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Abstract: In the pursuit of understanding life, model membranes made of phospholipids were
envisaged decades ago as a platform for the bottom-up study of biological processes. Micron-sized
lipid vesicles have gained great acceptance as their bilayer membrane resembles the natural cell
membrane. Important biological events involving membranes, such as membrane protein insertion,
membrane fusion, and intercellular communication, will be highlighted in this review with recent
research updates. We will first review different lipid bilayer platforms used for incorporation of
integral membrane proteins and challenges associated with their functional reconstitution. We next
discuss different methods for reconstitution of membrane fusion and compare their fusion efficiency.
Lastly, we will highlight the importance and challenges of intercellular communication between
synthetic cells and synthetic cells-to-natural cells. We will summarize the review by highlighting
the challenges and opportunities associated with studying membrane–membrane interactions and
possible future research directions.

Keywords: lipid bilayer membrane; synthetic cells; membrane proteins; membrane fusion; synthetic
cell communications

1. Introduction

Nature is the prime source of inspiration for humans to understand life and create
something new. Many of today’s technologies have been inspired from our surroundings,
for example, the invention of flight (birds), submarine (whales), Shinkansen bullet train
(kingfisher), sonar (dolphin and bats), and many more. The scientific community has not
been untouched by this inventiveness that has led to many novel research branches, for
example biomimicry, synthetic cell research, and in vitro protein synthesis as the frontiers
in the field of synthetic biology [1–6].

A natural cell was thought to have a simple construction, which later turned out to
be a highly complex unit of life hosting many reactions with spatiotemporal precision [7].
Cell membrane is the first boundary that draws the physical existence of the cell. It
serves as a barrier where internal materials (DNA, proteins, and organelles) are separated
and protected from the outside environment. It also acts as a gatekeeper that allows
unassisted passage of substances such as water and gases, but not large molecules. This
semi-permeable nature of the cell membrane is regulated by diffusion or with the aid of
special transporters across the cell membrane such as ion channels and transporters. The
cell membrane plays a vital role in almost all the cellular processes, such as endocytosis,
exocytosis, membrane fusion, inter- and intra-cellular communications, and fertilization.

Researchers have been trying to mimic cellular functions to enhance their under-
standing about vital biological processes. To achieve this, bilayer membranes made with

Membranes 2021, 11, 912. https://doi.org/10.3390/membranes11120912 https://www.mdpi.com/journal/membranes

https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0001-5227-8096
https://orcid.org/0000-0002-0309-7018
https://doi.org/10.3390/membranes11120912
https://doi.org/10.3390/membranes11120912
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/membranes11120912
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/article/10.3390/membranes11120912?type=check_update&version=1


Membranes 2021, 11, 912 2 of 19

amphiphilic phospholipids are used. Many platforms are available where lipid bilayers
are created, including standing bilayer membrane, supported bilayer, and unilamellar
lipid vesicles (see Section 2). Standing bilayer is utilized for the study of ion channels and
membrane proteins [8], while supported bilayer is utilized for membrane fusion [9] and
protein expression [10,11]. Micron-sized unilamellar vesicles are used as a synthetic cell
model for studying biochemical reactions in vitro [7,12]. We will highlight some of the
extensively studied membrane proteins and recent research updates.

Significant efforts have been made in recapitulating different aspects of membrane–
membrane interactions, such as vesicle–vesicle fusion. We will highlight the conditions
required to achieve membrane fusion and challenges associated with it. We will primarily
discuss DNA-mediated and coiled-coil peptide-mediated fusion and their potential future
direction. Lastly, inter/intra-cellular communication will be discussed, where we will
highlight some recent research on synthetic cell-to-synthetic cell and synthetic-to-natural
cell communications.

2. Model Bilayer Membranes
2.1. Planar Lipid Bilayer
2.1.1. Black Lipid Membrane

‘Black’ lipid membrane (BLM) received its name because of its appearance by optical
microscopy. BLM was discovered some 60 years ago when Mueller et al. [13,14] reconsti-
tuted the first cell membrane structure in vitro from extracted brain lipids and measured
the electrical polarization across the membrane. It is a unique setup where electrodes are
placed at both sides of a standing lipid bilayer and the electrical conductivity across it is
measured. Usually, two aqueous chambers are separated by a planar bilayer spanning
an aperture on a hydrophobic (i.e., made of Teflon) septum, with its size varying from
50 µm to 1 mm. There are two types of BLM depending on the orientation of the orifice,
horizontal and vertical BLMs (Figure 1A). In both the cases, the bilayer is formed by either
pseudo-painting or dragging a lipid bubble over the aperture while the chambers are filled
with buffers. Typically, for the incorporation of membrane proteins, diphytanoyl phos-
phatidylcholine (DPhPC) or a mixture of 1-palmitoyl, 2-oleoylphosphatidylethanolamine
(POPE) and 1-palmitoyl, 2-oleoylphosphatidylglycerol (POPG) (3:1) [15] are used with con-
centration varying from 5 to 20 mg/mL in organic solvents such as n-decane, hexadecane,
or hexadecane/hexane (10:1).

The main limitation of this method, apart from the fact that the bilayer formed by this
method is fragile, is the presence of extra solvent in the bilayer membrane that compromises
the measurements. Subsequently, a solvent-free bilayer assembly method was introduced
by Montal and Mueller [16]. In this setup, two aqueous chambers with lipid monolayer on
their surface are partitioned by a Teflon septum with an aperture above the water surface.
The Teflon septum is then lowered gradually into an aqueous bath which subsequently
leads to the formation of a bilayer devoid of any solvent. However, this approach does not
resolve the membrane stability issue. Over the years, BLM has proven to be a powerful
method for studying the electrophysiology of ion channels and membrane proteins. The
incorporation of membrane proteins to BLM is usually achieved by direct insertion of
purified proteins into the bilayer or incorporated by fusion of proteoliposomes to the
standing bilayer membrane. BLM is most useful for probing the biophysical properties
of channels. However, if a membrane protein has a conformational change that induces
downstream effects, such effects will be difficult to detect in a BLM setup. Hence, utilizing
this platform is mostly beneficial when studying the selectivity, conductivity, and drug
pharmacology properties of reconstituted proteins.
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Figure 1. Different model bilayer platforms. (A) Black lipid membrane, vertical (left) horizontal (right). (B) Supported 
lipid bilayer membrane. (C) Schematic representation of droplet interface bilayer with lipid-in and lipid-out steps. Fig-
ures are reproduced from Reference [17] with permission from American Chemical Society, copyright 2008. (D) Droplet-
hydrogel-supported bilayer on the left, and image of bilayer formed on the hydrogel surface (yellow arrow) on the right, 
top view. Adapted from Reference [18] with permission from American Chemical Society, copyright 2007. (E) Schematic 
illustration of (i) electroformation method, (ii) droplet microfluidics method, and (iii) inverted emulsion method for 
vesicle preparation. (F) Optimized cDICE cylindrical chamber and vesicle formation process by the centrifugal force. 
Reproduced from Reference [19] with permission from American Chemical Society, copyright 20212.1.2. Supported 
Lipid Bilayer. 

Supported lipid bilayer (SLB) is a planar bilayer formed as a result of self-assembly 
of phospholipids on a hydrophilic (i.e., oxidized glass) surface [20,21]. The fluid nature of 
SLBs is restored by the presence of a thin water layer of ~1–2 nm between the solid surface 
and the bilayer (Figure 1B) [22–24]. Unlike a suspended lipid bilayer in BLM which is quite 
fragile, SLB provides a robust and stable platform for surface-specific interactions. The 
stability of SLB is achieved by the efficient interaction between the solid support and the 
planar bilayer governed by van der Waals, hydration (a repulsion force between two hy-
drated surfaces), electrostatic, and steric forces [25,26]. 

Figure 1. Different model bilayer platforms. (A) Black lipid membrane, vertical (left) horizontal (right). (B) Supported lipid
bilayer membrane. (C) Schematic representation of droplet interface bilayer with lipid-in and lipid-out steps. Figures are
reproduced from Reference [17] with permission from American Chemical Society, copyright 2008. (D) Droplet-hydrogel-
supported bilayer on the left, and image of bilayer formed on the hydrogel surface (yellow arrow) on the right, top
view. Adapted from Reference [18] with permission from American Chemical Society, copyright 2007. (E) Schematic
illustration of (i) electroformation method, (ii) droplet microfluidics method, and (iii) inverted emulsion method for vesicle
preparation. (F) Optimized cDICE cylindrical chamber and vesicle formation process by the centrifugal force. Reproduced
from Reference [19] with permission from American Chemical Society, copyright 20212.1.2. Supported Lipid Bilayer.

Supported lipid bilayer (SLB) is a planar bilayer formed as a result of self-assembly of
phospholipids on a hydrophilic (i.e., oxidized glass) surface [20,21]. The fluid nature of
SLBs is restored by the presence of a thin water layer of ~1–2 nm between the solid surface
and the bilayer (Figure 1B) [22–24]. Unlike a suspended lipid bilayer in BLM which is
quite fragile, SLB provides a robust and stable platform for surface-specific interactions.
The stability of SLB is achieved by the efficient interaction between the solid support and
the planar bilayer governed by van der Waals, hydration (a repulsion force between two
hydrated surfaces), electrostatic, and steric forces [25,26].
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There are majorly two different methods used for the formation of SLB: the Langmuir–
Blodgett deposition method and the vesicle fusion method. In the former method, the
lower leaflet of the monolayer lipid is created at the air–water interface by slowly pulling
out the hydrophilic surface submerged in the aqueous phase. The second step of the
Langmuir–Blodgett method involves the deposition of a second lipid monolayer leaflet
by horizontally dipping the surface to the air–water interface [20]. In the vesicle fusion
method, SLB is formed by adsorption and fusion of small unilamellar vesicles (SUVs) on a
hydrophilic surface [27,28]. A combination of the above two methods has been employed
where a bilayer was formed by vesicle fusion to a solid-supported lipid monolayer [29],
and is useful in creating asymmetric bilayers [29,30]. The most-used substrates for SLBs
are fused silica [20], mica [31,32], borosilicate glass [20,26], and oxidized silicon [20]. Other
thin-film metal surfaces have been employed for supported bilayers, including TiO2,
indium-tin-oxide, gold, silver, and platinum [33].

2.1.2. Droplet Interface Bilayer

Like any other techniques, the aforementioned methods have limitations, including
mechanically unstable bilayer (i.e., BLM), accessibility to only one side of the membrane,
and surface defects due to non-uniformity (i.e., SLB). A similar approach of what we know
today as the droplet interface bilayer (DIB) was introduced by Tsofina et al. [34] in 1966,
almost the same period of time as when BLM and SLB were introduced. DIB is formed when
two aqueous droplets with a lipid monolayer on their surface are brought together while
submerged in a lipid-oil mixture [35,36]. There exists two ways to achieve DIB, one where
lipids are dissolved in oil (e.g., hexadecane or squalene) and the other where lipids are
introduced in the form of SUVs inside the aqueous droplet to the water–oil interface [17,37].
They are commonly referred to as lipid-out and lipid-in, respectively (Figure 1C). This
platform has been used in electrophysiology studies of membrane/ion channels by either
forming droplets on the tip of the agarose/agar-coated electrodes [35,38] or by placing the
electrodes at the bottom of the droplets [39]. A modification of DIB was introduced as a
droplet on the hydrogel-supported bilayer (DHB) as a more robust method [18,40]. In DHB,
an agarose substrate is formed on a glass surface followed by the addition of a lipid-oil
mixture, and this step forms the lipid monolayer on the agarose surface. An aqueous
droplet hanging on an agarose-coated electrode is submerged in an oil bath, spontaneously
forming a monolayer. Then, the aqueous droplet is gently dropped to the agarose surface,
where it forms a bilayer. The bilayer formed by this method is stable for weeks and even
resistant to mechanical shock (Figure 1D). Due to the defined compartmentalization in
this method, DIBs have been used to recapitulate communication pathways and feedback
cascades mediated by membrane proteins and porins. The ability to visualize diffusion
of fluorescent molecules across droplets as well as to record electrical currents between
droplets makes DIBs ideally suited for studying protein-mediated interactions between
droplet-in-oil synthetic cells. The downside, however, is that the outer organic phase does
not resemble the aqueous solutions in a natural environment, and an oil–water interface
may result in protein denaturation.

2.2. Vesicle Preparation

Unlike planar lipid bilayers, vesicles have an independent compartment that resembles
a natural cell, separating an inner aqueous volume from an outer aqueous environment.
Giant unilamellar vesicles (GUVs) are the most widely used model as synthetic cells and as
protocells from the origin of life perspective [41]. They have a size between 1 and 100 µm in
diameter, which is in the range of biological cells. Giant vesicles made of lipids are fragile,
and this has motivated the use of other membrane-forming materials. Polymersomes are
comprised of chemically synthesized amphiphilic polymers that self-assemble to form
vesicles [42]. They are robust and are considered to be mechanically tough with low
permeability for ions as compared to lipid vesicles. Here, we focus our discussion on lipid
bilayer giant vesicles as lipids are the natural substrate for membrane proteins. There
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are several methods available for the preparation of GUVs, and each of the methods is
introduced here with its advantages and disadvantages.

2.2.1. Hydration Method

The hydration method, also referred to as spontaneous swelling or gentle hydration,
is regarded as one of the first approaches to make GUVs [43,44]. It involves a two-step
procedure: (i) dehydration of the lipid on a substrate of choice (mainly glass), followed by
(ii) rehydration of the deposited lipid films with a solution to be encapsulated. During the
rehydration, the temperature has to be higher than the lipid phase transition temperature
to form GUVs [45]. One of the main disadvantages of this method is that the rehydration
step requires a long incubation time, ranging from several hours to overnight [46]. An alter-
native method to accelerate this process is a widely used method called electroformation or
electroswelling [47]. By applying an alternating current (AC)-electric field on an electrically
conductive surface (i.e., glass coated with indium tin oxide or platinum wires), a high yield
of vesicles is achieved in a relatively short time (Figure 1E) [48]. Still, drawbacks exist since
the hydration method, including electroformation, cannot readily encapsulate large-sized
molecules or be used with high ionic strength solutions (for electroformation). To overcome
this, microinjection of molecules through microneedles can be a viable strategy, whereby
only a limited amount of volume can be injected [49].

2.2.2. Droplet Microfluidics Method

The main benefit of introducing microfluidics technology in making GUVs is that more
uniform vesicles can be generated [50]. By using a microfluidics device, water-oil-water
double emulsion droplets are formed with low polydispersity [51]. The middle oil phase is
removed sequentially to allow lipid monolayers in water–oil and oil–water interfaces meet
and form vesicles with lipid bilayers (Figure 1E). A significant advantage of this method is
that it is much more efficient in encapsulating large molecules compared to the hydration
method. However, drawbacks also exist because it is difficult to remove the oil phase
completely; therefore, there may be residual oil in the vesicle membrane [52]. The presence
of oil in the membrane has been a long-standing problem since oil can affect the biophysical
properties of the membrane [53]. In this regard, an alternative method that replaces oil with
alcohol has been developed [54]. Another well-known method that uses a microfluidics
technique is called microfluidic jetting [55,56]. While the vesicles are generated from the
planar lipid, some oil is still expected to be present in the membrane [57].

2.2.3. Inverted Emulsion Method

Developed by Pautot et al. [58], this method starts with forming water-in-oil single
emulsion droplets with a lipid monolayer using various methods. Droplets are then placed
on top of another oil–water interface with a lipid monolayer. Through centrifugation,
droplets pass through the interface and lead to the formation of GUVs (Figure 1E). While
residual oil may also be present in the membrane, the inverted emulsion method is widely
adopted due to its simplicity (i.e., requires little time) and versatility (i.e., little restriction
on what can be encapsulated) [59].

2.2.4. cDICE Method

One notable variant of the inverted emulsion method is called continuous droplet
interface crossing encapsulation (cDICE), which improved on some of the drawbacks of
the inverted emulsion method [60–63]. Water-in-oil droplets are injected into the custom-
designed cylindrical chamber mount on a tabletop centrifuge, where the oil-aqueous phase
is formed by the centrifugal force. Instead of pushing all the droplets at once, droplets are
pushed one by one through a capillary (Figure 1F) [19]. This allows lipid components to
saturate at each interface, thereby forming more stable and high-yield vesicles. However,
because the cDICE method also uses oil as a lipid solvent, it is likely to contain some
residual oil in the membrane.
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Since each of the methods developed to form GUVs presents different pros and cons,
it is important to select the proper method depending on the experimental needs. For
instance, in cases where the remaining oil in the membrane may have a critical effect, such
as examining the properties of membrane proteins, the hydration method can be more
appropriate than the others [57,64]. However, if efficient encapsulation of large molecules
such as enzymes is important or if uniform vesicle size is required, methods other than
hydration should be considered. In addition to choosing the most suitable methods over
others, there is plenty of room for the improvements of the existing approaches as well as
the development of entirely new techniques that can overcome the shortcomings of the
current methods.

3. Membrane Protein Incorporation into Lipid Bilayer

The majority of interactions that membranous structures have with either each other
or their external environment are mediated by membrane proteins. Using synthetic cells as
model membranes for studying membrane–membrane interactions is not possible unless
their membrane is decorated with various functional proteins that allow interactions
with the outer environment. As GUVs are used primarily as a model for synthetic cells,
the ability to reconstitute membrane proteins into their lipid bilayers is an important
consideration [65]. Below, we showcase the reconstitution of four different membrane
proteins.

3.1. Alpha Hemolysin

α-Hemolysin (αHL) is a water-soluble toxin secreted by Staphylococcus aureus that
targets both prokaryotic and eukaryotic cells [66]. αHL is secreted as a monomer but forms
a transmembrane heptameric pore when lodged in the bilayer membrane of the target
cell [67], eventually causing cell death due to transport of small ions and low molecular
weight molecules [68]. Structurally, αHL forms a β-barrel protein pore of 2.6 nm made
of 14-strand of anti-parallel β-sheets from 7 αHL monomers [69]. Inspired by biological
nanopores such as αHL, there has been significant advancement in the field of synthetic
nanopores, especially ones designed with DNA [70,71]. Unlike αHL, the size of DNA-based
nanopores can be tuned from 4 to 30 nm in diameter [72–74], and these nanopores have
been applied in numerous sensing applications [75].

αHL has been reconstituted using different bilayer platforms, such as liposomes [76,77],
SLBs [78,79], and DIBs [39]. The ease of αHL self-assembly in the membrane enables a
variety of applications that require transporting ions and molecules across the membrane,
including biosensing [39], coacervation [80], and activation of genetic circuits [11]. For
example, Adamala et al. generated liposomes encapsulating genetic circuits and cell
lysates with transcriptional and translational activity and used αHL to enable membrane
permeability of small molecular inducers (Figure 2A) [81]. More recently, Hilburger et al.
developed a membrane AND gate where the release of the encapsulated material was
dependent on a fatty acid and αHL [82].
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emy of Sciences, copyright 2019. (D) Schematic illustration of artificial photosynthesis using the vesicle-in-vesicle ap-
proach and encapsulating bacteriorhodopsin and ATP synthase. Reproduced from Reference [85] with permission from 
Springer Nature, copyright 2019. 
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3.2. Mechanosensitive Channel (MscL)

The bacterial mechanosensitive channel was discovered as a channel that responded
to suction during patch-clamp experiments [86]. The mechanosensitive channel of large
conductance (MscL) has been extensively studied as one of the model membrane pro-
teins owing to its highly conserved structure and function between bacteria species. In
nature, MscL functions as an emergency release valve that prevents cell lysis when bac-
teria are exposed to severe osmotic downshifts. It consists of five identical subunits that
open its pore of ~3 nm diameter when the membrane tension reaches the threshold of
10~12 mN/m [87,88]. As a nonselective channel with the largest known pore size, there is
great opportunity to use MscL in building mechanosensitive synthetic cells [89].

Attempts to reconstitute MscL have been made in various types of planer lipid bi-
layers, including DHBs, SLBs, and DIBs [11,90–92]. Among them, Haylock et al. and
Strutt et al. demonstrated an indirect trigger of MscL by adding trimethylammonium
ethyl methanethiosulfonate (MTSET) or lysophosphatidylcholine (LPC) [91,92]. It has only
been in recent years that MscL was used in synthetic cells. Majumder et al. reported
the development of mechanosensitive synthetic cells expressing MscL by using cell-free
expression (CFE) [83]. The synthetic cells responded to osmotic down-shock and activated
a fluorescence calcium reporter (Figure 2B). Following this study, Garamella et al. created
synthetic cells capable of responding to osmolarity down-shock and inducing expression of
a cytoskeletal protein MreB [93]. In a study carried out by Hindley et al., a vesicle-in-vesicle
structure was made where calcium influx was initiated by αHL addition, and it subse-
quently activates phospholipase A2 and leading to the release of dye molecules through
MscL (Figure 2C) [84]. Since MscL has been studied in detail, various MscL mutants have
been investigated, such as those that exhibit a lower activation threshold (~6 mN/m),
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temperature sensitivity, or chemically inducible features [88,94,95]. Other stimuli have also
been shown to induce MscL activation, including pH, light, and ultrasound [94–96]. Given
the tunability of MscL activities and stimuli-responsiveness, it is expected that MscL will
continue to be actively deployed in the synthetic cell field.

3.3. SUN Proteins

The presence of nuclear envelope (NE) in eukaryotic cells is one of the features
that differs between eukaryotic and prokaryotic cells. Cellular functions such as protein
synthesis, cell migration, and chromosome dynamics require a definite nuclear positioning
which is regulated by LINC complexes (linker of nucleoskeleton and cytoskeleton). LINC
complexes are comprised of SUN (Sad1, UNC-84) proteins, located in the inner nuclear
membrane (INM), and KASH (Klarsicht, ANC-1, and Syne Homology) proteins in the outer
nuclear membrane (ONM) [97]. Both SUN and KASH domains form a bridge between INM
and ONM which plays a crucial role in nuclear positioning and transmission of mechanical
force across NE during meiosis [98,99].

Our lab recently demonstrated the use of a HeLa-based CFE system for orientation-
specific reconstitution of the LINC complexes proteins SUN1 and SUN2 [100]. SUN
proteins are located in the NE between INM and ONM, such that they are inaccessible
to direct biochemical assays. In this study, we showed that SUN proteins expressed in
HeLa CFE reactions inserted into bilayer membranes on supported bilayers with excess
membrane reservoir (SUPER) templates. Using a protease protection assay, we determined
the topology of SUN1 and SUN2 and discovered an additional transmembrane domain
and hydrophobic regions that were previously unidentified. The directional reconstitution
of SUN proteins was most likely mediated by microsome fusion to SUPER templates [101].
The utility of a mammalian CFE system for reconstituting complex membrane proteins will
open up more opportunities for creating synthetic cells with advanced sensing capabilities.

3.4. Bacteriorhodopsin

Bacteriorhodopsin is a seven-pass transmembrane protein from Archaea that drives
protons across the membrane using energy from light [102–104]. The interest in reconstitut-
ing bacteriorhodopsin in membranes aiming to create artificial photosynthetic entities has a
long history. First, in the work of Racker and Stoeckenius [105], purple membrane vesicles
of Halobacterium halobium that contain bacteriorhodopsin were reconstituted and used to
catalyze light-dependent ATP production. Later, different strategies were implemented
to reconstitute bacteriorhodopsin in the membrane of liposomes or GUVs. For example,
a method for detergent-mediated reconstitution of functional bacteriorhodopsin was pre-
sented by Dezi et al. [106]. Kahya et al. [107] proposed a method based on peptide-induced
fusion to introduce bacteriorhodopsin-containing proteoliposomes into the membrane of
GUVs as well. Lastly, detergent-mediated methods that rely on CFE of bacteriorhodopsin
were shown to reconstitute functional proteins [108,109].

In order to produce light-driven energy production, bacteriorhodopsin is usually co-
reconstituted with ATP synthase subunits F0 and F1 [110]. Reconstitution of both proteins in
polymersomes of amphiphilic triblock copolymer, PEtOz−PDMS−PEtOz (poly(2-ethyl-2-
oxazoline)-b-poly(dimethylsiloxane)-b-poly(2-ethyl-2-oxazoline)) has been shown to create
nano-scale photosynthetic organelles [111]. In a different study, instead of reconstituting
both bacteriorhodopsin and ATP synthase on the same membrane, Chen et al. coated
the surface of plasmonic colloidal capsules, made by assembly of Au-Ag nanorods, with
the purple membrane of Halobacterium halobium containing bacteriorhodopsin [112]. The
neighboring nanoparticles of colloidal capsules created concentrated electric fields that
caused increased light absorption by bacteriorhodopsin. The improved photo-absorption
system was then coupled with proteoliposomes that harbored ATP synthase, creating a
complete artificial photosynthetic system. The development of methods to create artificial
photosynthetic entities expedited the translation of bacteriorhodopsin into applications
in synthetic cells. Recently, artificial photosynthetic organelles were designed by Ahmad
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et al. [113]. These nanometer-sized organelles were used to activate flagellar motion as
well as contraction of microtubule networks by kinesin-1 motors. Through oscillatory light
illumination, Ahmad et al. were able to control the flagellar beating frequency. Similarly,
proteoliposomes that contained bacteriorhodopsin and F0 and F1 ATP synthase subunits
were used as energy-producing organelles to generate ATP for cell-free protein synthesis
inside synthetic cells (Figure 2D) [85]. Finally, designing photosynthetic organelles is
not limited to bacteriorhodopsin. For example, Lee et al. have demonstrated energy
production by synthetic organelles made of ATP synthase and photoconverters, including
plant-derived photosystem II and bacteria-derived proteorhodopsin [114]. The energy
produced by these nanometer-sized organelles was then coupled to polymerization of actin
filaments.

The significant progress on methods and strategies of reconstituting bacteriorhodopsin
on lipid bilayer membranes to create synthetic energy-producing organelles has certainly
paved the way to create self-sustaining, long-lived synthetic cells. By coupling light-driven
energy production to cell motion, one can envisage more life-like synthetic cells in the near
future.

4. Membrane Fusion

Membrane fusion involves close contact between two bilayers that eventually leads
to a single merged membrane (Figure 3A) [115]. Membrane fusion is a vital process in
eukaryotic cells. It regulates major cellular process such as cellular trafficking, exocytosis,
fertilization, and endocytosis. The most important conditions for lipid bilayers to fully
fuse are the lipid composition [115,116] and the close distance between the two bilayers.
There are numerous approaches to promote membrane fusion, including metal ion-induced
fusion, DNA-mediated, peptide nucleic acid (PNA)-mediated, and coiled-coil peptides.
Readers are referred to the excellent review articles for additional details [116,117]. In the
section below, we will focus on DNA-mediated and peptide-mediated fusion and highlight
some recent studies.

4.1. DNA-Mediated Fusion

DNA-based interaction provides an excellent strategy for membrane fusion due to
the high selectivity between DNA strands. In this approach, cholesterol- or lipid-anchored
DNA spontaneously becomes part of the membrane, with DNA strands exposed on the
outer surface of vesicles [118,119]. By bringing apposing vesicles into close proximity,
fusion of the bilayer membrane occurs due to hybridization of DNA strands. Membrane
fusion can be confirmed by lipid mixing and content mixing. Later, Hook and co-workers
investigated the effect of DNA length, number of DNA strands, and number of cholesterol
groups on membrane fusion [120]. When comparing the efficacy of fusion between single-
stranded DNA and double-stranded DNA with overhang (complementary overhang on
the other vesicle), double-stranded DNA showed improved binding affinity compared
to single-stranded DNA, where there was some degree of dissociation of hybridized
strands [119,120]. In case of single-stranded DNA and a single cholesterol group, content
leakage and dissociation of docked vesicles were observed [120]. They also found that
longer DNA strands increased vesicle docking but failed to lead to vesicle fusion. Recently,
Peruzzi et al. showed the initiation of CFE by DNA-mediated vesicle fusion and found
that phase-segregation of membrane domains enhances fusion between different vesicle
populations (Figure 3B) [121]. Controlling fusion by using DNA-tethered vesicles provides
exquisite specificity and expands the opportunities to control spatiotemporal dynamics of
CFE reactions.
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4.2. Peptide-Mediated Fusion

There exists numerous demonstrations of peptide-mediated membrane fusion in the
past, with examples such as vancomycin glycopeptide and D-Ala-D-Ala dipeptide or pep-
tide nucleic acids [123,124]. Soluble N-ethylmaleimide-sensitive factor attachment protein
receptors (SNAREs)-mediated fusion has proven to be most efficient and closest to biologi-
cal systems. SNAREs were identified as the key molecular players mediating membrane
fusion [125,126]. There exists more than 30 SNARE family members in mammalian cells.
Complementary sets of SNARE proteins, present on respective membranes, form a stable
four-coiled-coil α-helix bundle, which ultimately leads to membrane fusion [127].

Inspired by the four-helix bundle formation, Kros’ group has developed a SNARE
mimicking system comprised of lipid-conjugated oligopeptides with PEG as a spacer [128].
To mimic the four-helix bundle complex, they introduced three heptad repeat units of lysine-
rich and glutamic acid-rich amino acids. These oligopeptides form a stable heterodimer
with a dissociation constant of ~10−7 M [129]. A recent study, reported by the same group,
demonstrated membrane fusion between GUVs with peptide K (KIAALKE)4 and LUVs
with peptide E (EIAALEK)4 (Figure 3C) [122].
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5. Intercellular Communication

One of the most defining characteristics of natural cells is their ability to sense each
other, communicate, and act as a consortium. Quorum-sensing, as an example of intra- and
inter-species communication, is an essential aspect in bacteria population growth and a
regulator of physiological processes [130,131]. In eukaryotic cells, for example, collective
migration of a cohort of cells versus single-cell locomotion highlights the importance of
the exchange of mechanical cues and mechano-sensing [132–134]. The ability to sense the
environmental cues as well as sending signals heavily relies on the existence of proteins
residing on the membrane of natural cells. Membrane proteins such as GPCRs are critical
in signaling cascades for cells to respond to changes in their environment. The advances in
membrane protein reconstitution methods described earlier have led to significant progress
in reconstituting intercellular communication among synthetic cells.

5.1. Synthetic Cell–Synthetic Cell Communication

For successful biomimicry of natural cells as well as the creation of active materials, it
is crucial for synthetic cells not only to be able to sense their environment and the presence
of other synthetic cells, but to also communicate with them via signaling molecules. The
difficulty of mimicking intercellular communication mechanisms can be attributed to the
high complexity and specificity of extracellular signaling molecules and their targeted
secretion in natural cells, whereas synthetic cells merely rely on natural diffusion of small
molecules based on chemical gradients. Since most synthetic cells are compartmentalized
by phospholipid membranes, synthetic cell communication designs exploit the physical and
biochemical properties of lipid bilayers, such as their semi-permeability and their ability to
host porins such as αHL. For example, gene-mediated communication between synthetic
cells was engineered by encapsulating the non-permeable molecule doxycycline (Dox) in
one population and a plasmid encoding firefly luciferase (fluc) under a Tet promoter in the
other population [81]. The release of Dox from the first community of synthetic cells and
the entry of Dox into the second synthetic cell population, both mediated by αHL, triggers
the synthesis of fluc. Additionally, further genetic circuits are engineered that rely on free
diffusion of Arabinose across liposome bilayer membranes or depend on SNARE-mediated
fusion of two different populations of liposomes. A drawback of such a system is that
signaling heavily relies on one molecule and its natural diffusion rate, leading to inefficient
signal propagation that fades over time.

To overcome the aforementioned drawback, Buddingh et al. designed sender synthetic
cells that use adenosine monophosphate (AMP) as the signaling molecule [135]. Upon
diffusing into the receiver cells through αHL, AMP binds to glycogen phosphorylase b
and allosterically activates the enzyme, which leads to the production of NADH through a
cascade of reactions. This signal amplification strategy allows the system to propagate the
signal over long distances as one molecule of AMP activates an enzyme that produces a
large amount of NADH (Figure 4A).
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In an uncommon approach, the membrane has been used as a part of the signaling
cascade, where phospholipid vesicles are sender cells and proteinosomes displaying an
enzyme are receivers [139]. The two populations of synthetic cells communicate using
glucose as the signal molecule and the receiver synthetic cells process glucose via glucose
oxidase (GOx) as a component of their membranes.

In another work, Yang et al. demonstrated a DNA-origami-based pore that opens
only when two synthetic cells are in contact, allowing material exchange only when
two synthetic cells are in close proximity [140]. Such a design can significantly help in
concentrated signal release, in contrast to the uniform release of molecules through αHL.
Another innovative example of concentrated signal release upon synthetic cells’ contact
is the work of Chakraborty et al., where the synthetic cell adhesion between prey and
predator populations is triggered upon bioluminescence from predator cells that, in turn,
dimerizes proteins iLID and Nano, each of which resides in the membrane of one group of
synthetic cells [141]. The dimerization reconstitutes synthetic cell adhesion, which leads to
opening of αHL that is blocked unless synthetic cells are in contact [142]. The opening of
αHL activates phospholipase A2 (PLA2) inside the prey cells through diffusion of calcium
ions from predator cells. Activation of PLA2 causes the cleavage of phospholipid acyl
chains that leads to the collapse of prey cells. Lastly, quorum-sensing of synthetic cells has
been shown by Niederholtmeyer et al. [136]. In their work, the synthetic cell’s membrane
is composed of porous polymer acrylate that allows diffusion of molecules up to 2 MDa.
Due to this diffusion constraint, receiver synthetic cells produce desirable signals based
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on their distance from the sender cells and only when their population is above a certain
density (Figure 4B).

In addition to compartmentalized synthetic cells, synthetic cell communication has
been reconstituted between water-in-oil droplets as well as liquid–liquid phase-separated
droplets. Using DIBs, the diffusion of membrane-permeable molecules and pore-mediated
propagation of signaling molecules among droplets that recapitulate differentiation and
simple feedback between sender and receiver droplets have been demonstrated
(Figure 4C) [137]. Utilizing a similar design and a CFE system, Booth et al. created
light-sensitive tissues made of droplets-in-oil that communicate only in the presence of
external light triggers [143]. Even though αHL is the most common membrane protein in
synthetic cell communication studies, other proteins such as MscL have also been used
as a part of the signaling cascade or to mediate the propagation of signal molecules. For
example, Haylock et al. have shown the communication of droplets-in-oil mediated by
MscL G26C that opens upon external chemical stimuli [91]. In another work, Strutt et al.
reconstituted MscL in DIBs, where MscL opening is triggered by membrane tension due to
membrane asymmetry [92].

Membrane-less liquid–liquid phase-separated droplets can also be used as models
of synthetic cells. Interactive behaviors such as prey and predator, for example, have
been reconstructed between proteinosomes and coacervates [144]. Interactions between
classic phospholipid-bound synthetic cells and hybrid synthetic cells or more uncommon
coacervates that do not possess a physical boundary are open for exploration. Another
potential platform for studying membrane–membrane interactions could be the recently
discovered peptide bilayer for synthetic cell research [145,146].

5.2. Synthetic Cell–Natural Cell Communication

One of the pioneering works in the synthetic cell–natural cell communication was
carried out by Lentini et al. [147]. In their work, the synthesis of αHL was controlled by a
riboswitch that activated translation in the presence of a signaling molecule, theophylline.
αHL then formed pores in the membrane of synthetic cells and allowed the release of IPTG,
which, in turn, activated the synthesis of GFP in E. coli. Later, Lentini et al. designed syn-
thetic cells that can sense the presence of V. fischeri through N-3-(oxohexanoyl)homoserine
lactone (3OC6 HSL) and communicate with E. coli by synthesis of another homoserine
lactone 3OC12 HSL, or participate in the V. fischeri quorum-sensing mechanism by synthesis
and release of 3OC6 HSL (Figure 4D) [138]. Recently, the communication between cell-sized
synthetic cells and bacteria was taken to a new level by engineering light-harvesting E. coli
that creates proton gradients, leading to a pH change in the environment. By linking this
pH change to pH-dependent DNA-origami attachment to the synthetic cell membrane,
Jahnke et al. showed that synthetic cell shape change and deformation can be triggered by
the proton pumping activity of E. coli [148]. Apart from compartmentalized synthetic cells,
the DIB system has also been used to construct inducible gene circuits between E. coli and
synthetic cells confined in droplets-in-oil [149].

Another intriguing yet more complicated form of synthetic cell–natural cell communi-
cation is the interaction between synthetic cells and eukaryotic cells. For example, synthetic
enzymes have been compartmentalized in both liposomes and alginate microspheres to
mimic the function of cytochrome P450 enzymes in dealkylation and hydroxylation of sub-
strates. The products of these reactions then diffuse to mammalian HepG2 cells [150]. Even
though the reaction products were fluorophore molecules, the work underscores visions
to reconstitute more complicated synthetic cell–natural cell communication. In another
work, Toparlak et al. constructed synthetic cells that contain or synthesize a neurotrophic
factor that aids in neuronal differentiation and growth [151]. Most synthetic cells used in
intercellular communication are based on small ~100 nm vesicles. The scarcity of work on
cell-sized (~10 µm) synthetic cell–eukaryotic cell communication can be attributed to chal-
lenges including possible toxicity effects of synthetic cells, different timescales in synthetic
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cell life versus eukaryotic cell growth, and the stability of synthetic cells in physiological
conditions.

Even though intercellular communication is a critical characteristic of living organisms
and is responsible for their adaptability, growth, and survival, it is in its infancy for synthetic
cells. The difficulty of reconstituting complex response and feedback systems to specific
signaling molecules due to the limited pool of resources in a synthetic cell, non-specificity
of membrane pores in allowing diffusion of molecules, and lack of transport mechanisms
between synthetic cells create barriers for developing effective and efficient communication
strategies between synthetic cells. This further illustrates the significance of reconstituting
liposome fusion as it enables biomimicry of mechanisms found in exocytosis or viral
infection. Efforts in mediating communication via more specific membrane proteins or
fusion through specific DNA-pairing allow more specific targeted signal delivery and make
efficient communication possible.

6. Summary

The desire to recreate complex cellular processes has led to the emergence of bottom-
up synthetic biology. Synthetic cell research has propelled our understanding of biolog-
ical processes, such as protein synthesis, exocytosis (membrane fusion), and cell-to-cell
communications. We discussed different platforms of generating synthetic lipid bilayer
membranes in the context of studying different ion channels and membrane proteins. There
has been significant progress in generating giant vesicles with maximum encapsulation
and minimum-to-no leakage [60], especially in droplet microfluidics [152].

Although DNA-mediated and coiled-coil peptide-mediated membrane fusion have
gained popularity, they suffer from issues of controllability and stability of hemi-fusion
or fusion intermediates. Recently, inter-cellular communications among synthetic cells
and between synthetic cells and natural cells have received great attention in synthetic
cell research [153]. We believe the next frontier of synthetic cell research will focus on
developing increasingly sophisticated synthetic cell models that communicate with natural
living cells.
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