
Continuous directed evolution of proteins with improved soluble 
expression

Tina Wang1,2, Ahmed H. Badran1,2, Tony P. Huang1,2, and David R. Liu1,2,3,*

1Merkin Institute of Transformative Technologies in Heathcare, Broad Institute of Harvard and MIT, 
Cambridge, MA, 02142

2Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138

3Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138

Abstract

We report the development of soluble expression phage-assisted continuous evolution (SE-PACE), 

a system for rapidly evolving proteins with increased soluble expression. Through use of a PACE-

compatible AND gate that uses a split-intein pIII, SE-PACE enables two simultaneous positive 

selections to evolve proteins with improved expression while maintaining their desired activities. 

In as little as three days, SE-PACE evolved several antibody fragments with > 7-fold improvement 

in expression yield while retaining binding activity. We also developed an activity-independent 

form of SE-PACE to correct folding-defective variants of maltose-binding protein (MBP) and to 

evolve variants of the eukaryotic cytidine deaminase APOBEC1 with improved expression 

properties. These evolved APOBEC1 variants were found to improve the expression and apparent 

activity of Cas9-derived base editors when used in place of the wild-type cytidine deaminase. 

Together, these results suggest that SE-PACE can be applied to a wide variety of proteins to 

rapidly improve their soluble expression.

Introduction

Soluble protein expression is a critical requirement for the production and application of 

proteins. E. coli is generally the most convenient and commonly used organism for protein 

expression. It is estimated, however, that < 50% of bacterial and < 15% of non-bacterial 

proteins can be expressed in soluble form in E. coli; common barriers to soluble expression 

include proteolysis or misfolding into inclusion bodies1. Moreover, engineering or evolving 

proteins towards improved or novel function can often lead to reduced soluble expression, 

impeding the development and application of proteins with tailor-made functional 
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properties2. While it is possible to optimize expression conditions3, vary host strains4, or 

fuse the protein of interest (POI) to solubility-enhancing tags5, an attractive complementary 

approach is to engineer or evolve the POI itself to improve its soluble expression under 

conditions that preserve desirable preexisting activities.

To this end, researchers have successfully used directed evolution to identify protein variants 

that are resistant to high temperatures6, denaturants7, or proteases8. The resulting proteins 

possess enhanced thermodynamic stability, a property that often, but not always, leads to 

improved soluble expression2. Screening protein libraries in whole cells or cell lysates to 

identify highly active variants can also coincidentally yield proteins with superior 

expression9, though this approach is often confounded by variants with higher activity and 

no improvements in expression. Finally, folding reporters measure soluble protein 

expression levels through fusion of the POI to a reporter protein such as GFP10,11. These 

reporters enable the selection of soluble variants outside of the context of protein activity, 

offering broad applicability but with potential loss in function.

In addition to the challenge associated with simultaneously yet independently selecting for 

soluble expression and protein function, traditional directed evolution approaches to 

improving protein expression introduce additional drawbacks, including substantial time and 

effort requirements12. Each round of traditional laboratory protein evolution can take a week 

or longer, rendering the prospect of evolving improvements in soluble expression in addition 

to new or improved functions an unattractive one. As a result, otherwise interesting targets 

for protein evolution are often not pursued due to the intractability of expression under 

standard laboratory conditions. A method that allows the rapid improvement of protein 

expression, coupled with the preservation or improvement of protein function, would 

therefore offer substantial benefits.

Here we report a phage-assisted continuous evolution (PACE) system for rapidly evolving 

proteins with improved soluble protein expression in E. coli, either in the presence or 

absence of a simultaneous selection for protein function. The system uses an AND logic gate 

that enables PACE under two simultaneous positive selections. We applied this system 

towards the evolution of antibody single-chain variable fragments (scFv) that canonically 

misfold and aggregate in the E. coli cytoplasm. In as little as three days, our system evolved 

several scFv variants with improved cytosolic expression and little to no loss of binding 

activity. Additionally, using disulfide-free scFvs, our PACE system evolved variants with 

enhanced thermodynamic stability in as little as five days. In an activity-independent mode, 

the system yielded APOBEC1 cytidine deaminase variants with improved solubility that 

enhanced the purification yields and editing activity of base editors in E. coli and 

mammalian cells. Together, these results establish soluble expression PACE (SE-PACE) as a 

rapid method to improve the expression and, in some cases, the stability, of a variety of 

proteins while preserving their function.
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Results

A split T7 RNAP reporter for soluble expression PACE

In PACE (Fig. 1a), a population of filamentous bacteriophage (selection phage, SP) is 

continuously diluted out of a fixed-volume vessel (the lagoon) by host E. coli cells. 

Engineered SPs carry the evolving gene of interest in place of gene III (gIII), which encodes 

the minor coat protein III (pIII) that is required to generate infectious progeny phage. SPs 

containing desired (active) variants of the gene of interest trigger gIII expression and pIII 

production from an accessory plasmid (AP) in the host cells. Progeny phage production 

scales with pIII levels13. As a result, SPs encoding desired target gene variants produce more 

infectious offspring capable of replicating faster than they are diluted from the lagoon. 

Diversity is generated through induction of a mutagenesis plasmid (MP) that dramatically 

increases SP mutation rates14. PACE has been successfully applied to a wide range of 

proteins, including polymerases15–17, proteases18,19, genome-editing proteins20, insecticidal 

toxins21, and aminoacyl-tRNA synthetases22.

To link target protein expression to the production of pIII and phage propagation, we sought 

to render T7 RNA polymerase (T7 RNAP) activity dependent on the soluble expression of a 

target protein (Fig. 1b), and then use the resulting T7 RNAP activity to drive gene III 

expression15–19,22. Although full-length T7 RNAP (883 amino acids) is too large to use as a 

folding reporter,11 T7 RNAP can be split between amino acids 179 and 180 to produce two 

fragments that are individually inactive but spontaneously associate into functional T7 

RNAP23,24.

We reasoned that by fusing the smaller N-terminal fragment of this split T7 RNAP (T7n, 

amino acids 1–179) to the C-terminus of the protein of interest (POI) and providing the 

larger T7 RNAP fragment (T7c, amino acids 180–883) in the host cell, expression of a PT7-

gIII transcript would be dependent on soluble POI expression. Previous folding reporter 

studies11 suggest that the overall folded state of the POI–T7n fusion should be strongly 

determined by the degree to which the N-terminal POI is soluble and well-folded. Therefore, 

SP encoding a soluble, well-folded POI–T7n fusion should allow the T7n domain to 

associate with T7c, restoring T7 RNAP-mediated transcription of gIII from its T7 promoter 

(PT7) (Fig. 1b) and enabling propagation of SP encoding the POI during PACE (Fig. 1a). In 

contrast, SP encoding POIs that express poorly, are unstable, or are prone to aggregation or 

proteolysis should result in less available POI–T7n and reduced T7 RNAP activity, and thus 

fewer progeny phage (Fig. 1a,b).

To test this SE-PACE selection system, we performed transcriptional activation assays in 

which bacterial luciferase (rather than gene III) expression is controlled by PT7 

(Supplementary Fig. 1). We fused a variety of known maltose binding protein (MBP) 

mutants with variable soluble expression properties25,26 to T7n. We observed a correlation 

between luminescence signal and soluble expression levels of the MBP mutants (Fig. 2a and 

Supplementary Fig. 2a), as well as a weaker relationship between luminescence and the 

known thermodynamic stability of the MBP mutants (Fig. 2b). These results demonstrate 

that POI–T7n fusions allow split T7 RNAP activity to be linked primarily to the soluble 

expression levels and, to a lesser extent, the thermodynamic stability of a model POI.
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Next, we performed competitive phage propagation experiments using SP encoding wild-

type MBP or a destabilized mutant (G32D+I33P) in a PACE format. Unlike wild-type MBP, 

the G32D+I33P mutant has been shown to express primarily in inclusion bodies25. SP 

encoding wild-type MBP-T7n selectively propagated at the expense of SP encoding 

MBP(G32D+I33P)-T7n on host E. coli cells containing an AP that constitutively expresses 

T7c and provides gIII from PT7. After 45 h of continuous propagation at a flow rate of 1 

lagoon volume/hour, corresponding to 23 average generations of phage evolution, the SP 

encoding wild-type MBP were enriched at least 10,000-fold over the SP encoding the 

mutant MBP (Supplementary Fig. 2b). These findings establish the ability of SE-PACE to 

support the selective propagation of SPs encoding soluble proteins in a PACE format.

Finally, we applied this selection to evolve variants with improved solubility starting with 

the two most poorly expressed MBP mutants tested, Y283D and G32D+I33P, in PACE (Fig. 
2c) using enhanced mutagenesis (mutagenesis plasmid MP6, ref. 14) and a flow rate of 0.5–2 

lagoon volumes/hour. After 72 h (80 average generations) of PACE, we observed complete 

reversion of the Y283D mutant to wild-type MBP (Supplementary Fig. 3a). The lagoon 

seeded with the MBP(G32D+I33P) mutant evolved a P33T substitution at the critical 

position 33, which improved expression levels by ~2-fold (Supplementary Fig. 3b). 

Together, these results suggest that the split T7 RNAP folding reporter can be applied to 

evolving model proteins with improved soluble expression in PACE.

Development of an AND gate for dual selection in PACE

Attempts to further evolve the MBP(G32D+I33T) mutant through SE-PACE with increased 

selection stringency, achieved through use of APs encoding deactivating mutations in T7c 

(Supplementary Fig. 4a), predominantly led to the evolution of frameshift mutations in the 

latter half of MBP. These frameshifts cause premature stop codons upstream of ATG (Met) 

codons present in the native protein sequence, enabling translational re-initiation at these 

sites to produce N-terminally truncated T7n fusions that allow the mutant SP to survive the 

selection in a manner that is not dependent on POI expression (Supplementary Fig. 4b). To 

overcome this challenge, we sought to add a simultaneous selection for POI function, as 

truncation products would likely experience defects in activity. Selecting both for soluble 

expression of T7n and for POI function should also reduce the likelihood of losing protein 

function while improving expression, a known disadvantage of activity-independent folding 

reporters27.

To perform two simultaneous positive selections during PACE, we used a trans-splicing split 

intein to create an AND gate for pIII-dependent phage propagation. Although a split intein 

T7 RNAP has been previously reported28, we reasoned that an AND gate constructed using 

pIII itself would be compatible with a wider scope of PACE selections. To implement this 

strategy, we divided pIII into two fragments, each fused to one half of the split intein. Each 

PACE positive selection leads to the production of one of the two split-intein–pIII halves. If 

the POI passes only one selection, the other split-intein–pIII half will not be produced, and 

trans-splicing to generate pIII therefore cannot take place. In contrast, a POI capable of 

passing both selections results in production of both halves of the split-intein–pIII, allowing 
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the trans-splicing reaction to generate full-length pIII necessary for progeny phage 

production (Fig. 3a).

Because pIII is normally directed to the periplasm after translation29, we chose to split pIII 

within its signal peptide sequence to generate translocation-competent pIII only upon trans-

splicing. To determine the optimal site, we inserted a Cys-Phe-Asn sequence (CFN; the 

native C-extein scar left behind by the fast-splicing cyanobacteria DnaE split inteins30) at 

various positions in the hydrophobic region of the signal peptide and evaluated its effect on 

phage propagation. Insertion of CFN after Ile8 or Leu10 was well-tolerated 

(Supplementary Fig. 5), suggesting that pIII might be dividable at these positions. Next, we 

split pIII between amino acids 10–11 of its signal peptide and fused each half to the Nostoc 
punctiforme (Npu) DnaE split intein31 to create split-intein–pIII halves. We expressed both 

halves of split-intein–pIII from the phage shock protein promoter (PPSP)15,32 on two 

separate APs (AP1 and AP2) and tested whether both APs in combination could support the 

propagation of SP encoding a kanamycin resistance gene in place of gIII (Fig. 3b). Host 

cells co-transformed with both AP1 and AP2 supported robust phage propagation at a level 

comparable to host cells transformed with a single AP containing full-length gIII. Providing 

only one half of the split-intein pIII (AP1 only or AP2 only), or mutating residues critical to 

trans-splicing, resulted in negligible phage propagation, demonstrating the AND gate-like 

behavior of the split-intein–pIII system (Fig. 3b).

Next, we tested if the split-intein–pIII could link two different selections with two separate 

APs, each expressing one half of split-intein–pIII under control of a selection for protein 

binding activity or protein expression (Fig. 3c). For protein binding activity, we used the 

HA4 monobody–ABL1 kinase SH2 domain interaction33, as we previously showed that SP 

encoding HA4 propagate robustly on an AP containing a 434cI–SH2 domain fusion21. 

Because monobodies are typically highly soluble, we expected that HA4 would also pass the 

protein expression selection. Indeed, only SP encoding a T7n–HA4 fusion, which passes 

both the protein binding and soluble expression selections, form plaques on cells harboring 

the two split-intein–pIII APs (Fig. 3c). Conversely, SPs that pass only one selection 

(encoding either HA4 or T7n alone) exhibit no plaque activity. These results suggest that the 

split-intein–pIII system should enable two distinct, simultaneous positive selections in 

PACE. Finally, we used split-intein–pIII to evolve the binding-impaired HA4 Y87A 

mutant33 and successfully rescued its ABL1 SH2 domain binding activity (Supplementary 
Fig. 6), demonstrating the ability of our system to restore targeted protein binding activity in 

PACE.

PACE with the split-intein–pIII dual-selection system

Single-chain variable fragments (scFvs) are fusion proteins that consist of the VH and VL 

variable domains of antibodies joined with a flexible linker34. While they retain the epitope 

binding affinity and specificity of their parent antibodies, scFvs offer several advantages 

including substantially smaller size and compatibility with expression in E. coli. Typically, 

the VH and VL domains each contain a stabilizing disulfide bond, which is unable to form in 

the reducing environment of the E. coli cytosol, leading to very poor expression. Because of 
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this limitation, engineering and evolving these proteins to improve their cytosolic expression 

has been the focus of major effort35.

We hypothesized that scFv soluble expression could be improved while preserving binding 

activity using the dual-selection PACE system (Fig. 4a). We began with an scFv targeting 

the yeast GCN4 transcription factor leucine zipper36. Initially isolated through ribosome 

display, this scFv was extensively engineered for improved expression to ultimately yield the 

Ω graft (Ωg) variant37. Despite these efforts, the majority of Ωg remains insoluble in the E. 
coli cytosol38. We sought to improve the soluble expression of this scFv with SE-PACE.

We evolved SP encoding Ωg in SE-PACE selecting for both protein binding activity and 

expression. The protein binding selection used a GCN4 leucine zipper peptide fused to 

434cI, while the SP carried Ωg fused to rpoZ (RNA polymerase omega subunit) as well as a 

PACE-optimized version of T7n (eT7n; Supplementary Fig. 7) to minimize fitness gains 

that could be evolved in T7n independent of mutations in the POI. After 72 h (31 average 

generations), we observed enrichment of phage carrying several mutations in Ωg that 

enhanced protein expression to a level comparable to that of m3, a recently identified Ωg 

variant with greatly improved cytosolic expression (Fig. 4b and Supplementary Fig. 8a,b). 

The best PACE-evolved clones, 29.1.2 (S38L+V40I+F87S+N190D) and 29.1.5 (F87S

+G103S+L224V) improved expression > 2.5-fold by gel densitometry (Supplementary Fig. 
9a-c) and increased expression yields up to 5-fold (with a range of 2- to 17-fold) 

(Supplementary Table 1). The individual mutations comprising 29.1.5 were found to have 

a positive effect on expression levels when introduced into Ωg; however, none of these single 

point mutants expressed as well as the triple F87S+G103S+L224V mutant (Supplementary 
Fig. 9f,g and Supplementary Table 1). The binding affinities of Ωg and 29.1.5 for the 

GCN4 leucine zipper sequence were comparable by ELISA, while 29.1.2 exhibited 

approximately five-fold lower affinity (Fig. 4c and Supplementary Table 1).

Our PACE-evolved variants showed slightly decreased (~2 °C lower) melting temperatures 

(Tm) compared to Ωg (Supplementary Table 1 and Supplementary Fig. 9e). This may 

result from the discrepancy between evolving in an environment that requires folding 

without disulfide formation and conducting Tm measurements on purified protein under 

oxidizing conditions. To probe the disulfide dependence of scFvs evolved in SE-PACE, we 

mutated the disulfide-forming cysteines in m3 and 29.1.5 to serines (denoted m3-noCys and 

29.1.5-noCys, respectively), decreasing the Tm of each scFv by > 10 °C (Supplementary 
Table 1). PACE of these disulfide-free scFvs selecting for both protein binding and 

expression resulted in variants with improved thermodynamic properties (Supplementary 
Fig. 10 and Supplementary Table 1). For 29.1.5-noCys, this effect was dramatic, with one 

clone (58.3.1) possessing an improvement in Tm of > 10 °C. Additionally, variants 58.1.1 

and 58.1.2 showed a + 5 °C increase in Tm when compared to m3-noCys (Supplementary 
Table 1). These results suggest that, despite selecting primarily for protein expression, our 

system is capable of producing variants with improved thermodynamic stability when other 

factors influencing stability such as disulfide bond formation are removed.

Finally, we used the dual PACE selection system to evolve a second scFv, C4, which 

recognizes the first 17 amino acids of the huntington (Htt) protein and has been shown to 
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reduce aggregation of Htt fragments with large polyglutamine expansions39. 120 h (70 

average generations) of dual selection PACE with a protein binding AP encoding the first 17 

amino acids of Htt and a moderately stringent soluble expression AP enriched for two 

different mutations that each increased soluble expression (Supplementary Fig. 11a and 
Supplementary Fig. 12a). An additional 114 h (94 average generations) of PACE using the 

same protein binding AP and a more stringent protein expression AP produced genotypes 

that further increased soluble expression by > 2-fold compared to C4 by gel densitometry 

(Fig. 4d and Supplementary Fig. 12a) and increased expression yields up to 6-fold 

(Supplementary Table 2). Similar to the PACE-evolved Ωg variants, these mutants did not 

possess higher stability (Supplementary Table 2). Two evolved anti-Htt scFvs (34.1.2 and 

34.2.3) exhibited similar binding as C4 to a peptide containing the first 17 amino acids of 

htt, while the third characterized variant (34.2.6) showed slightly reduced affinity (Fig. 4e 
and Supplementary Table 2). Together, these results suggest that dual selection SE-PACE 

is capable of producing improvements in protein expression with little or no loss of binding 

activity.

Effect of activity selection on expression improvements

In some directed evolution experiments9, including ones employing PACE19, an activity-

based selection alone can be sufficient to produce gains in expression. To investigate the 

contribution of the activity selection to improving protein expression, we evolved 

MBP(G32D+I33T) for binding to the anti-MBP monobody YSX140. We performed two 

parallel PACE experiments: one simultaneously selecting for protein binding and protein 

expression (P26), and one selecting for protein binding alone (using a protein expression AP 

with zero stringency; P28). Most of the mutations fixed in both experiments mapped to the 

YSX1-MBP binding interface (Supplementary Fig. 13a,b), suggesting strong selection 

pressure for protein binding was present. However, the phage pool that experienced selection 

for protein expression enriched an additional mutation at Gly32 that was not present in the 

phage pool selected on protein binding alone (Supplementary Fig. 13a). Variants from P28 

exhibited improved soluble expression when compared to MBP(G32D+I33T) 

(Supplementary Fig. 13c). However, variants from P26 containing the G32D mutation 

showed even greater increases in expression (Supplementary Fig. 13c); in the case of 26.5, 

soluble expression was comparable to that of wild-type MBP. These results confirm previous 

observations2 that selections for activity can increase protein soluble expression, but also 

suggest that a dedicated selection for soluble expression can further improve this property.

Activity-independent soluble expression PACE

Although the simultaneous positive selection approach possesses the advantage of 

preserving protein activity while improving expression, it requires an additional PACE 

selection for activity. An activity-independent selection for improving protein expression 

might provide a useful complement to the dual selection system. To achieve a useful 

activity-independent SE-PACE selection, we sought to address the primary source of 

“cheating” observed with the split T7 RNAP folding reporter—the formation of premature 

truncation products upstream of translation-initiating Met residues. We hypothesized that 

this problem could be circumvented through judicious application of the protein binding 
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selection, which requires the translation of rpoZ (the omega subunit of E. coli RNA 

polymerase) fused to the target protein. If we added a small affinity tag at the N-terminus of 

the target protein in the POI–T7n fusion and fused rpoZ to the C-terminus, then the resulting 

tag–POI–T7n–rpoZ construct must be translated in its entirety in order to maintain covalent 

linkage of the tag and rpoZ. In this system, truncations in the middle of the POI–T7n fusion 

would separate the tag and rpoZ, impairing the ability of the POI to recruit rpoZ to a tag-

binding protein localized to the gene III promoter (Supplementary Fig. 14).

We used the GCN4 leucine zipper peptide epitope as our affinity tag and the anti-GCN4 

scFv clone m3 as the tag-binding protein fused to 434cI, thereby localizing tag-linked 

proteins to the gene III promoter (Supplementary Fig. 14). To validate this activity-

independent, cheater-resistant selection strategy, we returned to the evolution of the G32D

+I33P mutant of MBP, which was originally frustrated by enrichment of truncating 

genotypes. An SP encoding the GCN4 peptide–[MBP(G32D+I33P)]–eT7n–rpoZ quadruple 

fusion was subjected to PACE with host cells transformed with split-intein pIII APs 

selecting for both GCN4 peptide binding and soluble protein expression. After 96 h, we 

obtained enrichment of SPs bearing mutations fully reverting Asp32 and substituting either 

Thr (50.1.5) or Leu (50.2.2) for Pro33 (Fig. 5a). A third genotype, G24V+P33S (50.2.1), 

was also observed. All three genotypes showed greatly enhanced (> 10-fold) expression 

relative to the starting G32D+I33P mutant (Fig. 5b and Supplementary Fig. 15a). 50.1.5 

and 50.2.2 also possessed higher thermodynamic stability than G32D+I33P 

(Supplementary Table 3). We did not observe full reversion to the wild-type genotype, 

likely because a Pro to Ile substitution requires changing three adjacent nucleotides, while 

substitution to Thr or Leu requires mutation of only a single nucleotide and is more 

frequently accessed during random mutagenesis. Notably, no truncating genotypes were 

observed among SP surviving this PACE, suggesting that the peptide affinity tag strategy 

enabled successful evolution of protein expression in the absence of a selection for protein 

activity without evolving cheaters.

Finally, we applied this cheater-resistant activity-independent protein expression evolution to 

improving the soluble expression of rat apolipoprotein B mRNA editing catalytic subunit 1 

(rAPOBEC1). APOBEC1 is a potent cytidine deaminase that can act on both RNA and 

DNA. Like many eukaryotic proteins, rAPOBEC1 expresses poorly in E. coli and localizes 

almost exclusively to the insoluble fraction (Supplementary Fig. 16a). We evolved SP 

encoding rAPOBEC1 for a total of 370 h (260 average generations) in PACE sequentially 

using three protein expression APs of increasing stringency (Fig. 5c). After the first 74 h, 

SPs containing the two dominant genotypes were pooled and this mixture was used to infect 

two parallel, identically-run lagoons. At 186 h, both lagoons converged on mutations 

(F113C+A123E+F205S) that yielded the 36.1 genotype (Fig. 5d); however, lagoon 1 had 

also collected an inactivating mutation (E63A). The final 184 h of PACE produced two 

variants (43.1 and 43.2) that enhanced expression > 4-fold (Fig. 5d and Supplementary 
Fig. 16a). As 43.2 was identified from lagoon 1, it also carried the E63A mutation, which 

was reverted to obtain 43.2-rev (Fig. 5d). When tested in a rifampicin resistance assay41, 

neither 36.1 nor 43.1 showed defects in apparent deaminase activity. Evolved APOBEC 

clone 43.2-rev also showed comparable activity to wild-type rAPOBEC1, while 43.2 was 
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completely inactive as expected (Supplementary Fig. 17a). Clones 36.1, 43.1, and 43.2-rev 

all had a negative impact on cell growth rate when expressed, while wild-type rAPOBEC1 

and 43.2 exhibited no such effect, suggesting that the observed growth inhibition may be due 

to increased expression of active deaminase (Supplementary Fig. 17b).

These SE-PACE-evolved APOBEC1 variants also increased soluble expression levels when 

incorporated into base editors, engineered genome editing proteins consisting of a fusion of 

rAPOBEC1, a catalytically impaired Cas9, and an uracil glycosylase inhibitor that enable 

targeted conversion of individual DNA base pairs in living cells42–45. Substitution of wild-

type rAPOBEC1 with 36.1, 43.1, and 43.2-rev in the base editor BE3 improved soluble 

expression yields by 2–3 fold (Supplementary Table 4 and Supplementary Figure 18), 

despite the fact that rAPOBEC1 only accounts for ~15% of the total BE3 protein by 

molecular weight. Finally, base editors incorporating evolved APOBEC variants 36.1, 43.1, 

and 43.2-rev exhibited higher apparent editing activity in E. coli, as measured by the ability 

of BE2 (ref. 42), which contains dCas9 in place of Cas9 nickase, to rescue an active site 

mutation (H193R) in chloramphenicol acetyl transferase44 (Fig. 5e). Increased cytidine 

deamination was also observed in HEK293T cells transfected with BE3 variants 36.1 and 

43.1 (Fig. 5f), albeit with modestly decreased product purities (Supplementary Fig. 19a). 

Since these APOBECs were not selected for deaminase activity during PACE, we attribute 

deaminase efficiency increases primarily to improvements in base editor expression. 

Together, these findings establish that activity-independent SE-PACE can improve the 

soluble expression of potentially growth-inhibiting proteins, in some cases without loss of 

activity.

Discussion

We have developed methods for the continuous evolution of proteins with improved soluble 

expression. Our approach quickly generates improved variants without the need for library 

cloning or discrete, time-intensive steps usually required to implement protein directed 

evolution methods. Through the use of a PACE-compatible split-intein pIII which acts as an 

AND gate to bridge two orthogonal positive selections, SE-PACE is capable of evolving 

proteins in either the presence or absence of a simultaneous selection for protein activity.

The split-intein pIII AND gate allows for two positive selections to take place in the same 

PACE experiment. In this work, we demonstrated its ability to bridge selections for target 

protein binding and soluble protein expression. In theory, however, this strategy can link any 

two orthogonal PACE selections. In addition, we show that the split-intein pIII can be used 

to constrain evolving SP populations to disfavor undesirable outcomes such as the formation 

of truncation products that cheat an activity-independent soluble expression selection.

The SE-PACE-evolved proteins did not always show improvements in Tm, and in some cases 

exhibited small decreases. As PACE is conducted at 37 °C and the starting proteins melted 

well above this temperature (Tm > 55 °C), no direct selection pressure was present for 

improved thermodynamic stability, and increases in Tm likely resulted from mutations that 

improved soluble expression. Since thermodynamic stability and soluble expression are not 

always correlated, SE-PACE’s selection for the latter property may not necessarily produce 
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improvements in the former. With respect to expression yields, the evolved anti-GCN4 and 

anti-Htt scFvs reported here exhibited increases in the 2–6 fold range. In comparison, 

previous directed evolution efforts toward improving expression of scFv and related 

antibody-derived proteins in E. coli have produced variants that increase yields by 2 to >10 

fold38,46,47.

We have demonstrated that simultaneous selection for two different traits (here, soluble 

expression and binding activity) is possible in PACE through the evolution of scFvs with 

enhanced soluble expression in the E. coli cytosol. All dual-selection evolved scFvs tested 

showed binding to their target epitopes similar to that of the starting ScFv. In contrast, the 

activity-independent SE-PACE of rAPOBEC1 yielded some variants that lost enzymatic 

activity, as expected.

We have shown that single- and dual-selection SE-PACE can improve the expression of a 

diverse variety of proteins, including proteins of bacterial origin (MBP), engineered 

antibodies (scFvs), and eukaryotic enzymes (rAPOBEC1). It may also be interesting to 

apply SE-PACE to proteins that have emerged from long directed evolution campaigns, 

which often result in proteins with diminished stability21,48. By enforcing selection for 

protein activity using the split-intein pIII AND gate, it should be possible to preserve newly 

acquired protein function while improving soluble expression. Therefore, SE-PACE may 

also provide a way to rapidly reverse the deleterious effects of extensive mutation to improve 

the utility of previously engineered or evolved proteins.

Online Methods

General methods.

Antibiotics (Gold Biotechnology) were used at the following working concentrations: 

carbenicillin 50 μg/mL, spectinomycin 50 μg/mL, chloramphenicol 25 μg/mL, kanamycin 50 

μg/mL, tetracycline 10 μg/mL, streptomycin 50 μg/mL. HyClone water (GE Healthcare Life 

Sciences) was used for PCR reactions and cloning. For all other experiments, water was 

purified using a MilliQ purification system (Millipore). Phusion U Hot Start DNA 

polymerase (Thermo Fisher Scientific) was used for all PCRs. Plasmids and SPs were 

cloned by USER assembly21. Genes were obtained as synthesized gBlock gene fragments 

from Integrated DNA Technologies or PCR amplified directly from E. coli genomic DNA. 

Plasmids were cloned and amplified using either Mach1 (Thermo Fisher Scientific) or Turbo 

(New England BioLabs) cells. Unless otherwise noted, plasmid or SP DNA was amplified 

using the Illustra Templiphi 100 Amplification Kit (GE Healthcare Life Sciences) prior to 

Sanger sequencing. A full list of plasmids used in this work is given in Supplementary 
Table 5. A full list of reagents and equipment used in this work is given in Supplementary 
Table 6.

Preparation and transformation of chemically competent cells.

Strain S206020 was used in all luciferase, phage propagation, and plaque assays, and in all 

PACE experiments. To prepare competent cells, an overnight culture was diluted 1000-fold 

into 50 mL of 2xYT media (United States Biologicals) supplemented with tetracycline and 
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streptomycin and grown at 37˚C with shaking at 230 RPM to OD600 ~ 0.4–0.6. Cells were 

pelleted by centrifugation at 4000 g for 10 minutes at 4˚C. The cell pellet was then 

resuspended by gentle stirring in 2 mL of ice-cold LB media (United States Biologicals) 2 

mL of 2x TSS (LB media supplemented with 5% v/v DMSO, 10% w/v PEG 3350, and 20 

mM MgCl2) was added. The cell suspension was stirred to mix completely, aliquoted and 

frozen on dry ice, and stored at −80˚C until use.

To transform cells, 100 μL of competent cells thawed on ice was added to a pre-chilled 

mixture of plasmid (2 μL each; up to 3 plasmids per transformation) in 95 μL KCM solution 

(100 mM KCl, 30 mM CaCl2, and 50 mM MgCl2 in H2O) and stirred gently with a pipette 

tip. The mixture was incubated on ice for 10 min and heat shocked at 42˚C for 75 s before 

600 μL of SOC media (New England BioLabs) was added. Cells were allowed to recover at 

37˚C with shaking at 230 RPM for 1.5 h, streaked on 2xYT media + 1.5% agar (United 

States Biologicals) plates containing the appropriate antibiotics, and incubated at 37˚C for 

16–18 h.

Luciferase assay.

S2060 cells were transformed with the AP(s) and CP(s) of interest as described above. 

Overnight cultures of single colonies grown in 2xYT media supplemented with maintenance 

antibiotics were diluted 500-fold into DRM media17 with maintenance antibiotics in a 96-

well deep well plate (Axygen). The plate was sealed with a porous sealing film and grown at 

37˚C with shaking at 230 RPM for 4 h, whereupon the culture reached OD600 ~ 0.4–0.6. The 

cells were then induced with 100 ng/mL anhydrotetracycline (aTc; Fluka) and 5 μM 

arabinose (Gold Biotechnology) before incubation for an additional 1 h at 37˚C with shaking 

at 230 RPM. 120 μL of cells was transferred to a 96-well black-walled clear-bottomed plate 

(Costar), then 600 nm absorbance and luminescence were read using an Infinite M1000 Pro 

microplate reader (Tecan). OD600-normalized luminescence values were obtained by 

dividing raw luminescence by background-subtracted 600 nm absorbance. The background 

value was set to the 600 nm absorbance of wells containing DRM only.

Phage propagation assay.

S2060 cells were transformed with the AP(s) of interest as described above. Overnight 

cultures of single colonies grown in 2xYT media supplemented with maintenance antibiotics 

were diluted 1000-fold into DRM media with maintenance antibiotics and grown at 37˚C 

with shaking at 230 RPM to OD600 ~ 0.4–0.6. Cells were then infected with SP at a starting 

titer of 5 × 104 pfu/mL. Cells were incubated for another 16–18 h at 37˚C with shaking at 

230 RPM, then centrifuged at 8000 g for 2 min. The supernatant containing phage was 

removed and stored at 4˚C until use.

Plaque assay.

S2060 cells were transformed with the AP(s) of interest as described above. Overnight 

cultures of single colonies grown in 2xYT media supplemented with maintenance antibiotics 

were diluted 1000-fold into fresh 2xYT media with maintenance antibiotics and grown at 

37˚C with shaking at 230 RPM to OD600 ~ 0.6–0.8 before use. SP were serially diluted 100-

fold (4 dilutions total) in H2O. 150 μL of cells was added to 10 μL of each phage dilution 
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and to this 1 mL of liquid (55˚C) top agar (2xYT media + 0.6% agar) supplemented with 2% 

Bluo-gal (Gold Biotechnology) was added and mixed by pipetting up and down once. This 

mixture was then immediately pipetted onto one quadrant of a quartered Petri dish already 

containing 2 mL of solidified bottom agar (2xYT media + 1.5% agar, no antibiotics). After 

solidification of the top agar, plates were incubated at 37˚C for 16–18 h.

Phage-assisted continuous evolution.

Unless otherwise noted, PACE apparatus, including host cell strains, lagoons, chemostats, 

and media, were all used as previously described17,21. To reduce the likelihood of 

contamination with gIII-encoding recombined SP, phage stocks were purified as previously 

described21.

Chemically competent S2060s were transformed with AP(s) and MP6 or DP6 as described 

above, plated on 2xYT media + 1.5% agar supplemented with 25 mM glucose (to prevent 

induction of mutagenesis) in addition to maintenance antibiotics, and grown at 37˚C for 18–

20 h. Four colonies were picked into 1 mL DRM each in a 96-well deep well plate, and this 

was diluted 5-fold eight times serially into DRM. The plate was sealed with a porous sealing 

film and grown at 37˚C with shaking at 230 RPM for 16–18 h. Dilutions with OD600 ~ 0.4–

0.8 were then used to inoculate a chemostat containing 80 mL DRM. The chemostat was 

grown to OD600 ~ 0.8–1.0, then continuously diluted with fresh DRM at a rate of ~1.5 

chemostat volumes/h as previously described17. The chemostat was maintained at a volume 

of 60–80 mL.

Prior to SP infection, lagoons were continuously diluted with culture from the chemostat at 1 

lagoon volume/h and pre-induced with 10 mM arabinose for at least 2 h. If DP6 was used, 

the lagoons were also pre-induced with aTc. Lagoons were infected with SP at a starting 

titer of 106 pfu/mL and maintained at a volume of 15 mL. Samples (500 μL) of the SP 

population were taken at indicated times from lagoon waste lines. These were centrifuged at 

8000 g for 2 min, and the supernatant was passed through a 0.22 μm PVDF Ultrafree 

centrifugal filter (Millipore) and stored at 4˚C. Lagoon titers were determined by plaque 

assays using S2060 cells transformed with pJC175e15. For Sanger sequencing of lagoons, 

single plaques were PCR amplified using primers AB1793 (5’-

TAATGGAAACTTCCTCATGAAAAAGTCTTTAG) and AB1396 (5’- 

ACAGAGAGAATAACATAAAAACAGGGAAGC), both of which anneal to regions of the 

phage backbone flanking the evolving gene of interest. Generally, eight plaques were picked 

and sequenced per lagoon.

Continuous flow competition of MBP and G32D+I33P.—Host cells transformed 

with pTW006aP1a were maintained in a 40 mL chemostat. Lagoons were infected with a 

1000:1 ratio of SP02a (G32D+I33P) to SP01a (MBP). No inducers were used in this 

continuous flow experiment. The SP pool was monitored by PCR using primers AB1793 

(5’-TAATGGAAACTTCCTCATGAAAAAGTCTTTAG), which anneals to the phage 

backbone 5’ of the MBP–T7n insert, and TW0023 (5’-

ACCACCAGATCCACCCUTGGTGATACGAGTCTGCG), a USER primer which anneals 

to the 3’ end of MBP. The purified PCR product (200 ng) was digested with BsaWI (New 
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England BioLabs), which cuts a ACC|GGA motif in MBP that is absent in the G32D+I33P 

mutant, according to manufacturer’s protocol.

Evolution of MBP Y283D and G32D+I33P.—Host cells transformed with pTW006aP1a 

and MP6 were maintained in a 40 mL chemostat. Lagoons were infected with SP02a (G32D

+I33P) or SP02b (Y293D). Upon infection, lagoon dilution rates were decreased to 0.5 

volume/h. For G32D+I33P, the lagoon dilution rate was maintained at 0.5 volume/h 

throughout the experiment. For Y283D, the lagoon dilution rate was increased to 1 volume/h 

at 22 h. Both experiments ended at 72 h.

Evolution of HA4 Y87A monobody.—Host cells transformed with pTW048a3, 

pTW051b2, and DP6 were maintained in a 40 mL chemostat. The lagoon was cycled at 1 

volume/h with 10 mM arabinose and 20 ng/mL aTc for 3 h prior to infection with SP10b2. 

Upon infection, lagoon dilution rates were maintained at 1 volume/h. The lagoon dilution 

rate was increased to 1.5 volume/h at 93 h and 2 volumes/h at 119 h. The experiment ended 

at 122 h.

Evolution of anti-GCN4 scFv Ωg.—Host cells transformed with pTW055a3, 

pTW051b4, and MP6 were maintained in a 40 mL chemostat. Lagoons were infected with 

SP16c3. Upon infection, lagoon dilution rates were decreased to 0.5 volume/h. After 19 h, 

the lagoon dilution rate was increased to 1 volume/h. The experiment ended at 72 h.

Evolution of disulfide-free anti-GCN4 scFvs.—Host cells transformed with 

pTW055a3, pTW051b4, and MP6 were maintained in a 40 mL chemostat. Lagoons were 

infected with SP39b or SP39d. Upon infection, lagoon dilution rates were decreased to 0.5 

volume/h. For SP39b, the lagoon dilution rate was increased to 1 volume/h after 19 h, 1.5 

volumes/h after 44 h, 2 volumes/h after 68 h, and 3 volumes/h after 90 h. For SP39d, the 

lagoon dilution rate was increased to 1 volume/h after 44 h, 1.5 volumes/h after 68 h, and 2 

volumes/h after 90 h. The experiment ended at 120 h.

Evolution of anti-htt scFv C4.—Host cells transformed with pTW074c, pTW051b4, and 

MP6 were maintained in an 80 mL chemostat. Lagoons were infected with SP24a3. Upon 

infection, lagoon dilution rates were decreased to 0.5 volume/h. The lagoon dilution rate was 

increased to 1 volume/h at 42 h, 1.5 volumes/h at 70 h, 2 volumes/h at 90 h, and 3 volumes/h 

at 114 h. The experiment ended at 120 h.

Further evolution of anti-htt scFv C4.—Host cells transformed with pTW074c, 

pTW051d2, and MP6 were maintained in a 40 mL chemostat. Lagoons were infected with 

the 120 h SP pool from the previous PACE. Upon infection, lagoon dilution rates were 

decreased to 0.5 volume/h. The lagoon dilution rate was increased to 1 volume/h at 18 h, 1.5 

volumes/h at 42 h, 2 volumes/h at 69 h, and 3 volumes/h at 90 h. The experiment ended at 

114 h.

Evolution of MBP G32D+I33P with affinity tag strategy.—Host cells transformed 

with pTW084b, pTW051b4, and MP6 were maintained in an 80 mL chemostat. Lagoons 

were infected with SP27b. Upon infection, lagoon dilution rates were decreased to 0.5 
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volume/h. For lagoon 1, the dilution rate was increased to 1 volume/h at 44 h and 2 

volumes/h at 69 h. For lagoon 2, the dilution rate was increased to 1 volume/h at 44 h, 1.5 

volumes/h at 69 h, and 2 volumes/h at 88 h. The experiment ended at 112 h.

Evolution of rAPOBEC1 with affinity tag strategy.—Host cells transformed with 

pTW084b, pTW051d, and DP6 were maintained in a 40 mL chemostat. The lagoon was 

cycled at 1 volume/h with 10 mM arabinose and 20 ng/mL aTc for 4 h prior to infection with 

SP30. Upon infection, lagoon dilution rates were decreased to 0.5 volume/h. At 18 h, the 

aTc concentration was decreased to 0 ng/mL. The lagoon dilution rate was increased to 1 

volume/h at 28 h and 1.5 volumes/h at 66 h. The experiment ended at 74 h.

Evolution was continued on host cells transformed with pTW084b, pTW051d, and MP6 in 

an 80 mL chemostat. Lagoons were infected with a 1:1 ratio of 35.1 and 35.2, SP clones 

isolated from the previous experiment. Upon infection, lagoon dilution rates were 

maintained at 1 volume/h. The lagoon dilution rate was increased to 1.5 volume/h at 18 h, 2 

volumes/h at 66 h, and 3 volumes/h at 90 h. The experiment ended at 112 h.

Evolution was continued on host cells transformed with pTW084b, pTW051b4, and MP6 in 

an 80 mL chemostat. Lagoons were infected with either 36.1 or 36.2, SP clones isolated 

from the previous experiment. Upon infection, lagoon dilution rates were decreased to 0.5 

volume/h. The lagoon dilution rate was increased to 1 volume/h at 17 h, 1.5 volumes/h at 41 

h, and 2 volumes/h at 66 h. At 96 h, the chemostat was replaced with a fresh 80 mL 

chemostat containing host cells transformed with pTW084b, pTW051d2, and MP6, and the 

lagoon dilution rate was decreased to 1 volume/h. The lagoon dilution rate was increased to 

1.5 volumes/h at 115h and 2 volumes/h at 168 h. The experiment ended at 184 h.

Small-scale protein expression.

BL21 DE3 cells (New England BioLabs) were transformed with the expression plasmids 

(EPs) of interest according to manufacturer protocol. Overnight cultures of single colonies 

grown in 2xYT media supplemented with maintenance antibiotics were diluted 1000-fold 

into fresh 2xYT media (2 mL) with maintenance antibiotics and grown at 37˚C with shaking 

at 230 RPM to OD600 ~ 0.4–0.6 before induction with 1 mM isopropyl-β-D-thiogalactoside 

(IPTG; Gold Biotechnology) or rhamnose (Gold Biotechnology). Cells were grown for a 

further 3 h at 37˚C with shaking at 230 RPM. Cells from 1.4 mL of culture were isolated by 

centrifugation at 8000 g for 2 min. The resulting pellet was resuspended in 150 μL B-per 

reagent (Thermo Fisher Scientific) supplemented with protease inhibitor cocktail (Roche) 

and incubated on ice for 10 min before centrifugation at 16,000 g for 2 min. The supernatant 

was collected as the soluble fraction and the resulting pellet was resuspended in an 

additional 150 μL B-per reagent to obtain the insoluble fraction. To 37.5 μL of each fraction 

was added 12.5 μL 4x Laemmli sample loading buffer (Bio-Rad) containing 2 mM 

Dithiothreitol (DTT; Sigma Aldrich). After vortexing, the fractions were incubated at 95˚C 

for 10 min. 12 μL of each soluble fraction and 6 μL of each insoluble fraction was loaded 

into the wells of a Bolt 4–12% Bis-Tris Plus (Thermo Fisher Scientific) pre-cast gel. 6 μL of 

Precision Plus Protein Dual Color Standard (Bio-Rad) was used as a reference. Samples 

were separated by electrophoresis at 180 V for 35 min in Bolt MES SDS running buffer 
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(Thermo Fisher Scientific). Gels were stained with InstantBlue reagent (Expedeon) for 1 h to 

overnight, then washed several times with H2O before imaging with a G:Box Chemi XRQ 

(Syngene). Band densities were quantified using ImageJ and normalized to reference bands 

to control for protein loading.

Western blot analysis.

SDS-PAGE was performed as described above. Transfer to a PVDF membrane was 

performed using an iBlot 2 Gel Transfer Device (Thermo Fisher Scientific) according to 

manufacturer’s protocols. The membrane was blocked in Odyssey Blocking Buffer (LI-

COR) in PBS for 1 h at room temperature, then incubated with mouse anti-6xHis (abcam 

ab18184; 1:2000 dilution) and rabbit anti-GroEL (Sigma-Aldrich G6532; 1:20,000 dilution) 

in SuperBlock Blocking Buffer (Thermo Fisher Scientific) overnight at 4˚C. The membrane 

was washed 3x with TBST (TBS + 0.5% Tween-20) for 10 min each at room temperature, 

then incubated with IRDye-labeled secondary antibodies goat anti-mouse 680RD (LI-COR 

926–68070) and donkey anti-rabbit 800CW (LI-COR 926–32213) diluted 1:5000 in 

SuperBlock for 1 h at room temperature. The membrane was washed as before, then imaged 

using an Odyssey Imaging System (LI-COR).

Medium-scale protein expression and purification.

BL21 DE3 cells were transformed with the EPs of interest according to manufacturer 

protocol. Overnight cultures of single colonies grown in LB or 2xYT media supplemented 

with maintenance antibiotics were diluted 1000-fold into fresh LB or 2xYT media (250 mL) 

with maintenance antibiotics and grown at 37˚C with shaking at 230 RPM to OD600 ~ 0.4–

0.6. Cells were chilled on ice for 1 h, then induced with 1 mM IPTG and grown for a further 

16–18 h at 16˚C with shaking at 200 RPM. For 37˚C post-induction growth, the cold shock 

step was omitted and the cells were grown for a further 3 h at 37˚C with shaking at 200 

RPM after induction with 1 mM IPTG. Cells were isolated by centrifugation at 8000 g for 

10 min. The resulting pellet was resuspended in 4 mL B-per reagent supplemented with 

EDTA-free protease inhibitor cocktail (Roche) and incubated on ice for 20 min before 

centrifugation at 12,000 g for 15 min. The supernatant was decanted into a 15 mL conical 

tube and incubated with 250 μL of TALON Cobalt (Clontech) resin at 4˚C with constant 

agitation for 1–2 h, after which the resin was isolated by centrifugation at 500 g for 5 min. 

The supernatant was decanted, and the resin resuspended in 2 mL binding buffer (50 mM 

NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 7.8) and transferred to a column. The resin 

was washed 4x with 1 mL binding buffer before protein was eluted with 1 mL of binding 

buffer containing increasing concentrations of imidazole (50–250 mM in 50 mM 

increments). The fractions were analyzed by SDS-PAGE for purity. Combined fractions 

were buffer-exchanged with TBS (20 mM Tris-Cl, 500 mM NaCl, pH 7.5) and concentrated 

using an Amicon Ultra-15 centrifugal filter unit (10,000 molecular weight cutoff; Millipore), 

then stored at 4˚C until further use. Proteins were quantified using Quick Start Bradford 

reagent (Bio-Rad) using BSA standards (Bio-Rad).

Medium-scale BE3 expression and purification.

BE3 variants were expressed and purified as described previously45 with a few 

modifications. BL21 DE3 cells were transformed with the BE3-expressing EPs of interest 
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according to manufacturer protocol. Overnight cultures of single colonies grown in 2xYT 

media supplemented with maintenance antibiotics were diluted 1000-fold into fresh 2xYT 

media (200 mL) with maintenance antibiotics and grown at 37˚C with shaking at 230 RPM 

to OD600 ~ 0.7–0.8. Cells were chilled on ice for 1 h, then induced IPTG and grown for a 

further 16–18 h at 16˚C with shaking at 200 RPM. Cells were isolated by centrifugation at 

8000 g for 15 min. The resulting pellet was resuspended in 8 mL high salt buffer (100 mM 

Tris-Cl, 1 M NaCl, 5 mM tris(2-carboxyethyl)phosphine (TCEP; Gold Biotechnology), 20% 

glycerol, pH 8.0) supplemented with EDTA-free protease inhibitor cocktail and 1 mM 

phenylmethane sulfonyl fluoride (PMSF; Sigma-Aldrich). Cells were sonicated on ice (3 s 

on/3 s off; 6 min total) and the lysate centrifuged at 16,000 g for 15 min. The supernatant 

was decanted into a 15 mL conical tube and incubated with 500 μL of TALON Cobalt resin 

at 4˚C with constant agitation for 1 h, after which the resin was isolated by centrifugation at 

500 g for 5 min. The resin was washed 5x with 1 mL high salt buffer, then eluted with 1 mL 

of elution buffer (100 mM Tris-Cl, 500 mM NaCl, 5 mM TCEP, 200 mM imidazole, 20% 

glycerol, pH 8.0). The isolated protein was then buffer-exchanged with medium salt buffer 

(100 mM Tris-Cl, 500 mM NaCl, 5 mM TCEP, 20% glycerol, pH 8.0) and concentrated 

using an Amicon Ultra-15 centrifugal filter unit (100,000 molecular weight cutoff). Proteins 

were quantified using Quick Start Bradford reagent using BSA standards.

Protein melt temperature assay.

Protein melt temperatures were determined using a Protein Thermal Shift Dye Kit (Life 

Technologies) according to manufacturer’s protocols. Fluorescence was monitoring using a 

CFX96 Real-Time PCR Detection System (Bio-Rad).

ELISA.

Anti-GCN4 ELISA.—A MaxiSorp 96-well plate (Nunc) was coated with a 10 μg/mL 

solution of purified antibody fragments in TBS (20 mM Tris-Cl, 500 mM NaCl, pH 7.5), 50 

μL per well, and incubated overnight at 4˚C. The wells were washed 3x with TBST (TBS 

+ 0.5% Tween-20) and blocked with 1% w/v Bovine Serum Albumin (BSA; Sigma-Aldrich) 

in TBS for 1–2 h. This and all subsequent incubations were performed at room temperature. 

The blocking solution was removed and the wells were incubated with serial dilutions of 

purified MBP-TEV-GCN4 in TBS for 1 h. The wells were washed 3x with TBST, then 

incubated with a 1:5000 dilution of HRP-conjugated anti-MBP (abcam ab49923) in TBS for 

1 h. The wells were washed 3x with TBST, then developed with 1-Step Ultra TMB-ELISA 

Substrate (Thermo Fisher Scientific) for 5 min. The reaction was quenched with addition of 

2 M H2SO4 before 450 nm absorbance was read using a Tecan Infinite M1000 Pro 

microplate reader.

Anti-htt ELISA.—A MaxiSorp 96-well plate was coated with a 50 μg/mL solution of 

purified antibody fragments in TBS, 50 μL per well, and incubated overnight at 4˚C. The 

wells were washed and blocked as above. The blocking solution was removed and the wells 

were incubated with serial dilutions of biotinylated htt peptide 

(MATLEKLMKAFESLKSFK(Biotin)-NH2; New England Peptide) in TBS for 1 h. The 

wells were washed 3x with TBST, then incubated with a 1:10,000 dilution of HRP-
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conjugated streptavidin (BioLegend) in TBS for 1 h. The wells were washed 3x with TBST, 

then developed, quenched, and absorbance read as above.

Rifampicin resistance assay.

BL21 DE3 cells were transformed with the EPs of interest according to manufacturer 

protocol. Overnight cultures of single colonies grown in DRM media supplemented with 

maintenance antibiotics were diluted 1000-fold into DRM media with maintenance 

antibiotics in a 96-well deep well plate. The plate was sealed with a porous sealing film and 

grown at 37˚C with shaking at 230 RPM for until the culture reached OD600 ~ 0.4. The cells 

were then either induced with 5 mM rhamnose or repressed with 5 mM glucose before 

incubation for an additional 16–18 h at 37˚C with shaking at 230 RPM. Cultures were 

serially diluted on 2xYT + 1.5% agar plates supplemented with 50 μg/mL spectinomycin, 

100 μg/mL rifampin (Alfa Aesar), and 25 mM glucose. The total number of colony-forming 

units (cfus) was determined by serially diluting the same cultures on 2xYT + 1.5% agar 

plates supplemented with 50 μg/mL spectinomycin and 25 mM glucose. Plates were grown 

at 37˚C for 16–18 h. The surviving colonies on the plates containing rifampin were counted 

and this number was normalized to the total cfu count.

Chloramphenicol resistance assay.

Chemically competent S2060s were transformed with selection plasmid44 and the base 

editor EPs of interest as described above and streaked on 1.5% agar plates supplemented 

with 50 μg/mL carbenicillin, 50 μg/mL spectinomycin, and 25 mM glucose. Overnight 

cultures of single colonies grown in DRM media supplemented with maintenance antibiotics 

were diluted 500-fold into DRM media with maintenance antibiotics and grown at 37˚C with 

shaking at 230 RPM for until the culture reached OD600 ~ 0.5. The cells were then induced 

with 10 mM arabinose and incubated for an additional 16–18 h at 37˚C with shaking at 230 

RPM. Cultures were serially diluted on 2xYT + 1.5% agar plates supplemented with 32 or 

64 μg/mL chloramphenicol and 25 mM glucose (to repress further expression). The total 

number of cfus was determined by serially diluting the same cultures on 2xYT + 1.5% agar 

plates supplemented with 50 μg/mL carbenicillin, 50 μg/mL spectinomycin, and 25 mM 

glucose. Plates were grown at 37˚C for 16–18 h. The surviving colonies on the plates 

containing chloramphenicol were counted and this number was normalized to the total cfu 

count.

HEK293T transfection and genomic DNA extraction.

HEK293T cells (ATCC CRL-3216) maintained in Dulbecco’s Modified Eagle’s Medium 

plus GlutaMax (Thermo Fisher Scientific) supplemented with 10% (v/v) FBS at 37 °C with 

5% CO2 were seeded on 48-well poly-D-lysine coated plates (Corning). 16–20 h after 

seeding, cells were transfected at approximately 80–85% confluency as previously 

described44. Cells were cultured for 3 days post-transfection, before genomic DNA was 

extracted as previously described44.
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High-throughput sequencing of genomic DNA.

Genomic sites were amplified with primers targeting the region of interest and the 

appropriate universal Illumina forward and reverse adapters. Primer pairs for the first round 

of PCR (PCR 1) were the same as reported previously42. 25 μL scale PCR 1 reactions used 

1.25 μL each of 10 μM forward and reverse primers and 0.5 μL genomic DNA extract, all 

diluted to 12.5 μL with nuclease-free water, and 12.5 μL Phusion U Green Multiplex PCR 

MasterMix (Thermo Fisher Scientific). PCR 1 conditions: 98 °C for 2 min, then 30 cycles of 

(98 °C for 15 s, 61 °C for 20 s, 72 °C for 15 s), followed by a final 72 °C extension for 2 

min. PCR products were verified by comparison with DNA standards (Quick-Load 2-Log 

Ladder; New England BioLabs) on a 2% agarose gel supplemented with ethidium bromide. 

Unique Illumina barcoding primers which anneal to the universal Illumina adapter region 

were subsequently appended to each PCR 1 sample in a second PCR reaction (PCR 2). PCR 

2 reactions used 1.25 μL each of 10 μM forward and reverse Illumina barcoding primers and 

1 μL of unpurified PCR 1 reaction product, all diluted to 12.5 μL with nuclease-free water, 

and 12.5 μL Phusion U Green Multiplex PCR MasterMix (Thermo Fisher Scientific). PCR 2 

conditions: 98 °C for 2 min, then 12 cycles of (98 °C for 15 s, 61 °C for 20 s, 72 °C for 20 

s), followed by a final 72 °C extension for 2 min. PCR products were pooled and purified by 

electrophoresis with a 2% agarose gel using a Monarch DNA Gel Extraction Kit (New 

England BioLabs) eluting with 30 μL H2O. DNA concentration was quantified with the 

KAPA Library Quantification Kit-Illumina (KAPA Biosystems) and sequenced on an 

Illumina MiSeq instrument (paired-end read – R1: 220 cycles, R2: 0 cycles) according to the 

manufacturer’s protocols.

General HTS data analysis.

Sequencing reads were demultiplexed in MiSeq Reporter (Illumina). Alignment of amplicon 

sequences to a reference sequence was performed as previously described using a custom 

Matlab script42. In brief, the Smith-Waterman algorithm was used to align sequences 

without indels to a reference sequence; bases with a quality score of less than 30 were 

converted to ‘N’ to prevent base miscalling as a result of sequencing error. Indels were 

quantified separately using a modified version of a previously described Matlab script in 

which sequencing reads with more than half the base calls below a quality score of Q30 

were filtered out44. Indels were counted as reads which contained insertions or deletions of 

greater than or equal to 1 bp within a 30 bp window surrounding the predicted Cas9 

cleavage site.

Base editing values are representative of N = 4 independent biological replicates collected 

over different days, with the mean ± s.e.m shown. Base editing values are reported as a 

percentage of the number of reads with cytidine mutagenesis over the combined number of 

aligned reads and indel-containing reads.

Stastics.

Information regarding the number and type of replicates, along with the type of error 

depicted, is provided in the figure legends.
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Data availability.—High-throughput sequencing data for Figures 5f and SI Figure 19 have 

been deposited in the NCBI Sequence Read Archive database under accession code 

SRP152041. Selection plasmids used in this study will be available through Addgene. Other 

data and materials are available upon reasonable request.

Code availability.—The custom Matlab script used in this work can be found in the 

Supplementary Information of reference 39.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of a PACE selection for improved soluble protein expression.
(a) General PACE schematic. Host cells contain an accessory plasmid (AP) that expresses 

gene III (gIII) in the presence of a desired protein of interest (POI). The selection phage (SP) 

contains the POI in place of gIII and can therefore only produce infectious progeny if it 

encodes a POI variant that passes the selection established by the AP, thereby triggering pIII 

production. The gene encoding the POI is mutated by induction of the mutagenesis plasmid 

(MP). As the SP exist in a continuously diluted fixed-volume vessel (the lagoon), only those 

phage genotypes that propagate faster than the rate of dilution can persist in the lagoon. (b) 
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A folding reporter approach links soluble protein expression to production of protein pIII 

required for phage infection. Soluble expression of the POI causes persistence of the fused 

N-terminal half of T7 RNA polymerase (POI–T7n). A misfolded, insoluble, or proteolyzed 

POI produces non-functional or degraded T7n, which is unable to associate with the C-

terminal half of T7 RNAP (T7c) and thus unable to transcribe gIII.
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Figure 2. Validation of the soluble protein expression PACE selection.
(a) Soluble expression of MBP variants in E. coli at 37 °C, as revealed by SDS-PAGE 

analysis of soluble protein extracts (Supplementary Fig. 2a), correlates with transcriptional 

activity (R2 = 0.85). Luminescence data reflects the mean and s.d. of three technical 

replicates (unique clones). (b) Transcriptional activity is also loosely correlated with 

thermodynamic stability of MBP variants (R2 = 0.62). Luminescence data reflects the mean 

and s.d. of three technical replicates (unique clones). (c) SP encoding the poorly expressed 
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D283Y and G32D+I33P MBP mutants evolve expression-enhancing mutations in PACE 

over three days. The Y-axis shows total phage titer in each (N = 1) lagoon.
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Figure 3. Split-intein pIII as an AND gate for bridging two positive selections in PACE.
(a) Each positive selection produces one half of split-intein pIII, which can only undergo 

trans-splicing and produce functional pIII when both halves are present, thus requiring 

activity on both selections to generate infectious progeny phage. (b) Split-intein pIII 

supports robust phage propagation in a trans-splicing dependent manner. Negligible 

propagation is observed when only one half is present (AP1 only or AP2 only), or when 

residues critical to splicing are mutated (AP1/AP2+1A or AP1/AP2-1A). Two biological 

replicates are shown (enrichments performed on two separate days). (c) Split-intein pIII acts 

as an AND gate between two orthogonal PACE positive selections. The canonical gIII 

sequence is replaced by either half of the split-intein gIII in APs for protein binding (AP1) 
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and protein expression (AP2). Only SP that encode proteins passing both selections plaque 

on host cells containing AP1 and AP2. The scale bar represents 10 mm. This experiment 

was not repeated.
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Figure 4. Soluble expression PACE with simultaneous selection for expression and binding 
activity.
(a) Overview of SE-PACE with two positive selections; in this case, a selection for POI 

protein binding activity (AP1) is run simultaneously with a selection for POI protein 

expression (AP2). (b) PACE of the anti-GCN4 leucine zipper scFv Ωg produces variants 

29.1.2 and 29.1.5, which show increased soluble expression at 37 °C. For comparison, m3 is 

a previously reported mutant38 with greatly improved soluble expression. The full gel is 

provided in Supplementary Figure 9a. (c) Evolved variants maintain binding affinity for 
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the GCN4 leucine zipper peptide motif. Data reflects the mean and s.d. of three technical 

replicates (three separate ELISA wells using protein from the same preparation). This 

experiment was repeated once with similar results. (d) PACE of the anti-Htt scFv C4 results 

in mutations that greatly enhance soluble expression at 37 °C. The full gel is provided in 

Supplementary Figure 12a. (e) Binding of PACE-evolved variants and C4 to a peptide 

corresponding to amino acids 1–17 of Htt exon 1. Data reflects the mean and s.d. of three 

technical replicates (three separate ELISA wells using protein from the same preparation). 

This experiment was repeated once with similar results.
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Figure 5. Activity-independent selection for soluble proteins in PACE.
(a) SE-PACE of the MBP(G32D+I33P) mutant produces partial reversions to the wild-type 

sequence after four days. (b) PACE-evolved MBP variants show greatly improved soluble 

expression in E. coli at 37 °C when compared to starting MBP(G32D+I33P). The full gel is 

provided in Supplementary Figure 15a. This experiment was not repeated. (c) PACE of 

cytidine deaminase rAPOBEC1. The stringency of the protein expression selection was 

modulated through increasing the rate of lagoon dilution (flow rate; dashed lines) as well as 

the use of activity-diminishing T7 RNAP and T7 promoter mutants in the AP. (d) 
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rAPOBEC1 variants obtained after 186 h and 370 h show greatly improved soluble 

expression at 37˚C when compared to wild-type. The full blot is provided in 

Supplementary Figure 16a. This expression experiment was repeated once with similar 

results. (e) Base editor (BE2) variants employing evolved rAPOBEC1s show enhanced 

apparent activity in E. coli, as measured by cells surviving selection on increasing 

concentrations of chloramphenicol due to BE2-dependent reversion of an active site 

mutation in chloramphenicol acetyl transferase. Data reflects the mean and s.d. of three 

technical replicates (unique clones). (f) Base editor (BE3) variants using evolved 

rAPOBEC1 36.1 and 43.1 variants show enhanced editing efficiency in HEK293T cells, as 

measured by the percentage of total DNA sequencing reads with Cs in the indicated target 

positions converted to another base. The sequences of the six genomic loci tested (EMX-
RNF2) are provided in Supplementary Fig. 19a. Data reflects the mean and s.e.m. of four 

biological replicates (experiments performed on different days).
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