
Computational and Structural Biotechnology Journal 20 (2022) 1618–1631
journal homepage: www.elsevier .com/locate /csbj
Machine learning assisted analysis of breast cancer gene expression
profiles reveals novel potential prognostic biomarkers for triple-negative
breast cancer
https://doi.org/10.1016/j.csbj.2022.03.019
2001-0370/� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: BrCa, Breast cancer; TNBC, Triple negative breast cancer; ER,
Oestrogen Receptor; PR, Progesterone receptor; HER2, Human epidermal growth
factor receptor 2; EMT, Epithelial to mesenchymal transition; OS, Overall survival;
ML, Machine learning; GEO, Gene expression omnibous; DMFS, Distasnt metastasis
free survival; PCA, Principal component analysis; RFE, Recursive feature elimina-
tion; SVM, Support vector machine; kNN, k Nearest neighbors; COSMIC, The
catalogue of somatic mutations in cancer; DE, Differential Expression; RF, Random
forest; ROC, Receiver operating characteristics curve; AUC, Area under the ROC
curve; FDR, False discovery rate; NSCLC, Non small cell lung carcinoma; CX-25,
Complete XgBoost top 25; DX-20, Driver XgBoost top 20; KM, Kaplan Meier.
⇑ Corresponding author at: Translational Bioinformatics Group, International

Centre for Genetic Engineering and Biotechnology, India.
E-mail address: dinesh@icgeb.res.in (D. Gupta).
Anamika Thalor a, Hemant Kumar Joon a,b, Gagandeep Singh a, Shikha Roy a, Dinesh Gupta a,⇑
a Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
bRegional Centre for Biotechnology, Faridabad 121001, Haryana, India

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 December 2021
Received in revised form 19 March 2022
Accepted 21 March 2022
Available online 24 March 2022

Keywords:
TNBC
Differential gene expression
Distant-metastasis free survival
Prognostic gene signatures
POU2AF1
S100B
Tumor heterogeneity and the unclear metastasis mechanisms are the leading cause for the unavailability
of effective targeted therapy for Triple-negative breast cancer (TNBC), a breast cancer (BrCa) subtype
characterized by high mortality and high frequency of distant metastasis cases. The identification of prog-
nostic biomarker can improve prognosis and personalized treatment regimes. Herein, we collected gene
expression datasets representing TNBC and Non-TNBC BrCa. From the complete dataset, a subset reflect-
ing solely known cancer driver genes was also constructed. Recursive Feature Elimination (RFE) was
employed to identify top 20, 25, 30, 35, 40, 45, and 50 gene signatures that differentiate TNBC from
the other BrCa subtypes. Five machine learning algorithms were employed on these selected features
and on the basis of model performance evaluation, it was found that for the complete and driver dataset,
XGBoost performs the best for a subset of 25 and 20 genes, respectively. Out of these 45 genes from the
two datasets, 34 genes were found to be differentially regulated. The Kaplan-Meier (KM) analysis for
Distant Metastasis Free Survival (DMFS) of these 34 differentially regulated genes revealed four genes,
out of which two are novel that could be potential prognostic genes (POU2AF1 and S100B). Finally, inter-
actome and pathway enrichment analyses were carried out to investigate the functional role of the iden-
tified potential prognostic genes in TNBC. These genes are associated with MAPK, PI3-AkT, Wnt, TGF-b,
and other signal transduction pathways, pivotal in metastasis cascade. These gene signatures can provide
novel molecular-level insights into metastasis.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Breast cancer (BrCa) has outstripped lung cancer to be the
world’s most frequently diagnosed cancer, accounting for 11.7 per-
cent of all cases reported worldwide. In 2020, nearly 2.3 million
women were diagnosed with breast cancer, while 6,84,996 deaths
were observed globally [1]. In India, the world’s second-most pop-
ulous country, BrCa accounts for 13.5 percent of all cancer types,
according to the 2020 WHO Global Cancer Observatory report

(https://gco.iarc.fr/today/home). BrCa is a complex disease, charac-
terised by a wide range of cell populations and genetic changes
causing bottlenecks in clinical treatments, due to its complex etiol-
ogy and primitive insights into biology of its origin and develop-
ment [2,3]. The prognosis and response to the cancer treatment
are influenced by a number of characteristics such as histological
grade, tumour type and size, lymph node metastasis, and cell
receptors [4]. Molecular subtyping of breast cancer, based on clas-
sical immunohistochemistry markers is focused on the basis of cell
receptors such as ER, PR, and HER2, which play a prominent role in
clinical decision making [5]. The St. Gallen (2013) International
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Breast Cancer Conference established a new definition for the
breast cancer classification based on the molecular markers: lumi-
nal A (ER+, PR+, HER2-, low Ki67+), luminal B (ER+, HER2-, high
Ki67+/PR- OR ER+, HER2+, any Ki67/any PR), Erb-B2 overexpression
(HER2 overexpressed or amplified, ER and PR absent), basal-like
TNBC (ER-, PR-, HER2-) (Fig. 1) [6].

Among all the breast cancer subtypes, TNBC is the most aggres-
sive subtype and accounts for 10–20% of all breast cancer cases [7].
TNBC has a high recurrence rate, a high potential risk for metasta-
sis, and poor clinical prediction. It is also defined as an obstinate
breast cancer owing to its resistance to treatments [8]. Further-
more, it has the highest rate of distant metastasis, poor prognosis
and correlates with the shortest overall survival (OS) rate [9]. There
is no specific targeted molecular therapy for TNBC, as no pathway-
specific targets and biomarkers have been identified for TNBC.
Therefore, chemotherapy and surgical resection are the only avail-
able effective treatments for TNBC [10,11]. Moreover, even with
these treatments, TNBC patients with tumors confined to the
breast and lymph nodes have been reported to encounter distant
metastasis within five years [12].

TNBC metastasis accompanies a complex cascade of biological
events, including genetic and epigenetic changes, extracellular
matrix invasion, angiogenesis, intravasation into blood vessels
which allows the survival of tumor cells, their extravasation into
distant tissues, and eventually the development of tumor at a dis-
tant site [13]. This progression also involves epithelial to mes-
enchymal transition (EMT) driven by various signal transduction
pathways such as Wnt, Notch, and TGF-b [14]. The PI3K and NF-
kB signal transduction pathways are involved in tumor prolifera-
tion and survival of tumor cells thereby assisting in tumor prolifer-
ation at a distant site in the metastasis cascade [15]. The
metastasized cancer is incurable due to the resistance of trans-
formed tumor cells to the currently available treatments, which
also shortens the survival time of the patients [16–18]. A majority
of TNBC patients die due to the metastatic behavior of the tumor
rather than primary tumor growth. However, a better understand-
ing can help us gain further insights into the identification of novel
prognostic factors. Hence, identifying new prognostic factors for
distant metastasis-free survival of TNBC patients may help identify
novel therapeutic targets and improve their distant metastasis-free
survival time.
Fig. 1. Schematic showing molecular subtypes of breast cancer. These subtypes can b
tyrosine kinase, HER2 and Ki-67 biomarker.
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With the recent developments in the field of AI, its evaluation
and use in healthcare sector has increased, even in medical oncol-
ogy. The expanding medical data and the developing AI technolo-
gies have exhibited enormous potential for improving cancer
diagnosis and prognosis by identifying potential biomarkers [19].
Recently, Villemin and coworkers employed machine learning
and reported an EMT-related splicing signature capable of subclas-
sifying the basal-like triple negative tumours [20]. Similarly,
Kothari and others implemented machine learning approach and
identified two potential prognostic gene signatures, TBC1D9
(TBC1 domain family member 9) and MFGE8 (Milk Fat Globule-
EGF factor 8 protein) with a potential to be developed as therapeu-
tic targets too [21].

This study integrates machine learning and systems biology-
based approach to identify putative TNBC associated genes, which
can potentially serve as prognostic markers. Primarily, we per-
formed a meta-analysis of the Gene Expression Omnibus (GEO)
datasets (8 datasets – 5 TNBC and 3 non-TNBC) to identify the
genes that can differentiate the TNBC from other BrCa subtypes
(non-TNBC) using machine learning (ML). Furthermore, the gene
signatures obtained in the feature sets were compared and anal-
ysed with the differentially regulated genes. The differentially reg-
ulated genes were selected for distant metastasis-free survival
analysis (DMFS). And finally, their role as potential prognostic
biomarkers were explored using DMFS analysis along with their
pathway enrichment analysis.
2. Materials and methods

A summary of the workflow applied in this study, from the
dataset acquisition from NCBI-GEO to the pathway enrichment
analysis of potential prognostic genes are depicted in Fig. 2 and
described in the following section.
2.1. Microarray dataset download and pre-processing

The raw CEL files of the gene expression profiles and corre-
sponding clinical information of eight independent GEO datasets,
comprising 623 TNBC and 527 non-TNBC samples, were down-
loaded from NCBI GEO (https://www.ncbi.nlm.nih.gov/gds) (Sup-
e classified based upon the expression of hormone receptors (ER and PR) receptor,

https://www.ncbi.nlm.nih.gov/gds


Fig. 2. Schematic representation of the bioinformatics workflow. We leverage the existence of multiple microarray gene expression datasets in a platform (GPL570) with
differences in gene expression values unique to TNBC in the context of meta-analysis and systems biology, merging and batch-effect removal, encompassing TNBC and non-
TNBC gene expression values (N = 1150, TNBC = 623 and non-TNBC = 527 microarray expression profiling datasets) (1 and 2). Genes differentiating TNBC from non-TNBC,
leveraging RFE-RF feature selection (3) and differential expression (3) integrated into a framework to nominate the genes for distant metastasis-free survival analysis using
KM plotter (4). Furthermore, we used the STRING database to decipher the role of genes nominated by survival analysis and their interacting partners in the cellular
machinery (5).
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plementary Table 1). Since publicly available TNBC datasets are
limited, we selected all the datasets comprising more than or equal
to fifty samples for training and external validation dataset. Data-
sets comprising less than fifty samples were excluded from the
study as they would have increased the batch-effect without pro-
viding a significant number of samples. All the downloaded data-
sets were from the same platform (Affymetrix Human Genome
U133 Plus 2.0 Array) to mitigate the effects caused by different
platforms and analyze the same set of genes. All the datasets were
1620
first read via the ReadAffy function in the affy package for down-
stream processing. Then, the fRMA method was applied to the read
dataset using the fRMA package for background correction and
probe to gene mapping [22,23]. We preferred fRMA over the other
available methods as it allows individual analysis of microarrays or
in small batches before combining the data for meta-analysis.

Further, using the R cbind function, we merged all the eight
datasets and annotated the probesets to their corresponding Entrez
gene ID using the biomaRT package in R/Bioconductor [24]. How-
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ever, many probesets do not have their corresponding Entrez gene
IDs; hence these were removed. The multiple probesets with the
identical Entrez gene IDs were collapsed into one representative
row using the function collapseRows with the default MaxMean
method in the WGCNA package [25]. The dataset was normalized
using the quantile normalization function, which eliminates any
technical variability. In addition, it re-distributes the expression
intensities of all the samples so that they have a similar distribu-
tion [26].

2.2. Batch-effect removal

Merging multiple datasets into one dataset introduces batch-
effects or non-biological variations. To overcome batch-effects,
adjustments were made using the Empirical Bayes algorithm
implemented in the ComBat function in the SVA package [27,28].
Principal Component Analysis (PCA) was performed (using the R
prcomp function) to validate the batch-effect correction in
ComBat-transformed data to collapse high-dimensional data into
the first two components, which were visualized using the R ggbi-
plot package. After batch-effect removal the Entrez gene IDs were
further mapped to their corresponding external gene names.

The merged dataset obtained after pre-processing and batch-
effect removal give rise to an initial dataset comprising of 1150
samples and 20,756 features, henceforth referred as the complete
dataset.

2.3. Machine learning

2.3.1. Pre-processing for machine learning
After eliminating the batch-effect, the dataset was used for

training the supervised machine learning algorithms. The z-score
normalization algorithm was used to standardize the dataset. In
machine learning, standardization is extensively used for feature
scaling to get the various features to a similar scale. Standardiza-
tion centres all the feature columns with mean 0, the standard
deviation to 1, and conserves the valuable information about the
outliers.

2.3.2. Feature selection
In a dataset spreadsheet, input variables are the columns, and

samples are the rows for the model training to predict the target
variable. We presume columns to be dimensions on an n-
dimensional space and rows to be the points within that space.
Many columns indicate a high dimensional space, comprising of
small or non-representative points in that space. A higher-
dimensional space could significantly decrease a prediction mod-
el’s performance with too many input variables due to the curse
of dimensionality.

The process of obtaining a subset from original input variables
based on the feature selection algorithm to select the most appro-
priate features from the dataset for predictive modelling is called
feature selection [29]. It also lowers the computational cost and,
in some cases, improves the accuracy of the predictive model.

Primarily, we employed Pearson’s correlation coefficient algo-
rithm which is a filter-based approach to reduce redundant fea-
tures from the complete dataset, comprising of 1150 samples and
20,756 features. Further, we implemented the Recursive Feature
Elimination (RFE) algorithm to select the most relevant features
for building the efficient predictive model for our target variable.
It is a wrapper-type selection algorithm for regression and classifi-
cation problems and internally, it uses filter-based feature selec-
tion. It initiates searching all the features in the training dataset
by fitting the given machine learning algorithm in the core, ranking
all features by importance, removing the least relevant features,
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and re-fitting the model. RFE with Random Forest classifier (RFE-
RF) as an estimator was implemented using python.

We obtained the top 20, 25, 30, 35, 40, 45, 50 features with 1150
samples, using RFE to train and evaluate the accuracy of five
machine learning algorithms, namely Support Vector Machines
(SVM), k-Nearest Neighbors (kNN), Logistic Regression, Decision
Tree, Random Forest, and XGBoost for binary classification of TNBC
versus non-TNBC [30–35].

2.3.3. Training classification models
We trained different machine learning algorithms with the

selected features to generate efficient classifiers after pre-
processing, feature selection, and class imbalance treatment. We
employed five supervised machine learning algorithms- SVM,
kNN, Decision Tree, Random Forest, and XGBoost.

SVM investigates the data and recognizes patterns and decision
boundaries by constructing hyperplanes in multi-dimensional
space to discretize various classes [36]. kNN performs k-means
clustering and then uses the nearest neighbor samples for classifi-
cation [37]. The Decision Tree can be described as a tree-structure
classifier, in which internal nodes represent features, while the leaf
nodes represent the targets [38]. It uses multiple algorithms to
determine classification. Random Forest is an ensemble algorithm
that employs multiple decision trees for classification [31].
XGBoost is a high-speed, high-performance implementation of gra-
dient boosted decision trees [30].

2.3.4. Validation using internal testing dataset
SVM, kNN, Logistic Regression, Decision Tree, Random Forest,

and XGBoost were trained on top features obtained using RFE-RF
and further validated using stratified 5-fold cross-validation. The
accuracy, precision-recall, and F1 score of the training models were
compared.

2.3.5. Validation using external testing dataset
We obtained three independent GPL570 platform GEO datasets

from the NCBI GEO to further validate model performance (Supple-
mentary Table 2). The external datasets were pre-processed in the
same manner as mentioned in the ‘‘Microarray Dataset download
and pre-processing” and the ‘‘batch-effect removal” section, as men-
tioned above. External independent validation of all the ML algo-
rithms was performed using this external dataset.

2.3.6. Cancer driver gene expression-based model
Machine learning models were also trained by filtering the

training datasets to include cancer driver genes exclusively. The
list of cancer drivers was compiled using three separate databases:
COSMIC, IntOGen, and Bailey. COSMIC, the Catalogue of Somatic
Mutations in Cancer, is a widely used database of expert-curated
cancer driver genes [39]. IntOGen collects and explores somatic
mutations in thousands of tumors genomes to search for cancer
driver genes [40].

Further, Bailey and the group used 26 computational tools to
identify 299 driver genes and their implications for cancer cell
types and anatomical sites [41]. Primarily, we merged the three
driver gene lists to create a single list containing only genes unique
to all three. Then we data mined our complete dataset to identify
the driver genes, obtained above, and created a driver dataset com-
prising of 1150 samples and 919 features and performed all the
steps mentioned above under the machine learning section to
build a model based on the expression of these driver genes.

2.4. Differential gene expression analysis

After quantile normalization and removal of low variant genes
across all the samples using gene filter, the complete dataset com-
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prising of 1150 samples and 20,756 gene features were used to
employ differential gene expression analysis [42]. Further, using
the limma package, we identified DE genes in the dataset, using
the statistical criteria: logFC > 1; and p < 0.05 [43].
2.5. Survival analysis using KM plotter

The Kaplan-Meier survival analysis was performed for patients
with StGallen (2013) basal intrinsic breast cancer subtype of the
differentially expressed genes found in ML-identified genes, as dis-
covered in our study, using KM plotter, an open-source web-based
tool [44]. TNBC samples were primarily divided into high and low
mRNA expression groups for each gene to perform DMFS analysis.
In addition, the Cox regression analysis was used to validate fur-
ther the association between predictive genes and the patient’s
survival outcome. For survival analysis and Cox regression analysis,
a p-value of <0.05 was considered statistically significant.
2.6. Network analysis of prognostic genes

The putative prognostic genes identified in our study were
mapped on proteome-wide Homo sapiens interactome downloaded
from the STRING (v.11.0b) [45]. The first interacting nodes of each
targeted gene were selected and regulatory networks were consec-
utively constructed using Cytoscape. After that, using the MCODE
plugin in Cytoscape, clustering for each regulatory network was
examined and top modules with our genes of interest, based on
two centrality parameters such as degree and betweenness were
selected for further analysis [46]. Finally, the interacting proteins
for each gene from top clusters were subjected to pathway enrich-
ment analysis using the KEGG database [47–49].
2.7. Statistical analysis

All the analyses were conducted three times and the data were
pooled together. A moderated paired t-test was employed to eval-
uate the significance of differences between TNBC and non-TNBC.
Statistical significance of p < 0.05 was used as the cut-off for each
statistical analysis.
2.8. Software and package information

R and packages: R: 4.0.3, affy: 1.68.0, Biobase: 2.50.0, frma:
1.42.0, hgu133plus2frmavecs: 1.5.0, ggbiplot: 0.55, genefilter:
1.72.1, ggplot: 3.3.4, preprocessCore: 1.52.0, sva: 3.38.0, impute:
1.64.0, WGCNA: 1.70–3, fastcluster: 1.2.3, dynamicTreeCut: 1.63–
1, limma: 3.44.3, biomart: 2.44.4, dplyr: 1.0.6, plotly: 4.9.4, tidy-
verse: 1.3.1, gridExtra: 2.3.

Python and modules: Python: 3.8.5, numpy: 1.19.2, pandas:
1.1.3, seaborn: 0.11.0, sklearn: 0.24.1, matplotlib: 3.3.2, conda
4.10.3.
3. Results

3.1. Uncovering gene panel demarcating TNBC from other BrCa
subtypes and preliminary selection of genes correlated with TNBC

Machine learning algorithms facilitate the biomarker panel
selection as the algorithms are extraordinarily capable of learning
intricated interrelations within high-dimensional data. After back-
ground noise correction, all the datasets (8 datasets � 5 TNBC and
3 non-TNBC) were pooled, followed by normalization. The microar-
ray gene expression profile encompassing 20,790 gene products
across 1150 BrCa tumor samples (including 623 TNBC samples)
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was corrected for batch-effects, using ComBat stemming from
the datasets pooling.

The batch-effect removal was further validated using PCA. The
first two principal components of ComBat analysis demonstrate
the data that apprehended the most variance (Fig. 3) [50]. Dupli-
cate gene symbols were eliminated after mapping each Entrez
gene ID to its corresponding gene symbol, leading to 20,756 gene
products. The 20,756 genes were feature variables for training
the machine learning classifiers to predict the targets (TNBC and
non-TNBC). For ML classifiers, these 20,756 genes were employed
in two different strategies. In the first one, all the genes were used
for machine learning (complete dataset). In the second strategy,
only a subset of 919 driver genes (listed in the cancer driver data-
bases), driver dataset, was used for ML training. Both the datasets
were standardized employing the z-score standardization after
splitting the datasets into training and testing (in the ratio 80:20).

Our datasets have many feature variables (20,756 and 919) that
were likely to overfit the training datasets and eventually perform
poorly on any external data. Therefore, we employed two feature
selection methods, namely Pearson’s correlation coefficient scores
and Recursive Feature Elimination with Random Forest (RFE-RF)
classifier at its core to eliminate the dataset’s extraneous and
redundant feature variables. Feature variables or genes with a cor-
relation coefficient higher than or equal to 0.85 were eliminated,
leaving 19,493 and 913 genes, respectively. Further, RFE-RF
retrieved the top 20, 25, 30, 40, 45, and 50 feature variables from
the datasets mentioned above.

3.2. Validation using the internal testing dataset

The filtered genes in both the datasets were employed for
model building using different machine learning algorithms
(SVM with rbf kernel, kNN, Decision Tree, Random Forest, and
XGBoost). The top 20, 25, 30, 35, 40, 45, and 50 gene features for
the complete dataset achieved an average accuracy, ranging from
0.91 to 0.97 for all the machine learning classifiers. kNN achieved
the lowest accuracy ranging from 0.88 to 0.93, while the XGBoost
performed comparatively better than all the other classifiers with
accuracy ranging between 0.89 and 0.99 (Supplementary Table 3).

For the driver dataset trained classifiers, the top 20, 25, 30, 40,
45, and 50 gene features achieved an average accuracy ranging
from 0.91 to 0.94 for all the machine learning classifiers. The deci-
sion tree classifier achieved the lowest accuracy, ranging from 0.86
to 0.90, while the XGBoost again performed better than all the
other classifiers with accuracy ranging from 0.94 to 0.97 (Supple-
mentary Table 4).

3.3. Validation using external independent dataset

We further evaluated the performance of all the classifiers on
the external independent dataset. We achieved the highest accu-
racy of 0.94 for the XGBoost classifier enriched with the top 25
gene features for the complete gene expression dataset with an
AUC of 0.99 for ROC and for the PR curve (Fig. 4a, Fig. 4c; Supple-
mentary Table 3). Thus, we adopted the XGBoost classifier of the
top 25 gene features for the complete gene expression dataset
(CX-25: Complete XGBoost top 25) with an accuracy of 0.99 in
the internal testing dataset and 0.94 in the external testing dataset
(Fig. 4b, Fig. 4d; Supplementary Table 3).

In the external driver dataset, we achieved the highest accuracy
of 0.92, enriched with the top 20 gene features for the XGBoost
classifier with an AUC of 0.98 for ROC and PR curve (Fig. 5a,
Fig. 5c; Supplementary Table 4). While for the internal driver data-
set, the XGBoost classifier achieved an accuracy of 0.97 with an
AUC of 0.99 for ROC for the PR (Fig. 5b, Fig. 5d; Supplementary
Table 4). With an accuracy of 0.97 on the internal testing dataset



Table 1
Selected gene features after ML with their log Fold change and Kaplan-Meier Log Rank P-value.

CX-25 DX-20

Gene p.Value logFC adj.P.Val Gene Expression Kaplan-Meier
Log rank P (TNBC)

Gene p-Value logFC adj.P.Val Gene Expression Kaplan-Meier
Log rank P (TNBC)

TTYH1 2.10E-53 1.51 1.96E-52 Upregulated 0.38 AR 1.87E-86 �2.34 5.48E-85 Downregulated 0.57
PTGFR 2.73E-25 0.64 9.56E-25 FALSE 0.18 DACH1 3.00E-85 �2.61 8.54E-84 Downregulated 0.66
PPP4R4 5.01E-17 �0.63 1.27E-16 FALSE 0.56 ERBB4 1.07E-116 �3.14 1.00E-114 Downregulated 0.31
PTPRZ1 1.34E-17 0.90 3.48E-17 FALSE 0.83 ESR1 3.49E-106 �3.90 2.08E-104 Downregulated 0.38
PTX3 2.87E-64 2.25 3.94E-63 Upregulated 0.14 FOXA1 5.49E-201 �4.32 1.14E-196 Downregulated 0.41
PCDH8 2.67E-14 0.60 6.04E-14 FALSE 0.42 PGR 5.25E-78 �2.63 1.18E-76 Downregulated 0.23
BCHE 0.001 0.25 0.0013 FALSE 0.4 AFF3 1.99E-77 �2.59 4.37E-76 Downregulated 0.91
S100B 9.48E-93 2.02 3.48E-91 Upregulated 0.0068 BCL11A 9.48E-93 1.54 3.48E-91 Upregulated 0.0038
CXCL5 3.69E-24 1.006 1.24E-23 Upregulated 0.92 POU2AF1 5.17E-102 2.54 2.63E-100 Upregulated 0.0033
SFRP1 1.09E-136 3.633 2.36E-134 Upregulated 0.2 ZNF521 1.11E-119 2.48 1.15E-117 Upregulated 0.59
PCDH20 2.58E-30 �0.78 1.08E-29 FALSE 0.025 MUC16 2.05E-37 1.41 3.93E-36 Upregulated 0.65
TFF1 4.02E-107 �3.75 2.49E-105 Downregulated 0.86 CDKN2A 2.91E-55 1.39 2.89E-54 Upregulated 0.98
LRRC31 4.21E-43 �1.276 2.76E-42 Downregulated 0.4 TGFBR2 5.89E-62 1.29 7.44E-61 Upregulated 0.63
SLC44A4 2.85E-66 �1.695 4.17E-65 Downregulated 0.19 WIF1 6.42E-26 1.13 2.30E-25 Upregulated 0.45
ZIC1 1.18E-51 2.05 1.04E-50 Upregulated 0.53 NRK 8.33E-31 �0.89 3.55E-30 FALSE 0.75
CAPN6 8.07E-65 1.90 1.13E-63 Upregulated 0.99 COL2A1 2.38E-09 0.79 4.33E-09 FALSE 0.38
HORMAD1 3.91E-48 2.155 3.03E-47 Upregulated 0.98 LRP1B 3.79E-18 �0.58 1.01E-17 FALSE 0.78
BBOX1 3.89E-62 1.899 4.96E-61 Upregulated 0.31 S100A7 5.48E-11 1.13 1.08E-10 Upregulated 0.42
CT83 5.90E-35 1.626 2.93E-34 Upregulated 0.052 WNK4 2.95E-49 �1.06 2.39E-48 Downregulated 0.32
PGR 5.25E-78 �2.628 1.18E-76 Downregulated 0.23 TNFRSF17 1.18E-49 1.36 1.47E-48 Upregulated 0.028
ABCC11 1.27E-36 �1.44 6.64E-36 Downregulated 0.44
LY6D 9.36E-47 1.31 6.96E-46 Upregulated 0.96
SERPINA6 3.16E-20 �0.77 9.16E-20 FALSE 0.16
CCN6 1.20E-05 0.32 1.80E-05 FALSE 0.7
ATP7B 1.71E-126 �1.703 2.49E-124 Downregulated 0.16
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Fig. 3. PCA plots illustrating batch-effect removal. Validation of batch-effect removal was demonstrated using PCA plot. a. Before employing ComBat. b. After employing
ComBat. Different colors represent different datasets. Before batch-effect removal all the datasets form separate clusters, while after the batch-effect removal no such
separate clusters were observed.
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and 0.92 on the external testing dataset, we chose the XGBoost
classifier of the top 20 gene features for the driver dataset (DX-
20: Driver XGBoost top 20).

3.4. Survival analysis of the differentially expressed genes from CX-25
and DX-20

A moderated t-test followed by Benjamini-Hochberg FDR esti-
mation was carried out to analyze differential gene expression
Fig. 4. ROC and precision-recall curve of the complete dataset after employing ML. R
validation dataset (b). The precision-recall curve of all machine learning algorithms on co
other ML classifiers with ROC-AUC of 0.99 in internal validation, 0.99 in external valida
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among TNBC tumor subtype patients (N = 623) and non-TNBC
tumor subtype patients (N = 527). The statistical significance of
FDR < 0.05 was kept as the cut-off. Volcano plots in Fig. 6 reports
the differentially expressed genes between TNBC and non-TNBC
subtypes (Table 1). The genes retrieved after implementing
machine learning (CX-25 and DX-20) are highlighted in the vol-
cano plot (Fig. 6).

In CX-25, TFF1, PGR, LRRC31, SLC44A4, ATP7B, and ABCC11 are
downregulated, while TTYH1, CT83, HORMAD1, ZIC1, CAPN6,
OC curve of all machine learning algorithms on complete external (a) and internal
mplete external (c) and internal validation dataset (d). XGBoost outperforms all the
tion, and PR-AUC of 0.98 in internal and in the external validation dataset.



Fig. 5. ROC and precision-recall curve of driver dataset after employing ML. ROC curve of all machine learning algorithms on driver external (a) and complete internal
validation (b) dataset. The precision-recall curve of all machine learning algorithms on driver external (c) and internal validation (d) dataset. XGBoost outperforms all the
other ML classifiers with ROC-AUC of 0.99 in internal validation, 0.979 in external validation, and PR-AUC of 0.98 in internal and in the external validation dataset.

Fig. 6. Volcano plots of differentially expressed genes in TNBC. TNBC patients were compared with non-TNBC patients’ group. Log fold change is plotted, and gene
transcripts with log fold change > 1 were coloured blue and with log fold change < 1 are coloured green. Differentially expressed genes from the top 25 and top 20 genes
obtained after applying ML on CX-25 (a) and DX-20 (b) are depicted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 7. Survival analysis reveals the significant association between CT83, BCL11A, S100B and POU2AF1 and distant metastasis-free survival in TNBC. In each of the
Kaplan-Meier plot, the red line demonstrates the survival of patients in the higher expression group, whereas the black lines indicate the survival of patients in the lower
expression group. The p-Values and hazard ratio (HR) scores were computed using the log-rank (Mantel-Cox) test. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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BBOX1, PTX3, S100B, CXCL5, SFRP1, and LY6D are upregulated; in
DX-20, AR, FOXA1, ESR1, PGR, AFF3, DACH1, WNK4, and ERBB4
are downregulated, while BCL11A, ZNF521, POU2AF1, MUC16,
S100A7, WIF1, CDKN2A, TNFRSF17, and TGFBR2 are upregulated
(Table 1). PGR is common in CX-25 and DX-20.

After the differential gene expression analysis, all the above-
selected genes were analyzed to test their association with distant
metastasis-free survival (DMFS) time (Fig. 7). Kaplan-Meier DMFS
analysis identified high- and low-expressed genes that signifi-
cantly differentiate the patients bifurcated by distant metastasis-
free survival ability in the TNBC tumor subtype [51] (Table 1).

BAF chromatin remodelling complex subunit (BCL11A), POU
class 2 homeobox associating factor 1 (POU2AF1), and S100 cal-
cium binding protein B (S100B) exhibited a difference in DMFS,
higher survival with higher expression. Cancer/Testis antigen 83
(CT83), is a borderline prognostic biomarker with a p value of
0.052. We picked BCL11A, S100B, CT83 and POU2AF1, which have
been identified as potential TNBC prognostic hallmark genes, based
on their significant association with distant metastasis-free sur-
vival in TNBC patients.
3.5. Interaction analysis of survival analysis nominated genes

The targeted genes (S100B, POU2AF1, BCL11A and CT83) were
mapped to the human protein–protein interaction network to
investigate the physical and functional interactions (Fig. 8). A total
of 1222, 441, 928, 172 nodes and 361838, 49426, 162840, 5964
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edges are found for S100B, POU2AF1, BCL11A and CT83, respec-
tively. Further, the top modules selected by clustering analysis
resulted in the highest number of interactions in BCL11A, with
265 nodes and 49,714 edges, followed by POU2AF1, with 165
nodes and 23,102 edges (Fig. 8). Furthermore, S100B has 113 nodes
with 3274 edges; and for CT83, 48 nodes with 1640 edges (Fig. 8).

The interacting partners of selected modules were subjected to
a pathway enrichment analysis using the KEGG database to under-
stand the underlying regulatory pathways. All the enriched path-
ways are shown in Supplementary Fig. 1. This analysis revealed
that BCL11A, S100B, and POU2AF1 have a pivotal role in cross-
talking in cancer metastasis and could provide novel insights into
its role in the cancer signaling pathways.
4. Discussion

TNBC is a pre-eminent classical BrCa subtype, based on charac-
teristic markers such as ER, PR, and HER2, although its genetic
properties are more complex than anticipated. The application of
gene expression data in identifying TNBC biomarkers is reported
by various other studies [52,53]. However, the major drawback is
the non-availability of large sample size in publicly available data-
sets. Thus, in this study, we attempt to address this issue by select-
ing multiple datasets from a publicly available database to increase
the number of samples that were merged for meta-analysis. The
gene expression data has a vast amount of information in intricate
patterns among various genes. ML algorithms are emerging as a



Fig. 8. Protein-protein subnetwork and top MCODE clusters of putative prognostic genes. Protein-protein interaction sub-network of putative prognostic genes
(POU2AF1, S100B, BCL11A, and CT83) extracted by mapping on the human (center) protein–protein interactome, with 2428 interactions. Top MCODE clusters of all the
selected prognostic genes; POU2AF1 with 165 interactions (top left), 2) S100B with 113 interactions (top right), BCL11A with 265 interactions (bottom left), and CT83 with 48
interactions (bottom right). Created with BioRender.com.
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better approach to unravel these intricate patterns in the gene
expression datasets to identify potential novel biomarkers [54–
56]. However, a large number of genes (20,756) in comparison to
a smaller number of samples is a hurdle in achieving a better per-
formance of ML classifiers. To circumvent this limitation, we
employed a feature selection algorithm (RFE-RF). Feature selection
algorithms help in identifying the core representative and func-
tional genes that can potentially differentiate two subtypes of a
cancer. The features obtained using RFE-RF comprised genes
reported to be involved in TNBC, further validating our unconven-
tional ML-based pipeline (Fig. 2). The pipeline also enabled the
identification of novel transcripts influencing the distant
metastasis-free survival of TNBC patients.

As discussed above in the results section, XGBoost performs the
best with the highest accuracy and AUC for the complete dataset
trained with the top 25 features (CX-25), including TTYH1, ATP7B,
PPP4R4, PTGFR, BCHE, TFF1 and SERPINA6 (Fig. 4). Further, for the
driver dataset, XGBoost outperformed the other ML-based algo-
rithms (Fig. 5). Notably, DX-20 included WIF1, CDKN2A, ZNF521,
COL2A1, WNK4, MUC16, and S100A7.
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Out of 45 genes listed in CX-25 and DX-20, several genes have
established role in breast cancer, validating the employed pipeline.
For instance, BBOX1 [57], AR [58], ZIC1 [59], CAPN6 [60], PCDH8
[61], and others were in agreement with our findings.

The DGE (Differential gene expression) analysis was performed
on the complete dataset. A total of seventeen genes in CX-25 and
seventeen genes in DX-20 were found to be differentially
expressed (Fig. 6). The identification of AR, PGR and ERBB4 is of
prime importance, downregulated in TNBC, further validating the
efficacy of the DGE analysis and the ML pipeline. In a study based
on a robust rank aggregation of gene expression profiles, Zhong
et al. observed that HORMAD1, BCL11A, and CT83 are upregulated,
whereas FOXA1 is downregulated [62]. D. Dill and colleagues [63]
employed a network-based approach to discover TNBC drivers that
regulate survival time of patients and identified that HORMAD1 is
upregulated, while FOXA1, ESR1, SLC44A4 and ERBB4 are down-
regulated. The results of DGE analysis in the complete dataset
are consistent with those of Zhong et al. and D. Dill and associates.

Survival analysis predicted four putative prognostic genes, i.e.,
BCL11A, CT83, POU2AF1, and S100B for DMFS (Fig. 7; Table 1).

http://BioRender.com
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Intriguingly, the two genes (POU2AF1 and S100B) are novel poten-
tial prognostic factors for TNBC metastasis-associated survival.
Further validation of the genes was performed by referring to the
literature. Out of all the four predicted prognostic genes, BCL11A
has a role in breast cancer-specific metastasis. Studies have shown,
high expression of BCL11A in TNBC, employing qRT-PCR and
immunohistochemistry techniques and its paramount role in stem
and progenitor cells, thereby causing tumour development in
TNBC. However, knock-down studies performed in mouse model
have reported a dramatic reduction in tumourigenicity and the
tumour size [64]. Furthermore, the mRNA expression of BCL11A
positively correlates with ST8SIA1, which regulates metastasis by
activating the FAK-AKT-mTOR signaling pathways [65]. BCL11A
Fig. 9. Schematic illustration of signal transduction pathways involved in metastasis
apoptosis, known as anoikis (brown), while the tumor cells (red) resist apoptosis throug
pathways). With the loss of E-cadherin receptors (promoted by TGF-b pathway), the tum
form (red tumor cell with a tail). These mobile or transformed tumor cells intravasate in
(brain shown in blue). At the new site, tumor cells proliferate through the activation
(metastasis). New blood vessels are formed (angiogenesis) by synthesizing angiogenic
employed for the tumor cells’ nutrition and transport (intravasation and extravasation)
referred to the web version of this article.)
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can also upregulate the expression of BCL2, BCL2-xL, and MDM2,
which suppress p53 activities [66]. These molecular variations
can occur in solid tumours, such as lung cancer. Therefore, BCL11A
may have a role in carcinogenesis by affecting apoptosis, the cell
cycle, and DNA damage repair, but the exact mechanisms are not
known. However, Jiang and others reported high expression of
BCL11A in clinical non-small cell lung cancer (NSCLC) tissue sam-
ples at transcriptional and translational levels. They also observed
better survival outcomes for patients with high expression of
BCL11A [67]. Seachrist et al. have reported the role of BCL11A in
suppressing a splicing regulator, muscleblind-like splicing regula-
tor 1 (MBNL1), thereby promoting cell invasion and metastasis in
TNBC [68]. However, we observed that BCL11A was upregulated
cascade. If normal epithelial cells (orange) detach from the membrane, it undergoes
h the activation of anti-apoptotic pathways such as PI3-AKT, MAPK (anti-apoptotic
or cells undergo a transition from non-mobile (epithelial) to mobile (mesenchymal)
to blood vessels and transported to a new site, where they extravasate and localize
of Wnt, Notch, Hedgehog, and other related pathways to develop a new tumor
factors by Nf- kappa B and other signaling pathways. The new blood vessels are
. (For interpretation of the references to colour in this figure legend, the reader is
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in TNBC and survival analysis indicates that patients with high
expression of BCL11A had better survival outcomes, similar results
to previous study on NSCLC. Therefore, one might wonder if
BCL11A functions as a tumour suppressor and suppresses cancer
metastasis or promotes metastasis. Liu et al. reported that BCL11A
may be a T-cell tumor suppressor gene as they observed T-cell leu-
kaemia in recipient mice as a result of BCL11A-knockout in murine
fetal liver cells [69]. In addition to the above-mentioned putative
mechanism, P21 and CHEK1, two cell cycle checkpoint members,
such as G1/S and G2/M checkpoints might also be responsible for
this function [70,71]. These evidences suggest that BCL11A may
target P21 and CHEK1, implying an interesting dual role for BCL11A
in TNBC progression which can be explored further.

Currently, the precise role of CT83 in TNBC is poorly understood
due to the limited relevant data availability. CT83 is the most
specific TNBC gene that is considerably increased in TNBC but
downregulated in other malignancies. It may promote carcinogen-
esis by causing the activation of cell cycle-related signaling path-
ways [72].

POU2AF1 is a protein-coding gene also known as BOB1, OBF1,
OCAB, and OBF-1, found on chromosome 11q23.1, which encodes

a protein of 256 amino acids (http://www.ncbi.nlm.nih.gov/geo).
POU2AF1 was previously thought to be expressed only in lympho-
cytes, where it acts as a co-activator of OCT1 and OCT2 (octamer-
binding transcription factors) to regulate immunoglobin expres-
sion and other host defence genes [73–75]. POU2AF1 itself has
no intrinsic DNA binding domain, it recognizes the POU domain
of OCT1 and OCT2 and thus plays an essential role in B-cell
responses to antigens and is also essential for the formation of ger-
minal centres [76–78]. However, sporadic literature suggests that
POU2AF1 might play a prominent role in other cells as well. For
instance, POU2AF1 has an average level of expression in the human
airway epithelium when compared to all other transcription fac-
tors [79]. Similarly, in the murine intestinal follicle-associated
epithelium, high expression of POU2AF1 was observed as com-
pared to villous epithelium [80,81]. The above-mentioned studies
along with the known functions, shows that POU2AF1 plays a reg-
ulatory role in immune system. Further, the role of POU2AF1 in
breast cancer, primarily focusing on TNBC, is still unknown. This
study, on the other hand, is the first to mention the significance
of POU2AF1 in the prognosis of distant metastasis in TNBC
patients. Patients with high POU2AF1 expression had a longer dis-
tant metastasis free survival time than the patients with low
POU2AF1 expression, according to the Kaplan-Meier survival anal-
yses in this study (Fig. 7). These observations are on par with the
above-mentioned studies and indicates the immunological role of
POU2AF1 in limiting distant metastasis in TNBC which might be
further explored.

Similarly, S100B, also known as NEF, S100, S100B, and S100
beta, is located on the chromosome 21q22.3 and encodes a 92
amino acidic, Ca2 + binding protein involved in diverse biological
processes including inflammation (http://www.ncbi.nlm.nih.gov/-
geo). Inflammatory molecules alter metastasis-related pathways
such as EMT [82]. In ER-negative breast cancer cell lines, S100B
treatment greatly reduced cell movement and promoted the
epithelial phenotype by activating anti-metastatic signaling path-
ways [83]. Our results are in concordance with the activation of
anti-metastatic pathways. S100B gene expression is upregulated
in TNBC, also the patients with high S100B expression have a
longer distant metastasis free survival, further supporting their
role in the suppressed cell migration. Further, analysis was per-
formed to decipher the role of BCL11A, CT83, POU2AF1, and
S100B in metastasis of TNBC using pathway enrichment.

The pathway enrichment analysis of these genes and their mod-
ules affirmed their association with signaling pathways involved in
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cancer metastasis. Metastasis cascade includes epithelial-
mesenchymal transition (EMT), tumor neoangiogenesis, and the
spread of malignancy to a new site. The spread of malignancy is
caused by the transport of malignant cells through blood vessels
to target tissues and organs, which are then invaded by infiltrating
malignant cells, resulting in secondary tumors. The aberrant con-
stitutive activation of PI3-Akt, MAPK, and focal adhesion signaling
provides resistance to programmed cell death and anticancer ther-
apy to cancer cells [84,85]. Furthermore, Notch, Wnt, Hedgehog,
TGF-b, and Nf-Kappa B signaling pathways play a prominent role
in EMT, cell proliferation, migration, and motility of these cells
[86–88]. The transcription factor Nf- kappa B is anti-apoptotic
and pro-proliferative in tumor cells and plays a role in the synthe-
sis of angiogenic factors such as vascular endothelial growth fac-
tors [89].

Transforming growth factor-beta (TGF-b) is known to stimulate
and/or sustain tumor cell motility and metastasis by causing the
loss of the epithelial marker E-cadherin. E-cadherin is correlated
to aberrant EMT, tumor cell motility and invasion, and anoikis
resistance [14] (Fig. 9). This study has demonstrated the potential
role of POU2AF1, and S100B as novel prognostic biomarkers in
metastasis and therapeutic targets for TNBC; yet, whether these
gene signatures can be used for diagnosis or drug development is
still a challenge since their detailed molecular mechanisms
remains to be understood comprehensively.

One of the limitations of this study is the small sample size used
to predict the survival analysis of these genes. The limitation is also
aggravated due to an insufficient number of TNBC samples and
their demographic information in publicly available datasets. As
an additional limitation, cross-platform validation is also needed,
as we used only the GPL570 platform in our study. Nonetheless,
we established our study on the most extensively used platform,
which outshines the study limitations and enables valuable
insights into prognostic indicators for TNBC.

Our findings demonstrated the viability of using RFE-RF and ML
to uncover biomarkers that distinguish TNBC from non-TNBC.
Although more data on a larger scale is needed to corroborate
our findings, we have meticulously evaluated and analyzed our
results at every step, consistent with the past related research.
5. Conclusion

Summarily, the present study demonstrates an unconventional
and important workflow that deduced the novel potential prognos-
tic factors associated with TNBC. We believe that understanding
the role of these prognostic genes in metastasis may further pro-
vide potential targets for future intervention and therapy. Further-
more, the application of the pipeline developed also shows the
potential to explore the prognostic factors associated with other
life-threatening ailments. Finally, the study demonstrates the
potential of Recursive feature selection-Random Forest as a feature
selection algorithm for gene expression profiles or other similar
data having a large number of features as compared to the number
of samples.
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