
https://doi.org/10.1177/11779322211037770

Bioinformatics and Biology Insights
Volume 15: 1–9
© The Author(s) 2021
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/11779322211037770

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
Neutrophils play a critical role in an organism’s immune 
response following bacterial infections, phagocytosing invad-
ers, and initiating more complex immune responses.1 
However, the complete mechanism of neutrophil production, 
homeostasis, and functional regulation remains largely enig-
matic. To gain further insight, scientists use Danio rerio 
(zebrafish) to study neutrophils. This animal model is used 
for several reasons. First, zebrafish embryos are transparent 
and develop ex utero, allowing manipulation and visualization 
of early embryonic processes like hematopoiesis (blood devel-
opment). Zebrafish are also extremely fecund, allowing large 
sample sizes to be obtained for studies very quickly. Finally, 
their genome has been well characterized, and zebrafish share 
many essential molecular pathways with other vertebrates like 
humans. Importantly, many transgenic lines of zebrafish exist, 
whereby blood-specific promoters drive fluorescent protein 
expression in different cell populations. One example of a 
widely used transgenic zebrafish model is the mpx: EGFP 
(enhanced green fluorescent protein) line that has the neutro-
phil-specific myeloid-specif ic peroxidase promoter driving 
green fluorescent protein (GFP) expression in neutrophils 
allowing real-time visualization under a fluorescent micro-
scope.2-4 However, neutrophils are the most common leuko-
cyte, so the quantification process is laborious and error prone. 
Therefore, we sought to develop a machine learning algo-
rithm to offer an unbiased, consistent method to perform 
counting neutrophils.

The use of deep learning models in biomedical research has 
grown over the past years. Prior studies have applied convolu-
tional neural networks (CNNs) and related artificial intelli-
gence frameworks for tasks ranging from breast cancer tumor 
size prediction5 to pathology detection from radiograph chest 
images.6 Using these methods to rapidly identify phenotypes 
in zebrafish would be useful for researchers in many fields. 
Convolutional neural network models were previously devel-
oped to classify zebrafish defects following exposure to toxic 
substances.7 Similarly, a deep learning classifier was used on a 
mere 84 whole-body image (pre-augmentation) for high-
throughput classification of zebrafish bodily deformations.8 
However, very little research has been performed to rapidly 
quantify fluorescently labeled blood cells. Typical methods 
include photo/video processing combined with binary thresh-
olding,9 but these attempts are limited in cases of images with 
background artifacts or unfavorable lighting conditions. In 
addition, they require significant algorithmic parameter tuning 
which can lead to varying results depending on the observer 
and data collection method. While other procedures such as 
flow cytometry exist to accurately quantitate these cells, that 
process is time-consuming if the cells are tissue-resident, 
because the animals must be made into single-cell suspensions 
through chemical or physical means before being quantitated 
on a flow cytometer,10 which is an expensive piece of equip-
ment for many laboratories. That process is also somewhat dif-
ficult to automate, so it is not optimized for large-scale 
screening methodologies. As such, automated machine-aided 
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counting methodologies should allow for rapid, consistent, and 
accurate cell counts.

While neural network–based methods exist, most of the 
programs are either too restrictive or overly general. For exam-
ple, software packages such as “CellProfiler” use deep learning 
methods for cell counting and segmentation tasks.11 However, 
these models restrict users to the pretrained dataset so they 
limit application of such methods in niche fields such as 
zebrafish fluorescent blood cell counting. A more general 
framework recently developed is an encoder–decoder style 
“U-Net” fully deep-learning framework that performs both cell 
detection and segmentation.12 While it can be adapted to work 
with the ImageJ plugin, a widely used biological image process-
ing software, it still is too general for use for most applications. 
Due to these issues, there is a need for deep learning models to 
be specifically developed for laboratory niche–specific purposes 
such as enumerating fluorescent blood cells.

To address these issues, we trained a “you only look once” 
(YOLO) deep learning framework to detect and count fluores-
cently tagged mpx: GFP cells in zebrafish. The reasons for this 
were multiple. We hypothesized that we could build a user-
friendly framework and it would count cells quickly, consist-
ently, and in an unbiased manner. We also hypothesized that 
once trained, the framework could look at images from differ-
ent microscopes, at different magnifications, with different 
image quality and backgrounds, of different tissues, and still 
accurately identify fluorescent cells. In this article, we validate 
that the model is able to accurately count fluorescent cells by 
comparing counts with that done by multiple humans. 
Importantly, we used it to verify the results of a prior published 
study.13 Finally, we show that this technique can be used on 
images obtained from different microscopes, different cameras, 
and different tissues of zebrafish, indicating that it is widely 
useful for multiple different assays. In short, the modified 
YOLO framework presented here should help laboratories 
that routinely quantitate fluorescently labeled blood cells per-
form their work more accurately and quickly. This develop-
ment would especially help those trying to automate and 
perform large-scale screens on zebrafish.

Materials and Methods
Zebrafish husbandry and care

Zebrafish were mated, staged, and raised as described14 and 
maintained in accordance with California State University, 
Chico (CSUC) Institutional Animal Care and Use Committee 
(IACUC) guidelines. All procedures were approved by the 
CSUC IACUC before being performed. Personnel were 
trained in animal care by taking the online Citi Program train-
ing course titled “Working With Zebrafish (Danio rerio) in 
Research Settings” (https://www.citiprogram.org). mpx: 
EGFP2 fish were used for these studies. Zebrafish were housed 
in a 700 L recirculating zebrafish aquarium system (Aquatic 
Enterprises, Seattle, WA) regulated by a Profilux 3 Outdoor 

module that regulated salinity, pH, and temperature (GHL 
International, Kaiserslautern, Germany) 24 hours a day. The 
facility was illuminated on a 14 hour light/10 hour dark cycle. 
Zebrafish were fed once a day with hatched brine shrimp 
(Brine Shrimp Direct, Ogden, UT) and once a day with 
Gemma micro 300 (Skretting, Westbrook, ME). After experi-
ments were performed, all animals were returned to the aquar-
ium system to be used for further research.

Data collection and labeling

Due to the novelty of this task, we had to create a custom-labeled 
dataset. We used a Leica FireCam camera (Leica, Wetzlar, 
Germany) to capture 110 images of zebrafish with fluorescent 
mpx: GFP+ cells. Imaging occurred over several days so these 
zebrafish images varied in lighting conditions and orientation. 
This probable sampling method reflects the limited data availa-
bility required for the training of this model. Following data col-
lection, individual mpx: GFP+ cells in the zebrafish were labeled 
using labeling software (lablelimg; https://pypi.org/project/labe-
lImg/1.4.0/) by multiple independent undergraduate laboratory 
students to reduce bias. In addition, 20 images of zebrafish 
without mpx: GFP+ cells were also imaged to include negative 
controls (images with no bounding boxes) in the training pro-
cess. For training purposes, all images had standard image qual-
ity and conditions to observe mpx: GFP fluorescent cells in 
zebrafish. As such, no outliers were included in our dataset.

Data augmentation

Object detection performance improves with a larger dataset. 
However, due to limited data availability as described above, we 
used image augmentation software to artificially increase the 
training sample size. We implemented vertical and horizontal 
flips, 90° rotations, hue increases, and average blurring.15 The 
final dataset size was 770 images, with 700 images in the train-
ing set and 70 images in the test set. These training and test 
sets were augmented separately to ensure that no test images 
were used for training. A similar augmentation process was also 
done for mpx: GFP– zebrafish images; in total 200 negative 
image samples were used.

“You only look once”

Our model uses the preexisting YOLO framework; YOLO is 
an object detection algorithm that can predict bounding boxes 
and class probabilities of objects (“cell”) in an image in a single 
forward propagation step. The version 3 (YOLOv3) trained in 
this experiment consists of a 53-layer feature extractor 
(Darknet-53) followed by 53 layers of functions that upsample, 
concatenate, and resize images for detection at 3 different scales.

The algorithm begins by dividing the input image of mpx: 
GFP zebrafish into S × S grid cells. Each grid cell must 
predict “B” number of bounding boxes and “C” number of 

https://www.citiprogram.org
https://pypi.org/project/labelImg/1.4.0/
https://pypi.org/project/labelImg/1.4.0/
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class probabilities if an object center falls inside that grid cell. 
After this process is complete, a 3-dimensional (3D) tensor 
of shape (S, S, [B × 5 + C]) is output. In this shape, S rep-
resents the number of grid cells the image is divided into; 
with an image of size 416 × 416 pixels, this value is 13, 26, 
and 52. There are 3 values because YOLOv3 performs detec-
tions at 3 scales to detect objects of varying sizes. B depends 
on the number of bounding boxes predicted per cell; in this 
case, B = 3. 5 refers to the 5 values associated with each 
bounding box: bx (x coordinate of counting box), by (y coor-
dinate of the bounding box), bh (height of the bounding 
box), bw (width of the bounding box), and a confidence value 
(the algorithm’s confidence that an object exists within a par-
ticular box). The last value C refers to the number of classes 
(ie, “cell”), which equals C = 1. With detections at 3 differ-
ent scales and 3 bounding boxes detected per grid cell, the 
final tensor output is of shape ([13 × 13] + [26 × 26] + [52 
× 52], [3 × 5 + 1]).

Model performance evaluation metrics

Although YOLO produces a large tensor output, not every sin-
gle prediction represents a correct bounding box. To address 
this issue, YOLO uses the idea of confidence thresholding 
(Equation 1) and non-max suppression (NMS) to determine 
the most probable bounding box encompassing the object (ie, 
“cell”). The ideal NMS threshold for this model was set via 
precision/recall curve analysis on the testing dataset across a 
multitude of thresholds.

Pr Cell Object Pr Object IOU

Pr Cell IOU

pred
truth

pred
tr

|( )× ( )×
= ( )× uuth .

 (1)

In addition to NMS thresholding, we further manipulated 
the final boxes that were displayed and counted by adjusting 
the model’s Intersection Over Union (IOU) threshold. This 
allowed for the retention of non-overlapping bounding boxes 
for a single cell. If the threshold is set too high, then the model 
risks artificially lowering the number of detections, or vice 
versa if the threshold is too low. To find the ideal threshold 
value, correlation coefficient analysis was performed compar-
ing human counts with the model’s predictions of total cell 
counts across various thresholds (Table 1).

The standard machine learning metric values for true posi-
tive, false positive, recall, precision, F1, Average Precision (AP), 
and percent error, were calculated to find this ideal threshold 
NMS and IOU and evaluate to its subsequent performance 
(see “Results”).

Training YOLO

The YOLOv3 algorithm was initially configured to predict 80 
different classes. For the purposes of this study, we only wanted 
to detect 1 class (“cell”). To make this change, we had to modify 
the configuration file in the following manner:

1. The [YOLO] layers had “classes” set to 80; we changed 
this value to 1.

2. In changing the class value, we also had to adjust the fil-
ter value on the convolutional layers that preceded each 
[YOLO] layer
a. The number of filters equals the product of the num-

ber of anchor boxes and number of classes plus 5, 
as explained in the original YOLO implementation 
manuscript.16 In this case, anchor boxes = 3, classes 
= 1, and number of filters = 18 (Equation 2).

To train the model, 700 mpx: GFP+ zebrafish images were 
used as previously described. This implementation of YOLOv3 
does not require the 70 testing dataset images during the train-
ing period. Weights were adjusted based on the Adam optimi-
zation stochastic gradient descent algorithm with momentum 
(SGDM) and backpropagation. The learning rate hyperpa-
rameter was set to 1E-3 for the first 1000 training iterations 
and lowered to 1E-5 following 2000 iterations to improve 
model convergence. The weights from 3000 iterations were 
used for the final model as loss failed to decrease beyond 10.46. 
Adjustment of parameters, NMS threshold, and IOU for final 
output occurred following training.

Number of Filters Number of Anchors

Number of Class

=

× +( )5 .  (2)

All training of the neural network occurred on a web-based 
Google Colab server with a single 12 GB NVIDIA Tesla K80 
GPU over a timespan of approximately 12 hours.

Statistical methods

Statistical analyses were performed in Microsoft Excel for 
Mac, version 16.49. To discern statistical difference, data were 

Table 1. Optimal threshold determination via correlation coefficient 
analysis.

CORRELATION COEFFICIENT (r) THRESHOLD P vALUE

0.8038 0.1 1.48E-3

0.8117 0.15 7.44E-2

0.8207 0.2 5.64E-1

0.8192 0.25 6.23E-1

0.8111 0.3 1.28E-1

0.8150 0.4 4.68E-4

0.80286 0.5 1.14E-8

0.7982 0.6 1.91E-16

The correlation coefficient (r) ranges between +1 and −1. The value of r 
between the validation set actual cell counts and model generated cell counts 
was calculated at multiple threshold values. It was approximately optimal at a 
threshold value of 0.2 threshold, with r = 0.8207 (in bold). P values are listed in 
the far-right column.
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analyzed using an unpaired 2-tailed Student’s T test assuming 
unequal variance. All raw data from these studies are supplied 
in Supplemental Material.

The YOLO framework

The full YOLO framework explained in this article can be 
found at https://github.com/sthapa320/darknet

Predicting optimal threshold

The YOLO framework outputs the final bounding boxes 
around the objects (ie, “cell”) based on the confidence score 
equation described earlier. In short, boxes with low confidence 
were removed and those with high confidence were displayed. 
In addition, one can further manipulate what is finally dis-
played by adjusting the model’s threshold. However, if the 
threshold is set too high, then the model may artificially lower 
the number of detections or vice versa if the threshold is too 
low. To find the ideal threshold value, we used the correlation 
coefficient equation to compare human counts with the mod-
el’s predictions of total cell counts and selected the final thresh-
old to be 0.20, in which r = 0.8512. (Table 1).

Results
To evaluate our model and its ability to detect and enumerate 
mpx: GFP+ cells, we first uploaded 70 unseen images (images 
not used to train the model) with fluorescent cells (Figure 1A) 
to serve as the validation dataset. We used the trained YOLO 
model to detect neutrophils on images with no prior preproc-
essing (Figure 1B), and recorded the total number of neutro-
phils in each image for further analysis (Figure 1C).

We measured the performance of our model in 3 ways. First, 
we determined the model’s ability to classify and identify 
objects based on standard machine learning metrics of 

precision and recall at a threshold of 0.20 under ideal NMS 
and IOU thresholds (Figure 1). Second, we determined percent 
error between model and human labeling in counting the total 
number of cells in the validation dataset. Finally, we confirmed 
the model’s robustness by processing images from a previously 
published study and comparing the results. We also processed 
various images from external sources.

Standard machine learning metrics

Through precision-recall curve analysis, we determined NMS 
confidence threshold to be optimal at 0.30 (Figure S1 in the 
Supplemental Material). In addition, we used correlation coeffi-
cient analysis to determine the optimal IOU thresholding level, 
which yields the fewest false positives and removes duplicating 
bounding boxes for the same cell (Table 1). This optimal IOU 
value was 0.20, with a correlation coefficient of 0.8207 between 
the human-labeled and computer-labeled data. In addition, the P 
value at this IOU threshold is 5.64E-1 for a 2-tailed T test 
assuming unequal variance. The null hypothesis assumes no dif-
ference between the computer-generated values and true human-
determined values, with a significance level of .05. With the P 
value of 5.64E-1 at the IOU of 0.20, we fail to reject the null 
hypothesis and conclude the computer counts and human-deter-
mined count values have no statistical difference. Lower IOU 
thresholds (0.1-0.15) and higher IOU thresholds (0.2-0.6) yield 
correlation coefficient values around 0.8 (comparable with our 
optimal value of 0.2), but the calculated P values for these thresh-
olds indicate statistical difference (Table 1).

Summarized in Table 2, at the confidence threshold of 0.30 
and IOU of 0.20, the precision was 0.80, which means that when 
the model predicts a cell bounding box, it is correct 80% of the 
time (Equation 3). The recall value was 0.87, indicating that the 
model accurately identifies and bounds 87% of all cells in the 
validation image dataset (Equation 4). The harmonic mean (F1), 

Figure 1. Neutrophil detection and enumeration workflow. (A) Batch images of zebrafish with mpx: GFP+ cells are uploaded. (B) Each image is processed 

through the custom-trained YOLO model with a threshold confidence of 0.2 for detection. (C) The total cell count per fish is output in a text file for further 

analysis via other statistical software. A folder containing all labeled images is also available for manual verification of the model’s output. 

https://github.com/sthapa320/darknet
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a single number summary statistic of precision and recall, was 
0.84 (Equation 5). The overall average precision for recall value 
over 0 to 1 was 85.52% (Table 2). Given these parameters, it is 
clear our YOLO model effectively marks neutrophils and can 
count the numbers present in each fish (Figure 1).

Precision
True Positive

True Positive False Positive
=

+
.  (3)

Recall
True Positive

True Positive False Negative
=

+
.  (4)

F
precision recall

precision recall
.1

2
=

× ×( )
+

 (5)

Standard accuracy

Using the confidence threshold value of 0.30 and IOU threshold 
of 0.20 as described above, we calculated the counting accuracy of 
our model by comparing the total number of ground truth cells 
(labeled cells) and the total number of estimated cells in the vali-
dation dataset; the model counted 8579 cells total, while humans 
counted 7896 cells total across 70 images. The percent error of 
the model, in comparison with true labels, measured 8.65% (Table 
2). At first, there appeared to be an overestimation of cell count 
occurring. However, on closer observation, it was determined that 
the model advantageously counted some cells originally missed or 
miscounted by humans (Figure 2).

General robustness

Finally, we predicted our model could validate a previous 
study in which only human observers manually counted the 
total number of mpx: GFP+ cells per zebrafish. In that study, 

single-cell-stage embryos were either left to develop nor-
mally or injected with a morpholino against the transcript 
for ism1. Rescuing this knockdown with the addition of the 
gene’s mRNA is a common way to rescue that reduction. 
That study determined that reduction in ism1 caused a 
reduction in neutrophils in the developing embryo.13 At 
48 hours post fertilization (hpf ), mpx: GFP cells were enu-
merated manually for each experimental setup (Figure 3A). 
Applying our model, we saw similar trends (Figure 3B). The 
exact count values differ, but the trend is upheld. In addition, 
the data are still statistically significant, although the P val-
ues vary. Importantly, the data are still significant, and it 
appears that the model is even more stringent than human 
counting. Of interest is that the model performed the count-
ing of the same images in minutes, while the data obtained 
for Figure 3A took hours. To validate the data in Figure 3A, 
usually multiple students would count the data blinded to 
the experimental setup. In this way, the model really reduced 
our time to interpret data from days to minutes. And, there 
was no need to “blind” the computer; it was not biased in its 
neutrophil detection.

To view the general robustness of the model, we also tested 
its performance with images taken outside of our laboratory 
and with different microscopes and computers. We also wanted 
to see if it could identify cells in regions of the zebrafish that it 
had not seen before, such as in older embryos and the adult tail 
(we trained the model on 48 hpf embryos). To answer this 
question, we first acquired 72 hpf mpx: GFP zebrafish images 
from a laboratory in the Czech Republic. Figure 4 displays an 
example output for an image taken on a different microscope (a 
Zeiss AxioZoom V.16 microscope was used instead of our 
Leica) and at a later stage of development; the model had no 
issues extrapolating how many cells were present. More nota-
bly, Figure 5 shows a picture of an adult zebrafish tail from a 
laboratory in Belgium with mpx: GFP+ cells correctly labeled, 
despite our training model data containing no similar images. 
Overall, these data indicate that once the model is trained, it 
can easily identify mpx: GFP+ neutrophils in a multitude of 
different situations.

Discussion
One of the benefits of using the zebrafish is that it allows 
investigation of complex developmental processes like hemat-
opoiesis that occur in utero for other vertebrate species. One of 
the most advantageous tools that exist for zebrafish are trans-
genic animals whereby specific cells are labeled with fluores-
cence and can be enumerated. In our laboratory, we study the 
hematopoietic system, and use mpx: GFP animals extensively; 
they have GFP+ neutrophils. Altering gene expression in the 
fish allows us to see differences in neutrophil production, pro-
liferation, and homeostasis, depending on the time of develop-
ment that we examine. However, these experiments are prone 
to human error and take a considerable amount of time, espe-
cially if large amounts of animals are being examined.

Table 2. Model performance.

CONFIDENCE THRESHOLD 0.3

IOU threshold 0.2

Label cell

TP 6673

FP 1279

Precision 0.8

Recall 0.87

F1-score 0.84

AP 85.52%

Percent Error Model 8.65%, actual: 7896; 
model: 8579 (TP + FP)

The confidence threshold was set at 0.3 and the IOU threshold was set at 0.2, 
allowing for calculations for percent error, number of true positive/negative cell 
counts, and other standard machine learning metrics for model performance. 
Abbreviations: AP, average precision; FP, false positive; IOU, Intersection Over 
Union; TP, true positive.
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In most laboratories, much of the data analysis following 
experimentation relies on human counting. This is problematic 
in several ways. First, the person counting may be biased to the 
outcome of the experimental procedure. Either blinding the sub-
jects to the experimental condition or validating findings with 
another viewer has to be performed. Second, the whole process is 
time-consuming. Images must be taken and then manually 
counted. These counts can take hours, especially when there are 

hundreds of events per zebrafish. Theoretically, the model we 
developed could be automatically performed when an image is 
taken, allowing near instantaneous results in the laboratory. This 
would speed up data collection and allow new experiments to be 
performed much faster and more efficiently.

It is also important to note that a huge benefit of zebrafish is 
its high-throughput screening potential. With the dawn of deep 
learning and computer vision, many biologists have sought to use 

Figure 2. Model advantageously “overestimates” the number of mpx: GFP+ cells. (A) mpx: GFP cells in 48 hpf embryos were manually labeled by 

students in the laboratory. The white arrow points to a box which indicates a single cell when 2 actually exist. (B) These cell detections were output by the 

YOLO model. The white arrows indicate 2 boxes that separate 2 cells. The YOLO model detects cells in blurry regions and separates them into multiple 

individual cells, rather than a large single cell, leading to differences in cell count. Also note that YOLO detects cells not identified manually (red arrows). 

Figure 3. The YOLO model output matches manual cell count data trends. (A) mpx: GFP single-cell-stage embryos were injected with 7 ng ism1 MO 

(triangles), or 7 ng ism1 MO and 17.88 ng of ism1 mRNA (rescue; circles); uninjected embryos served as controls (diamonds). Developing 48 hpf zebrafish 

were visualized, and individual mpx: GFP+ cells were enumerated by manual counts. Each data point represents total amount of mpx: GFP+ cells present 

in 1 zebrafish. ism1 MO reduced mpx: GFP counts, and adding mRNA rescued that reduction. Data originally from Berrun et al.13 (B) Images from (A) were 

then examined with the YOLO model. Although there are differences in the counts, the trends are consistent across the human and YOLO automated cell 

counter. Lines represent average, and error bars represent SD. The P values listed in images, N.S. represents no significance. 
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computational methods to remove some biases and perform data 
analysis more efficiently. Studies done by Tyagi et al7 and Ishaq 
et al8 used deep learning CNNs to phenotype zebrafish deform-
ity for toxicology screening purposes. We began this project with 

the goal of using deep learning methods to effectively, efficiently, 
and easily count myeloid cells in mpx: GFP animals. It could eas-
ily be used to quantitate neutrophil counts after exposure to tox-
ins or application of drugs with therapeutic potential.

Figure 4. The YOLO model can be used to quantitate mpx: GFP+ cells in images taken with different microscopes, in different laboratories, and at 

different times. (A) 72 hpf mpx: GFP embryos imaged with a Zeiss AxioZoom v.16 microscope. Head of embryo is to the left of image. (B) Cell detections 

calculated by the YOLO model. Images courtesy of Petr Bartunek. 

Figure 5. The YOLO model can be used to quantitate mpx: GFP+ cells in the adult zebrafish tail. (A, B) Adult zebrafish had their caudal fins amputated 

and imaged 4 days later to observe recruitment of mpx: GFP+ neutrophils. (C, D) Even though the YOLO program had never seen adult zebrafish images, 

it accurately identified mpx: GFP+ cells. Images courtesy of valerie Wittamer. 
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In this study, we presented the use of a YOLO machine 
learning algorithm trained on 900 images (700 GFP+ images 
and 200 GFP– images) total following augmentation to quan-
titate myeloid cells in mpx: GFP zebrafish. The current method 
of quantitation requires 1 to 4 hours of manual human count-
ing, which can be biased due to the subjective nature of the 
task. When comparing our model performance with manual 
human myeloid cell counts, we found the percent error to be 
8.65% and correlation coefficient to be r = 0.8207. We noted 
the training dataset had some images in which some cells 
lacked labels, as human observers at times cannot differentiate 
cells in blurry sections of images; thus, the values of the correla-
tion coefficient might be higher for our model and the percent 
error much lower. Typically, validation of machine learning 
algorithms benefit from an external labeled data source. 
However, due to the novelty of this project, we had to verify via 
other means; we obtained data from a previously published 
project that found ism1 knockdown resulted in less neutrophils. 
Processing that project’s data through our model, we were able 
to reach the same conclusion with statistical evidence of similar 
trends, validating the usefulness of the model.

To put our algorithm performance into perspective, we 
must discuss the significance of the percent error value and 
the model’s generalization across different image types. In 
addition to the calculation of 8.65% error for the model, we 
also estimated the general variability between researchers in 
manual cell counting. By comparing cell counts for the same 
zebrafish image across 3 manual human counters for the 
validation dataset, we found the total cell count to vary by 5% 
to 12%. This indicates that the model’s error falls within the 
range of variability found between human cell counters for 
the same task. Furthermore, it brings up an additional 
strength of the model; as the training data were labeled by 
multiple human cell counters, the model should not have any 
particular bias allowing for a neutral observation and count-
ing of experimental and control data for future research 
experiments.

The cell counting process, especially with abundant cell 
types, is a time-consuming process hounded by many con-
founding factors. With our model, we demonstrate that a deep 
learning model can be adapted for the purpose of detecting and 
counting mpx: GFP myeloid cells and replace hours of manual 
(and potentially biased) human work. Future directions include 
the counting of other fluorescently labeled cell types and use of 
other object detection models to improve the accuracy of this 
task. However, a possible hindrance for future work is the data 
collection process and the limited number of deep learning 
model options. Zebrafish have an abundance of cells and the 
training of deep learning models requires that each object is 
labeled in each image, which in our case meant every cell in 
each fish must be labeled manually. Thus, for our task, the labe-
ling process was laborious due to the sheer number of fluores-
cent myeloid cells. Related to this issue, zebrafish fluorescent 

imaging often results in low-quality images which is difficult 
for object detection models to handle. To deal with this issue, 
we used the YOLOv3 model due to its performance in small 
object detection, which it achieves by making detections at 
multiple scales. Other deep learning model options were con-
sidered for this task, but the issue of detecting small-sized 
objects limited us to using different versions of YOLO.

Our study also addresses the issue of a lack of accessibility 
and increasing complexity when it comes to using deep 
learning tools in a practical setting. In other words, the aver-
age biologist does not have these tools at their disposal. We 
considered using algorithms such as U-Net, which is availa-
ble as an ImageJ plugin.12 However, despite its availability 
and use on the easily accessible ImageJ image analysis plat-
form, we note there are difficulties in downloading the addi-
tional U-net plugin, remote server setup requirements, and 
the lack of familiarity of basic science researchers with artifi-
cial intelligence tools. In this article, we demonstrate the 
benefits of implementing biocomputational tools in easily 
accessible cloud-based servers; the training and implementa-
tion of our model was done fully in the cloud-based Google 
Colab server. As a result, our model requires no additional 
software downloads and can be used by anyone with access to 
basic google drive services (see https://github.com/
sthapa320/darknet). This approach narrows the gap between 
beneficial biocomputational analysis tools and laboratory 
researchers. We believe that further tools must be developed 
that assist in biological analysis that also allow increased user 
accessibility.

Conclusion
In this article, we showed that deep learning models can detect 
fluorescently labeled myeloid cells in mpx: GFP zebrafish. This 
method addresses the biases that are associated with manual 
human counting and reduces analysis time by several hours. 
Further studies on zebrafish hematopoiesis will benefit greatly 
from this rapid deep learning-based model.
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