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Abstract

Background: Many toxic environmental agents such as cadmium and arsenic are found to be epidemiologically linked to
increasing rates of cancers. In vitro studies show that these toxic agents induced malignant transformation in human cells. It
is not clear whether such malignant transformation induced by a single toxic agent is driven by a common set of genes.
Although the advancement of high-throughput technology has facilitated the profiling of global gene expression, it
remains a question whether the sample size is sufficient to identify this common driver gene set.

Results: We have developed a statistical method, SOFLR, to predict the number of common activated genes using a limited
number of microarray samples. We conducted two case studies, cadmium and arsenic transformed human urothelial cells.
Our method is able to precisely predict the number of stably induced and repressed genes and the number of samples to
identify the common activated genes. The number of independent transformed isolates required for identifying the
common activated genes is also estimated. The simulation study further validated our method and identified the important
parameters in this analysis.

Conclusions: Our method predicts the degree of similarity and diversity during cell malignant transformation by a single
toxic agent. The results of our case studies imply the existence of common driver and passenger gene sets in toxin-induced
transformation. Using a pilot study with small sample size, this method also helps microarray experimental design by
determining the number of samples required to identify the common activated gene set.
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Introduction

Transcriptome studies and the sequencing of gene coding

regions obtained from human tumors have revealed that the gene

expression show both similarity and diversity for a given tumor

type. Tumors were found to be highly heterogeneous with distinct

gene expression patterns when compared both individual tumors

[1,2,3] or within a single cancer [4,5]. Nevertheless, for a specific

tumor type, the gene expression often showed similarity between

individual tumors in that consensus mutations [6,7,8] or recurrent

genetic changes [9,10,11] were observed. One question that is

unknown regarding tumor homogeneity is the role that exposure

to a single environmental agent might have on the gene expression

profile during the process of malignant transformation. There are

few examples in the literature that illustrate the degree of

similarities or alterations in gene expression that might be

expected when a single toxicant is used to effect multiple

independent transformations of the same cell line.

One popular paradigm of cancer development and progression

is based on the concept of ‘‘driver’’ and ‘‘passenger’’ mutations

[12,13]. Driver mutations are those that confer a selective growth

advantage to the cell while ‘‘passenger mutations’’ are those that

do not confer a selective advantage but occurred as a result of

acquired genomic instability. Passenger mutations are much more

common than driver mutations and a major difficulty arises in

separating the few driver mutations from the large background of

passenger mutations. If common driver mutations exist in

transformed cells, a constant number of induced and repressed

genes, as the product of pathways affected by driver mutations,

would be found over a large number of independent isolates. A

large number of genomic studies have found common gene sets

that were activated during toxin-induced in vivo or in vitro cell

transformation [14,15,16,17,18,19]. However, it is a question

whether the common gene sets are stabilized because it is usually

difficult to obtain sufficient number of independent transforma-

tions in genomic studies. In this study, we constructed a statistical

model to predict the number of common induced and repressed

genes based on a limited number of independent isolates. In order

to validate our model, we did two case studies for the malignant

transformation of the human urothelial cell line, UROtsa.

We are using UROtsa cell line, which can be transformed by

the environmental agents, cadmium and arsenic, as the model
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system. The UROtsa cell line is derived from a primary culture of

human urothelial cells that was immortalized using the SV40 large

T-antigen [20]. The UROtsa cells grow as a contact inhibited

monolayer and are not tumorigenic as judged by the inability to

form colonies in soft agar and tumors in nude mice. This

laboratory showed that UROtsa cells grown in a serum-free

growth medium displayed features consistent with the intermedi-

ate layer of the urothelium [21]. This laboratory has also shown

that the UROtsa cells can be directly malignantly transformed by

exposure to Cd+2 or As+3 and that the tumor transplants produced

by the transformed cells displayed histologic features consistent

with human urothelial cancer [22]. Subsequently, the laboratory

has isolated 5 additional As+3 and 6 additional Cd+2 transformed

UROtsa cell lines and shown each to have cell culture

characteristics similar to those of the original isolates, as well as

to produce tumors with a histology similar to that of the original

isolates [23,24]. These additional cell lines were isolated simulta-

neously from independent flasks of parental UROtsa cells and

were exposed to identical cell culture reagents and stock solutions

of Cd+2 and As+3.

The goal of the current study was to assess consistency and

stochasticity in global gene expression signatures from repeated

transformation from a single carcinogen i.e. Cd+2 or As+3. Using

the global gene expression data, a stochastic model for the

convergence of a common activated gene set as the number of

transformed cell isolates increased was constructed.

Results

Transformed isolates have carcinogen-specific gene
expression patterns

Global gene expression analysis was performed on the 6 Cd+2

transformed, 5 As3+ transformed cell lines and 3 non-transformed

parental control cell lines using the Affymetrix 133 Plus 2.0 chip.

The MAS 5.0 algorithm reported that 25,074 probes were present

in at least one isolate. In order to determine whether the three

groups of cell lines have distinct gene expression patterns, we

selected 4,454 probes that had a standard deviation greater than

0.5 across all isolates. These 4,454 probes were used for

hierarchical cluster analysis using Pearson’s dissimilarity and the

Ward link method. In Figure 1, a heat map demonstrated that the

non-transformed UROtsa control cell lines, the Cd+2-transformed

and the As3+ cell lines formed three distinct groups by hierarchical

clustering; suggesting higher relatedness in gene expression profiles

within each group than between each group.

Empirical Bayes model was used for the differentially expressed

genes by comparing transformed cell lines with parental controls.

By controlling a false discovery rate (FDR) of 5%, 609 genes were

found to be induced (Table S1) and 579 repressed in Cd+2

transformed cells (Table S2). The DEGs in As+3 transformed cells

are 228 (Table S3) and 105 for induced and repressed (Table S4),

respectively. These results indicate the transformed cell lines form

specific gene expression patterns that distinguish them from

parental cells and from cells transformed by a different toxic agent.

Common genes are activated across independently
transformed cell lines

The number of induced and repressed array probes, defined as

a two-fold induction or repression compared to the control, were

collated on a gene-by-gene basis for each cell line. The number of

array probes induced in the Cd+2 transformed cell lines compared

to the non-transformed control ranged from 1,189 to 2,389 with

285 probes having common induction among all the Cd+2

transformed cell lines (Fig. 2A). The number of array probes

repressed in the Cd+2 transformed cell lines compared to control

lines ranged from 1,816 to 3,931 with 215 probes having common

repression among all the Cd+2 transformed cell lines (Fig. 2B).

The number of array probes induced in the As+3 transformed

cell lines compared to the non-transformed control ranged from

1,516 to 4,049 among the 5 cell lines with 328 probes induced in

common among all 5 As+3 transformed cell lines (Fig. 2C).

Similarly, the number of repressed probes ranged from 1,925 to

3,087 for all the cell lines with 91 probes having common

repression among all the As+3 transformed cell lines (Fig. 2D).

It is a question whether the common genes shared by all

transformed isolates are formed by random chance? We conduct-

ed a simulation study to answer this question. For 285 induced

probes in the 6 Cd+2 transformed cells, we randomly generated 6

probe subsets from a total of 25,074 probes. The numbers of

probes in the 6 subsets were the same to the numbers of induced

probes of the 6 Cd+2 isolates, which were 1189, 1325, 1408, 1499,

1637, 2389, respectively. The overlapping probes that were shared

in the 6 subsets were then identified and counted. The simulation

was repeated 1,000,000 times, and none of the numbers of

overlapping probes was greater than 285. So we concluded that

the number of common induced probes, 285, was significantly

higher than what was expected from random draws, and the p-

value was less than 1E-6. The simulation studies were performed

for all the 4 scenarios, induced and repressed for Cd+2 or As+3

transformation, and we found that the observed numbers of

overlapping probes were all significant with p-values less than 1e-

6.

Array validation
Many of the genes identified as differentially expressed in all 6 of

the Cd+2 transformed cell lines compared to the UROtsa parent

were also independently validated for their expression. In this

analysis, 338 differentially expressed genes were validated in

triplicate using real time PCR. There were several criteria used for

selection of the gene list for validation. Since the Affymetrix 133

Figure 1. Heat map. The heat map of all UROtsa As+3 and Cd+2

transformed isolates with the non-transformed parental controls in
comparison to that of As+3 transformed UROtsa cells. The map consists
of 4,454 probes that exhibited the greatest variation in expression
across isolates. The non-transformed controls and transformed isolates
formed three distinct groups by hierarchical clustering.
doi:10.1371/journal.pone.0085614.g001

Prediction of Activated Genes in Transformed Cell
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Plus 2.0 chip does contain multiple probes for some individual

genes, this redundancy was removed with only one gene chosen

for validation. In general, any gene having a 3.2 fold alteration in

expression compared to control was chosen for analysis, although

there were several genes where difficulties were found in probe

design or where informatics information was suspect. The

numbers of genes chosen for validation are shown as the first

row of Table 1. The validation was performed by testing whether

the confidence interval (CI) of fold changes covered 0 or not.

Overall, only 8 genes out of 161 (4.97%) in the cadmium

transformed cells and 22 out of 334 in the arsenic transformed cells

failed to validate. The results are near the 5% discovery rate used

in the DEG list.

Figure 2. Venn diagram for the number of gene expression changes in metal transformed UROtsa cells. The Venn diagram depicts the
number of Affymetrix 133 Plus 2.0 array probes that exhibit a two-fold change in gene expression in each metal-transformed UROtsa isolate
compared to non-transformed UROtsa cells. The transformed isolate number is also depicted within each oval in red, and the probe overlap (number
of probes expressed in all isolates) is shown in the middle of each rosette.
doi:10.1371/journal.pone.0085614.g002

Table 1. Microarray validation using a customized qPCR
array.

Cadmium Arsenic

n.genes evaluated 161 334

n.genes not validated 8 22

Percent not validated 4.97% 6.59%

doi:10.1371/journal.pone.0085614.t001

Prediction of Activated Genes in Transformed Cell
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Statistical prediction of the number of common altered
genes

The above analysis suggests that there may be a set of genes that

are induced and repressed in common in Cd+2 or As+3

transformed UROtsa cells. The predicted size of each set of these

in common genes among the cell lines can be predicted by

hypothetically increasing the number of cell lines within each

group. Two outcomes are possible: 1) the overlap falls to zero and

there would not be any set of genes in common among a much

larger set of cell lines or 2) the number of induced and repressed

genes in common would approach a constant minimum and

represent a core set of genes induced or repressed in common in

the expanded set of transformed cell lines. In the case of the probes

identified as induced in the Cd+2 transformed cell lines, the

number of probes found to be induced decreased from a mean of

1,673 for a single cell line to 850 for probes induced in common in

two cell lines, and 574, 433, 346, and 285 for three, four, five, and

six cell lines, respectively. A fitted nonlinear line using a 4-

parameter logistic model was used to predict the number of genes

that would be induced in the Cd+2 transformed UROtsa cells

(Fig. 3A). This analysis showed that as the number of isolates were

increased, the curve would stabilize at approximately 230 genes

induced in common for the Cd+2 transformed UROtsa cells. To

verify this result, we used the method SOFLR as described in

Methods section to fit the data in a logarithm scale using the

following model,

log(y{d)~azbxze,

where y is the number of induced genes for x isolates, d is a

constant integer, a and b are constant parameters, and e is the

random error that is normally distributed with mean 0 and

standard deviation s. It is obvious that y will converge to d as the

number of isolates x increases. For y = 285 at x = 6, d ranges

between 0 and 284, and an adjusted R2 for the linear regression

can be calculated for each d value. It was calculated that d = 233

gave the best R2 value, 0.993 (Fig. 3B). Thus, SOFLR predicted

that the number of genes induced in common among a large

number of cadmium transformed cell lines would be 233. It

followed that for 14 independent isolates, the predicted 95%

confidence interval for d is (233, 233.359); therefore, the 233 driver

genes induced in common could be identified using 14 indepen-

dent Cd+2 transformed cell lines. Using this SOFLR method, we

predicted that 198 genes are repressed in common for the Cd+2

transformed cell lines (Fig. 3C–D).

The same analysis was performed for As+3 transformed cell

lines. For y = 328 at x = 5, d ranges between 0 and 327, and we

calculated the adjusted R2 for each regression line for a given d

value. It showed that d = 265 gave the best R2 value that was equal

to 0.993 (Fig. 4B). Thus, the statistical model, SOFLR, predicted

that the number of genes induced in common among a large

number of As+3 transformed cell lines would be 265. For 11 cell

isolates, the predicted 95% confidence interval was (265, 265.459);

therefore, the 265 driver genes that were consistently induced

could be identified using at least 11 independent As+3 transformed

cell lines. Using the same approach, we predicted that 63 genes

were repressed in common for the As+3 transformed cell lines and

that 9 isolates would be sufficient to identify the repressed genes in

common (Fig. 4C–D).

Simulation study
How many independent isolates are required for obtaining a

stable set of altered genes or the driver gene set as described

above? This number depends on how fast the number of

overlapping genes that are changed in all isolates converges to a

constant number as the number of isolates increases. Our analyses

of the two case studies above showed that a relative small sample

size was sufficient. Simulation was used to verify this prediction.

Defining the total number of genes in the passenger set as T and

the probability that a passenger gene altered in an isolate is p, the

number of induced or repressed passenger genes have a mean of

Tp for a given isolate. Based on a binomial distribution, n samples

of passenger genes were simulated for predetermined T and p. We

want to find the minimum number of n such that the number of

overlapping passenger genes becomes zero. The simulation result

is shown in Figure 5. The x axis is T, and the y axis is the

minimum number of n. We tested three different p, 0.1, 0.3, and

0.5. Each combination of T and p was repeated 10 times and the

error bars show the standard errors. Figure 5 suggests that the size

of passenger set has a smaller effect on the number of isolates than

the value of p. For example, for T = 5000, the number of isolates

was 5 for p = 0.1, 8 for p = 0.3, and 14 for p = 0.5. The predicated

numbers in our case studies are within the range of simulated

results.

Discussion

A possible explanation for the presence of a common set of

induced and repressed genes among the Cd+2 or As+3 transformed

cell lines would be based on the concept of ‘‘driver’’ and

‘‘passenger’’ mutations in cancer development and progression

[12,13]. In the present study it is very possible that the constant

number of induced and repressed genes found over a large

number of independent isolates is the product of pathways affected

by driver mutations. This can be assumed since only driver

mutations would lead to common pathway alterations between the

cell lines whereas the more numerous passenger mutations would

lead to random pathway activation in each isolate. The current

data also indicate that many of the genes that were not common to

all isolates had some degree of non-random character in their

probability of being differentially expressed in the transformed

isolates. This indicates that there may be different combination of

genes that are required to support the transformed phenotype.

This could manifest as either one or several genes within a

pathway or gene family that would be required rather than an

actual requirement of a specific gene.

The hypothesis of different combination of genes in the

transformed cells promoted us to develop a statistical model for

identifying the number of genes activated by the driver mutations.

The high cost of high-throughput technology and the difficulty of

cell transformation do not allow researchers to obtain gene

expression profiles for a large number of independent transformed

isolates. We aimed to predict the size of a driver gene set or the

number of commonly activated genes using a small number of

isolates. The fit of the linear model was near perfect (R2.0.99),

indicating the presence of driver and passenger gene sets and the

robustness of the SOFLR method. The narrow range of 95%

confidence interval for the predicted number of driver genes

showed the capacity of accurate prediction using SOFLR. The

large number of genes and the relative small number of samples in

global gene expression study presents a major challenge for

statistical testing. Although the small sample size does not allow

sufficient statistical power for identifying targeted genes, this study

showed that the limited information can be used to accurately

predict the number of consistently altered genes.

The SOFLR method can also be used for experimental design.

Financial constraint remains a major factor preventing researchers

Prediction of Activated Genes in Transformed Cell
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Figure 3. Model fitting of the number of overlapping probes for Cd+2 transformed cells. The x axis is the number of isolates, n.isolates,
and the y-axis is the number of overlapping probes in original scale or in logarithm scale. A and C: 4P logistic curve fitting for the overlapping probes.
B and D: the optimal linear fitting for the overlapping probes at logarithm scale.
doi:10.1371/journal.pone.0085614.g003

Figure 4. Model fitting of the number of overlapping probes for As+2 transformed cells. The x axis is the number of isolates, n.isolates,
and the y-axis is the number of overlapping probes in original scale or in logarithm scale. A and C: 4P logistic curve fitting for the overlapping probes.
B and D: the optimal linear fitting for the overlapping probes at logarithm scale.
doi:10.1371/journal.pone.0085614.g004
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to conduct genomic experiments using a large number of samples

[25]. Traditional methods for determining microarray sample sizes

rely on a given arbitrary effect size or an arbitrary number of

targeted significant genes using some statistical criteria such as

FDR [26]. Thus, the resulting sample size is likely to be under- or

over-estimated depending on the given conditions. In our analysis,

SOFLR is able to objectively find the minimum required number

of samples for an efficient experiment design. For example, we

showed that 11 As+3 isolates would be sufficient to identify the

common induced genes and additional isolates would not help to

improve the result. The high agreement of model fitting and the

small variation in the simulation study indicated that our method

can accurately determine the required sample size. So SOFLR

helps researchers to plan their experiments more efficiently and

economically.

Cadmium and arsenic are two important environmental toxic

agents that can induce multiple disease effects including cancers.

Cadmium has been classified as a human carcinogen by the

International Agency for Research on Cancer and administration

of the metal to animals results in tumors of multiple organs and

tissues [27]. The initial classification of cadmium as a cancer

causing agent in humans was based on an elevated incidence of

lung cancer in occupational groups with evidence of elevated

exposure to cadmium through inhalation. While data on the role

of environmental cadmium exposure with the development of

specific human cancers is limited, the study by Kellen and

coworkers [28,29] does provide epidemiological support for a role

for cadmium in the development of bladder cancer. Arsenic is a

metalloid with a ubiquitous distribution within the environment.

Chronic exposures to low concentrations of arsenic have been

associated with increased risk for the development of skin, lung

and bladder cancer [29,30,31]. The biological processes underly-

ing the ability of inorganic arsenic to transform human cells is

unknown, but a wide-range of processes have been implicated;

including oxidative stress, increased cell proliferation, inhibited

DNA repair, genotoxicity, and altered cellular signaling [32,33].

The potential of using global gene analysis on multiple

independent cell lines exposed to a specific environmental agent

to narrow the search for biomarker identification is reinforced by

the findings in the present study using Cd+2 and As+3. The gene

expression profiles were validated by our customized qPCR array,

suggesting the high quality and repeatability of our microarray

experiments. Overall, the balance between diversity and similarity

should provide a rich environment for future biomarker discovery.

Methods

Cell Culture
Stock cultures of the parental UROtsa cell line were maintained

in 75 cm2 tissue culture flasks using Dulbecco’s modified Eagle’s

meium (DMEM) containing 5% v/v fetal calf serum in a 37uC,

5% CO2: 95% air atmosphere [21]. The UROtsa cell line was

initially derived by immortalization of human urothelial cells via

SV40 large T antigen by a previous lab [21]. The isolation and

growth of the 6 additional isolates of the Cd+2 transformed

UROtsa cells and 5 additional isolates of the As+3 transformed

UROtsa cells have been described previously [20,22,23]. The cells

were grown and maintained using identical conditions. Confluents

flaks at a 1:4 ratio using typsin-EDTA (0.05%, 0.02%) and the

cells were fed fresh growth medium every 3 days.

Microarray
Global gene expression analysis was performed by Genome

Explorations Inc. (Memphis, TN). For cRNA synthesis and

labeling, the RNA was processed and labeled according to

standard RTIVT methods as described previously [34]. The

fragmented cRNA was hybridized for 16 h at 45uC to GeneChip

Human Genome U133 Plus 2.0 arrays (Affymetrix, Santa Clara,

CA). The arrays were stained with phycoerythrein-conjugated

streptavidin (Invitrogen, Carlsbad, CA) and the fluorescence

intensities were determined using a GCS 3000 7G high-resolution

confocal laser scanner (Affymetrix). The scanned images were

analyzed using programs resident in GeneChip Operating System

v1.4 (GCOS; Affymetrix). Quality control metrics for cRNA

integrity, sample loading, and variations in staining were

determined after background correction and signal summarization

by MAS 5.0 statistical algorithms resident in GCOS and

standardization of each array by global scaling the average of

the fluorescent intensities of all genes on an array to a constant

target intensity (TGT) of 250.

Array validation
Of the 285 genes that were induced and 215 genes that were

repressed in all 5 As+3 transformed cell lines compared to control

UROtsa cells, those genes that were greater than 3.2 fold induced

or repressed were advanced to validation by real-time PCR using a

custom 384-well PCR array developed by SABiosciences (now a

subsidiary of Qiagen, Valencia CA). Most of the primers were

custom designed to hybridize as close as possible to the target

sequence of the Affymetrix 133 Plus 2.0 array probe to avoid

alternative splicing differences in the mRNA. Each primer set was

empirically validated for specificity and amplification efficiency.

Each sample was analyzed from RNA purified from triplicate

cultures of each As+3 transformed isolate and parental UROtsa

cells. Data analysis was performed using web-based software

Figure 5. Simulation analysis for the minimum number of
isolates. The x axis is the total number of genes in the passenger set,
and the y axis is the number of isolates required for identifying a stable
set of altered genes. The error bars show the standard errors for 10
replicates.
doi:10.1371/journal.pone.0085614.g005
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provided by the manufacturer (http://pcrdataanalysis.

sabiosciences.com/pcr/arrayanalysis.php) and is based on the

DDCT method. Gene expression was normalized to the geometric

mean of the expression of the five reference genes, ACTB, B2M,

HPRT1, RPLP0, and UBC. The assays were performed by the

manufacturer. For genes initially discovered as two-fold induced or

greater by the Affymetrix 133 array, the validation criteria

consisted of assessing whether the upper limit of the 95%

confidence interval (CI) of the mean fold induction of all five

As+3 transformed isolates obtained from the PCR-array was above

2.0. For those genes initially discovered as repressed (expression

below 0.5 fold), validation criteria was based on whether the lower

limit of the CI was above 0.5.

Microarray data analysis
Hierarchical clustering and principal components analysis were

used to assess the similarity and variation across isolates. The fold

change of each probe in each array from a transformed cell line

was calculated over its average expression level in the parental

UROtsa cell line. The activated probes were identified as having a

fold change greater than 2. In order to test whether transformed

isolates have a nonrandom set of overlapping probes, we derived a

probability function for the random number of overlapping

probes, and used simulation test to find the statistical significance

of the observed number of overlapping probes. Differentially

expressed probe sets (DEGs) were identified using empirical Bayes

(EBayes) method [35] and the p-values were adjusted using false

discovery rate [36]. The analyses were carried out using R

programming language and SAS JMPH software.

Statistical model
We divide the complete gene lists into three subsets, driver,

passenger and non-responsive, depending on their responses to the

environmental toxin after cell transformation. The driver genes in

this article are defined as those that are consistently induced or

repressed in all independently transformed isolates, potentially as

the product of pathways affected by driver mutations. Thus the

number of genes in the driver set is constant across all isolates,

which is denoted as d. In contrast, the non-responsive genes are

those genes that lacked response to metal-induced transformation.

The passenger gene set include the genes that are randomly

altered, presumably, but have a probability, p, to be induced or

repressed in a transformed isolate. Therefore, the number of

passenger genes observed in a given isolate follows a binomial

distribution. Denoting the total number of passenger genes as T,

the mean number of passenger genes is Tp. It follows that the

numbers of overlapping passenger genes between 2, 3, 4, …, n

isolates would be Tp2, Tp3, Tp4, …, Tpn, respectively, and the

number of activate genes among n isolates would be d+Tpn.

Because T is a constant and p is a probability value between 0 and

1, the number of overlapping passenger genes would be decreasing

as the number of isolates increases. The quantity, Tpn, would

eventually drop below 1 for a sufficient large n, implying the

number of overlapping passenger genes is approaching zero.

Therefore, the common activated gene set becomes the driver

gene set and the number of common activated genes is d when the

number of independent transformed isolates is sufficiently large.

We are able to predict d using a method called Sequentially

Optimizing the Fitting of Linear Regression (SOFLR).

In order to predict d with a small number of isolates, we

developed a statistical model to fit the number of overlapping

activated genes. Suppose n isolates are independently transformed.

The average numbers of activated genes that overlap for 1, 2, 3,

…, n samples are y1, y2, y3, …, yn. Suppose d is known, then y12d,

y22d, …, yn2d can be used to estimate Tp, Tp2, …, Tpn. By

logarithm transformation, log(y12d), log(y22d), …, log(yn2d),

would be estimates for log(T)+log(p), log(T)+2log(p), …, log(T)+n-

log(p), respectively. Because T and p are constant, log(y12d),

log(y22d), …, log(yn2d) can be fitted using a linear regression

model, log(y2d) = a+bx+e, where x is the number of isolates, y is

the number of observed overlapping genes altered in all x isolates,

a and b are constant, and e is the error term. SOFLR estimates d

by sequentially testing all possible d values that are integers range

from 0 to y21. The value that gives the best fitting of the linear

regression model would be selected as the estimated d. For the two

case studies of Cd+2 and As+3 transformed microarray experi-

ments, we used SOFLR to find the optimized d for the linear

models of common induced or repressed genes.

Conclusions

We have developed a statistical method, SOFLR, to predict the

number of common activated genes in toxin-induced cell

malignant transformation using a small number of isolates. The

method was applied to two case studies, the cadmium and arsenic

transformed UROtsa cells and showed a high degree of model

fitting and accuracy of prediction. The results were also confirmed

by the simulated analysis. This study showed that independent

malignant cell transformations shared common gene expression

patterns that implied common driver genes/mutations exist for a

single toxin agent. Our method is able to accurately predict the

number of common activated genes based on a relative small

sample size. This will facilitate the experiment design for

microarray study in order to identify the common activated gene

set.
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