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Introduction
Marine environment is a unique source of biologically active 
secondary metabolites. Isolated compounds from marine 
resources are different from terrestrial metabolites because 
of special physical and chemical conditions in the marine 
habitat.[1] So marine organisms such as algae, sponges, fungi, 
corals, and ascidians contain potentially active metabolites with 
characteristic chemical structures. There are more than 2,400 
compounds in the field of marine natural plants isolated only 
from seaweeds of different regions of oceans.[2]

A number of research showed that marine seaweeds are 
potent resources for drug development. They contain 
important kinds of secondary metabolites such as steroids, 
terpenoids, phlorotannins, amino acids, phenolic compounds, 

and halogenated structures particularly ketones, glycolipids, 
and cyclic polysulphides.[3‑5] New structures and unique 
mechanisms of action of marine natural products have led to 
the identufucation and structure elucidation of substances with, 
antimicrobial, antiviral, antioxidant, antitumor, antidepression, 
anti‑inflammatory, and anti‑Alzheimer activities.[6‑9]

Glycoglycerolipids are one of the important groups of 
lipid compounds present in the marine seaweeds. These 
compounds are famous because of their especial activities, 
such as antitumor and anti‑inflammatory activities along 
with improving the intestinal condition.[10,11] Marine 
algae synthesize three important types of glycolipids: 
monogalactosyldiacylglycerides, digalactosyldiacylglycerides, 
and sulfoquinovosyldiacylglycerides (SQDG). A number of 
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seaweeds can convert simple polyunsaturated fatty acids into 
complex oxylipins[12] and these derivatives are extremely 
useful to keep homeostasis in mammalian systems. Besides 
glycolipids are abnormally produced in diseases such as 
psoriasis, asthma, arteriosclerosis, ulcers, and cancer.[13] 
Therefore, it is an interesting area to elucidate the structures 
of glycoglycerolipid molecules from seaweeds resources.

Sargassum is a genus of more than 250 species in Sargassaceae 
family that is widespread in different tropical and temperate 
oceans geographically. Until now, different glycerolipids have 
been isolated from sargassum species worldwide. Recent data 
have exhibited that more than 150 species of marine algae are 
present in the coastal area of Persian Gulf and Oman Sea of 
Iran.[14] There are only limited studies on the phytochemistry of 
the marine seaweeds of Iran, especially sargassum species. So, 
in this study, we have selected the brown seaweed Sargassum 
angustifolium to isolate its glycolipids.

Materials and Methods
General
TLC: GF254 silica gel plates (Merck, Germany, 20 × 20 cm); 
detection by spraying with 10% cerium sulphate and heating. 
Column chromatography (CC): silica gel 63‑200 μm. HPLC: 
Agilent 1100 Series with a silica column  (YMC Co., Ltd., 
Kyoto, Japan) and UV‑Vis detector. NMR: Bruker AV‑400 (1H) 
and AV‑100 (13C), EI‑MS spectra: Varian MAT 112 or MAT 312 
spectrometers. The GC‑MS was Agilent Technologies 6890N 
GC with a mass‑selective detector 5973 Network MSD and 
a silica‑capillary GC column HP‑5MS (30 m × 0.25 mm; i.d. 
0.25 μm film, Agilent Technologies, Inc.).

Authentication of plant material
The algae was collected from Bushehr Province in 2012 and 
identified by Agricultural and Natural Resources Research 
Center of Bushehr (voucher specimens coded as 2662).

Extraction and fractionation of lipids
The powder of dried S.  angustifolium was extracted with 
EtOAc/methanol 1:1 (v/v) solvent at room temperature. The 
extracts were filtered and dried and partitioned to hexane, 
dichloromethane, butanol, and water through Kupchan method. 
The Hexane partition was fractionated by normal phase MPLC 
with a gradient solvent system from pure hexane to 100% 
EtOAc. The eluates were monitored by 1HNMR and TLC and 
divided into 14 fractions (Frs. 1‑14). Fraction F14 was purified 
on a silica gel columnand chloroform/methanol solvent with 
increasing amounts of methanol (95:5, 90:10, 80:20, 50:50 v/v) 
and 100% methanol. The eluates were combined into 12 final 
fractions. Fractions F14i, F14j, F14k, and F14l were further 
isolated by HPLC separation yielded the pure compounds 1, 
2, 3, 4, and 5.

Alkaline hydrolysis
A 12% solution of each compounds  (2‑5) was treated 
with NaOMe (0.5M in MeOH) and stirred for 5 h at room 
temperature. After this time, the mixture was further 

neutralized with Dowex 50 W × 4 and the resin filtered. The 
filtrate was dissolved in hexane, concentrated and analyzed by 
GC‑MS. The column oven temperature was 80°C for 1 min 
and then increased up to 310°C with a rate of 15°C/min (flow 
rate 0.8 mL/min).

In vitro cytotoxicity assay
The HeLa  (epitheloid cervix carcinoma) cell line and 
HUVEC (and human umbilical vein endothelial cells) were 
obtained from the Pasteur Institute of Iran. Cells were incubated 
in an incubator with 5% CO2 at 37°C. The cells were fed with 
Roswell Park Memorial Institute medium and Dulbecco’s 
Modified Eagle’s medium, supplemented with FBS (10%) and 
penicillin‑streptomycin (100 IU/mL and 100 µg/mL).

Compounds 2-5 were tested about cytotoxic effects using 
MTT  [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide] against HeLa as well as HUVEC cells. 
Briefly, a cell suspension of 2 × 105 cells/mL in 96-well plates 
were incubated overnight. The dried samples were dissolved in 
dimethyl sulfoxide (DMSO) (less than 1% final concentration 
of DMSO in the palate). 20 µL of various concentrations of 
compounds or partitions were added and incubated at 37°C in a 
humidified atmosphere for 72 h. After that cells were incubated 
with 20 µL of MTT solution (5 mg/mL) at 37°C for 3 h. The 
medium was removed and 150 µL of DMSO was added to 
dissolve MTT-formazan crystals. Finally, the absorbance at 
570 nm was measured by a plate reader. Following equation 
was used to calculate the cell survival:[15-17]

% Cell survival = (Absorbance in treated wells ‑ Absorbance 
in blank well)/(Absorbance in negative control or untreated 
well – Absorbance in blank well).

Results
Compound 1
White powder, MW (g/mol): 412 (M + H); 1H NMR (400 MHz, 
CDCl3): 5.38 (1H, br. d, J = 5.3 Hz, H‑6), 5.2 (1H, q, J = 6.7 Hz, 
H‑28), 3.58 (1H, m, H‑3), 1.52 (3H, br s, H‑21), 1.05 (3H, s, 
H‑19), 1.03 (3H, br s, H‑21),1.02 (3H, d, J = 1.2 Hz, H‑27), 
0.99 (3H, d, J = 1.2 Hz, H‑26), 0.75 (3H, s, H‑18). 13C‑NMR (100 
MHz, CDCl3): 146.5  (C‑24), 140.6  (C‑5),121.3  (C‑6), 
115.8 (C‑28), 71.4 (C‑3), 56.8 (C‑14), 55.2 (C‑17), 50.6 (C‑9), 
42.7 (C‑13), 42.1 (C‑4), 39.5 (C‑12), 37.5(C‑1), 36.4 (C‑10), 
36.3 (C‑20), 35.5 (C‑22), 34.8 (C‑25),31.6 (C‑7,8), 31.7 (C‑2), 
28.1 (C‑16), 25.5 (C‑23), 24.2 (C‑15), 22.1 (C‑26), 22.0 (C‑27), 
21.3 (C‑11), 19.5 (C‑19), 18.7(C‑21), 131.2 (C‑29), 11.8 (C‑18).

Compound 2
White powder, MW (g/mol): 792 (M + H); 1H NMR (400 MHz, 
DMSO): 4.32  (1H, dd, J  =  2.4,12  Hz, H‑1), 4.12  (1H, 
dd, J  = 7.6,12 Hz, H‑1), 5.12  (1H, m, H‑2), 3.86  (1H, dd, 
J  =  6,10.8  Hz, H‑3), 3.41  (1H, dd, J  =  6,10.8  Hz, H‑3), 
4.56 (1H, d, J = 3.6 Hz, H‑1ʹʹʹ), 3.18 (1H, dd, J = 6,9.6 Hz, 
H‑2ʹʹʹ), 3.36 (1H, t, J = 9.2 Hz, H‑3ʹʹʹ), 2.92 (1H, t, J = 9.2 Hz, 
H‑4ʹʹʹ), 3.75 (1H, ddd, J = 4.8,5.6,10.4 Hz, H‑5ʹʹʹ), 2.58 (1H, 
dd, J = 6,14 Hz, H‑6ʹʹʹ), 2.57 (1H, dd, J = 6.2,13.9 Hz, H‑6ʹʹʹ), 
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2.25  (4H, m, H‑2ʹ,2ʹʹ), 1.49  (4H, m, H‑3ʹ,3ʹʹ), 1.2‑1.3  (m, 
H‑4ʹ‑7ʹ, 12ʹ‑15ʹ, 4ʹʹ‑15ʹʹ), 5.31 (2H, t, J = 4.8 Hz, H‑9ʹ,10ʹ), 
0.84 (6H, t, J = 6.8 Hz, H‑16ʹ,16ʹʹ), 1.97 (4H, m, H‑8ʹ,11ʹ).
13C‑NMR  (100 MHz, DMSO): 172.3,173.5  (C‑1ʹ,1ʹʹ), 
129.5  (C‑9ʹ,10ʹ), 98.2  (C‑1ʹʹʹ), 74.2  (C‑5ʹʹʹ), 72.8  (C‑4ʹʹʹ), 
71.5 (C‑3ʹʹʹ), 69.6 (C‑2ʹʹʹ), 68.5 (C‑2), 64.5 (C‑3), 62.5 (C‑1), 
54.6  (C‑6ʹʹʹ), 33.4,33.5  (C‑14ʹ,14ʹʹ), 31.2  (C‑2ʹ,2ʹʹ), 
28.9‑29 (C‑4ʹ‑7ʹ,12ʹ,13ʹ,4ʹʹ‑13ʹʹ), 28.4 (C‑8ʹ,11ʹ), 24.4 (C‑3ʹ,3ʹʹ), 
22.0 (C‑15ʹ,15ʹʹ), 13.9 (C‑16ʹ,16ʹʹ).

Compound 3
White powder, MW  (g/mol): 826  (M  +  H); 1H NMR 
(400 MHz, MeOH): 4.32  (1H, dd, J  =  2.8, 12  Hz, H‑1), 
4.12 (1H, dd, J = 2.8, 12 Hz, H‑1), 5.17 (1H, m, H‑2), 3.86 (1H, 
dd, J = 5.6, 10.8 Hz, H‑3), 3.63 (1H, dd, J = 5.2, 10.8 Hz, 
H‑3), 4.12 (1H, d, J = 7.6 Hz, H‑1ʹʹʹ), 3.62 (1H, dd, J = 7.2, 
9.6  Hz, H‑2ʹʹʹ), 3.36  (1H, t, J  =  9.2  Hz, H‑3ʹʹʹ), 2.92  (1H, 
t, J = 9.2 Hz, H‑4ʹʹʹ), 3.75  (1H, ddd, J = 4.8, 5.6, 10.4 Hz, 
H‑5ʹʹʹ), 2.58  (1H, dd, J  =  6, 14  Hz, H‑6ʹʹʹ), 2.57  (1H, dd, 
J = 6.2,13.9 Hz, H‑6ʹʹʹ), 2.21 (4H, m, H‑2ʹ,2ʹʹ), 1.50 (4H, m, 
H‑3ʹ,3ʹʹ), 1.2‑1.3 (m, H‑1ʹ,1ʹʹ,4ʹ‑7ʹ,12ʹ‑17ʹ, 4ʹʹ‑15ʹʹ), 5.23 (2H, 
t, J = 4.8 Hz, H‑9ʹ,10ʹ), 0.84 (6H, t, J = 6.8 Hz, H‑18ʹ,16ʹʹ), 
1.97  (4H, m, H‑8ʹ,11ʹ). 13C NMR  (100 MHz, MeOH): 
174.7,175  (C‑1ʹ,1ʹʹ), 130.9,130.8  (C‑9ʹ,10ʹ), 105.3  (C‑1ʹʹʹ), 
76.8 (C‑5ʹʹʹ), 74.8 (C‑4ʹʹʹ), 72.4 (C‑3ʹʹʹ), 71.8 (C‑2ʹʹʹ), 70.2 (C‑2), 
68.7  (C‑3), 64.0  (C‑1), 62.4  (C‑6ʹʹʹ), 35,35.1  (C‑16ʹ,14ʹʹ), 
33.1  (C‑2ʹ,2ʹʹ), 30.8  (C‑8ʹ,11ʹ), 30.2‑30.6  (C‑4ʹ‑7ʹ, 12ʹ‑15ʹ, 
4ʹʹ‑13ʹʹ), 26.0 (C‑3ʹ,3ʹʹ), 23.7 (C‑17ʹ,15ʹʹ), 14.5 (C‑18ʹ,16ʹʹ).

Compound 4
Crystallin, MW (g/mol): 302 (M + H); 1H NMR (400 MHz, 
CDCl3): 3.54 (1H, dd, J = 2.8, 11.2 Hz, H‑1), 3.65 (1H, dd, 
J = 2.8, 11.2 Hz, H‑1), 5.24 (1H, m, H‑2), 4.13 (1H, ddd, J = 5.2, 
11.6, 12.4 Hz, H‑3), 2.2 (2H, t, J = 7.6 Hz, H‑2ʹ), 1.47 (2H, m, 
H‑3ʹ), 1.2‑1.3 (m, H‑4ʹ‑13ʹ), 0.83 (6H, t, J = 6.8 Hz, H‑14ʹ), 
1.58 (2H, m, H‑1ʹ). 13C NMR (100 MHz, CDCl3): 174.4 (C‑1ʹ), 

70.1 (C‑2), 65.5 (C‑3), 63.4 (C‑1), 34.2 (C‑12ʹ), 31.8 (C‑2ʹ), 
29.6‑29.8 (C‑4ʹ‑11ʹ), 24.8 (C‑3ʹ), 22.7 (C‑13ʹ), 14.1 (C‑14ʹ).

Compound 5
White powder, MW (g/mol): 836 (M + H); 1H NMR (400 MHz, 
DMSO): 4.26 (1H, dd, J = 2.8, 12 Hz, H‑1), 4.0 (1H, dd, J = 7.6, 
12 Hz, H‑1), 5.04 (1H, m, H‑2), 3.3 (1H, dd, J = 6, 16 Hz, H‑3), 
3.80 (1H, dd, J = 6,10.6, H‑3), 4.48 (1H, d, J = 4 Hz, H‑1ʹʹʹ), 
3.10 (1H, dd, J = 6,9.6, H‑2ʹʹʹ), 3.21 (1H, t, J = 9.6, H‑3ʹʹʹ), 
2.82 (1H, t, J = 9.2 Hz, H‑4ʹʹʹ), 2.90 (1H, s, H‑11ʹ), 3.68 (1H, 
ddd, J = 4.8, 5.6, 10.4 Hz, H‑5ʹʹʹ), 2.41, 2.47, 2.19 (4H, m, 
H‑2ʹ,2ʹʹ), 1.40 (4H, m, H‑3ʹ,3ʹʹ), 1.1‑1.2 (m, H‑4ʹ‑18ʹ,4ʹʹ‑15ʹʹ), 
0.76  (6H, t, J  =  6.8  Hz, H‑19ʹ,16ʹʹ). 13C NMR  (100 MHz, 
DMSO): 172.3, 172.5  (C‑1ʹ,1ʹʹ), 98.2  (C‑1ʹʹʹ), 74.2  (C‑5ʹʹʹ), 
72.8 (C‑4ʹʹʹ), 71.5 (C‑3ʹʹʹ), 69.6 (C‑2ʹʹʹ), 68.5 (C‑2), 64.5 (C‑3), 
62.6 (C‑1), 54.5 (C‑6ʹʹʹ), 42.07 (C11ʹ), 33.4, 33.5 (C‑14ʹʹ,16ʹ), 
31.2  (C‑2ʹ,2ʹʹ), 29  (C‑4ʹ‑7ʹ, 12ʹ‑15ʹ, 4ʹʹ‑13ʹʹ), 28.4  (C‑8ʹ), 
24.4 (C‑3ʹ,3ʹʹ), 22.0 (C‑17ʹ,15ʹʹ), 13.9 (C‑19ʹ,16ʹʹ).

Cytotoxic activity

The cytotoxic activities of all compounds was shown in table 1.

Discussion
Sargassum species are rich sources of different primary 
and secondary metabolites.[18‑20] Assignment of all 13C‑  and 
1H‑NMR signals was done by careful analysis of 1H‑1H COSY, 
DEPTHMBC, and HSQC spectra [Figure 1]. About compound 
2, a glycerol one spin moiety [δH 4.32 and 4.14 (δC 62.7); δH 
5.18 (δC70.2); δH 3.88 and 3.64 (δC 68.7)] was recognized.

The presence of acyl groups on the sn‑1 and sn‑2 
positions of the glycerol moiety was identified by 
HMBC  (Heteronuclear Multiple Bond Coherence) 
cross‑peaks  [δH/δC: 5.18  (Hsn‑2)/173.5, 175  (COO); 4.34 
and 4.13 (Hsn‑1)/172.5, 172.6 (COO); 2.29 (α‑CH2)/172.5, 
172.6  (COO)]. Therefore, terminal methyl signals of two 

Table 1: Cytotoxic activity of isolated compounds

Sample Compound 1 Compound 2 Compound 3 Compound 4 Compound 5
IC50 (µg/ml) 12.2±2.3 25.8±3.7 14.9±2.6 9.8±1.2 5.6±1.2

Figure 1: Structure of compounds 1‑5
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fatty acyl groups were shown by the second spin system 
signals (6H, t, J = 6.8 Hz, δC 14.6).

The relatively small coupling constant of the anomeric 
proton (H‑1ʹʹʹ), J = 3.7 Hz, presented the α orientation of the 
glycosidic part, and the large vicinal coupling constants between 
H‑2ʹʹʹ/H‑3ʹʹʹ, H‑3ʹʹʹ/H‑4ʹʹʹ, and H‑4ʹʹʹ/H‑5ʹʹʹ (J = 9.6 Hz), showed 
the glucopyranosyl structure of the sugar unit.

Besides, the 1H‑ and 13C‑NMR characteristic chemical shifts 
of carbon C‑6ʹʹʹ(δc 54.6) and methylene protons H‑6ʹʹʹ (δ 2.91 
and 2.55) indicated the presence of a sulphonyl group attach 
to the sugar (C‑6ʹʹʹ), instead of glucose.[21‑23]

All 1H- and 13C-NMR characteristic data are in agreement with 
the structure of 6-deoxy-6-sulpho-α-D-glucopyranosyl-1,2-O-
diacyl-glycerols. Alkaline hydrolysis with NaOMe in MeOH 
was done for identification of acyl substituents at sn-1 and 
sn-2. The hydrolysis was followed by GC/MS analysis. The 
composition of the fatty acid methyl esters was elucidated as 
methyl myristate, methyl oleate, and methyl palmitate, being 
the last in greater proportion.

Compound 5 was the most potent isolated compound as shown 
in Table 1. Comparing the structures and cytotoxic activity of 
isolated compounds shows that presence of a double bond in 
the side chains of fatty acid may reduce the cytotoxic activity. 
Structure activity relationship studies of SQDG has shown that 
the cytotoxicity is probably dependent on the fatty acid chain, 
besides each of the SQMG/SQDG was a stronger inhibitor than 
the fatty acid alone. The inhibitory effect could be influenced 
by the chain size of fatty acids too. The sulfate moiety in the 
quinovose is also important for the inhibition.[24]
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