated with GDM (adjusted p-value�0.05) in the cord

blood of infants from mothers with GDM (n = 25) or without (n = 21) [25]. Hjort and col-

leagues compared DNA methylation in 9- to 16-year-old children born to mothers with

(n = 93) or without (n = 95) GDM, identifying 76 GDM-associated dmCpGs [28]. While there

was no overlap between the dmCpGs identified in this study with those reported by Hjort and

colleagues, phosphofructokinase (PFKP) and pre-mRNA-splicing factor (SYF1) associated

with GDM in this study were also identified by Finer and colleagues [25]. The lack of major

overlap between the GDM-associated dmCpGs among the different studies is likely to reflect

the different GDM diagnostic criteria used, age at analysis, ethnicity, and/or the inclusion of

different confounders. Many previous reports did not take account of the confounding influ-

ence of maternal prepregnancy BMI and/or found that the signal associated with maternal

GDM was largely attenuated by inclusion of maternal BMI. Here, all women had a prepreg-

nancy BMI of over 30 kg/m2, lessening the chance of a confounding effect of BMI, and in a

sensitivity analysis, we further adjusted for any potential confounding effect of obesity. More

recently, a meta-analysis of 7 pregnancy cohorts [32] (3,677 mother–newborn pairs with 317

GDM cases) identified 2 DMRs associated with GDM within OR2L13 and CYP2E1. There was

no overlap with the DMRs identified in this study; however, the GDM diagnostic criteria was

different, and we have studied the GDM-associated signal within a high-risk population of

women with obesity rather than across the spectrum of BMI, which may account for the

greater number of dmCpGs and DMRs associated with GDM diagnosis in this study. Further-

more, we have, for the first time in a GDM study, used the updated Illumina 850K array,

which has increased coverage over important regulatory regions and shown that DNA methyl-

ation changes associated with GDM and dysglycaemia are enriched among these regions.

There were some limitations to this study. The first was that we compared DNA methyla-

tion patterns in cord blood of infants, and the functional significance of such changes are

unclear; methylation changes in blood cells could reflect alterations in immune function and/

or chronic low grade inflammation which is strongly linked to increased adiposity and insulin

resistance. Secondly, the methylation changes observed were modest and the functional signif-

icance of these changes is unknown. This is a common finding in epigenetic studies investigat-

ing the impact of maternal GDM exposure or other early life environmental factors

[23,25,33,52,73]. As DNA methylation is essentially binary with each CpG site being either 0%
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or 100% methylated, a small change in CpG methylation observed across a tissue will reflect a

change in DNA methylation in a small fraction of cells within the tissue. Depending upon the

location of the CpG site, this may affect the level of gene transcription with consequences for

cell function. Since DNA methylation changes are heritable, such changes may be perpetuated

during subsequent cell division, leading to persistent changes in function/metabolic capacity

that could alter susceptibility to disease. However, no RNA was available from the samples to

determine whether the methylation changes observed were accompanied by a corresponding

variation in gene expression. Nevertheless, the DNA methylation changes reported in this

study may prove useful as indices of early life glycaemic exposure. Thirdly, as uncontrolled glu-

cose homeostasis during pregnancy can result in poor pregnancy outcomes, the majority of

the women diagnosed with GDM were treated, with the treatment regime predicated on the

severity/aetiology of the glycaemia; GDM treatment generally began with dietary advice, fol-

lowed by metformin with the addition of/replacement with insulin if control was not achieved.

Because of the strong collinearity between treatment modality and severity of hyperglycaemia,

we cannot exclude treatment as a potential confounder. However, similar numbers of women

with GDM in each arm of the trial received treatment through dietary advice, insulin only,

metformin only, or a combination of metformin plus insulin, supporting the conclusion that

the lifestyle intervention led to attenuation of the infant methylation signal. Finally, generalisa-

bility cannot be assumed, and future studies should address the optimum gestational window

for intervention and reproducibility in lean pregnant women with GDM. In future, we will

examine the associations of these methylation patterns at birth with metabolic function and

anthropometric measures of the children at the 3-year follow-up visit, recently completed, and

as the children grow to maturity.

Conclusions

In summary, we found that maternal pregnancy GDM and dysglycaemia led to changes in

cord blood DNA methylation, and GDM/dysglycaemia-associated dmCpGs are sensitive to a

maternal nutritional and physical activity intervention in the second trimester of pregnancy in

women with obesity. The data imply that second trimester lifestyle interventions to improve

metabolic health could influence the next generation through persistent influences on the epi-

genome. In future, we will assess whether the attenuated methylation signature is associated

with improved child health outcomes particularly with respect to 25- to 28-week FPG, 1-h,

and 2-h PG levels.
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