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The field of computational cardiology has steadily progressed toward reliable and

accurate simulations of the heart, showing great potential in clinical applications such

as the optimization of cardiac interventions and the study of pro-arrhythmic effects

of drugs in humans, among others. However, the computational effort demanded by

in-silico studies of the heart remains challenging, highlighting the need of novel numerical

methods that can improve the efficiency of simulations while targeting an acceptable

accuracy. In this work, we propose a semi-implicit non-conforming finite-element scheme

(SINCFES) suitable for cardiac electrophysiology simulations. The accuracy and efficiency

of the proposed scheme are assessed by means of numerical simulations of the electrical

excitation and propagation in regular and biventricular geometries. We show that the

SINCFES allows for coarse-mesh simulations that reduce the computation time when

compared to fine-mesh models while delivering wavefront shapes and conduction

velocities that are more accurate than those predicted by traditional finite-element

formulations based on the same coarse mesh, thus improving the accuracy-efficiency

trade-off of cardiac simulations.

Keywords: non-conforming finite elements, computational cardiology, cardiac electrophysiology, conduction

velocity, nonlinear finite elements

1. INTRODUCTION

Computer simulations of the electrical activity of the heart have increasingly gained attention
in the medical community, as they have steadily shown potential in the study of cardiac
diseases and in the design of novel cardiac therapies. Current models of the human heart are
able to represent the complex three-dimensional anatomical structure of the heart chambers,
incorporating key functional features such as the Purkinje network and the cardiomyocyte
orientation (Vadakkumpadan et al., 2009). Such advanced representation of the heart has enabled
novel in-silico studies of undesired pro-arrhythmic effects of drugs in patients (Sahli Costabal
et al., 2018), potentially reducing the number of subjects needed in a clinical trial by aiding the
experiment design. Computational models of the heart have also shown promise in assisting the
design of effective therapies for terminating atrial fibrillation (Trayanova et al., 2018). While these
examples can only confirm the tremendous relevance of computational models in advancing the
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field of cardiology, they share the fundamental challenge of
being highly demanding in terms of wall-clock time needed in
computer simulations.

Mathematical models of the heart require the computer
implementation of spatio-temporal discretization techniques in
order to obtain a sequence of numerical representations of
the physiological fields under study. Two fundamental aspects
directly responsible for the computation time (CT) in a heart
simulation are the ionic model used to account for subcellular
electrochemical mechanisms, and the level of spatio-temporal
discretization in terms of time-step size and mesh size (Sundnes
et al., 2006). The choice of the mesh size typically faces a well-
known trade-off problem of accuracy vs. efficiency, as decreasing
the mesh size in a simulation results in more accurate numerical
approximations, at the cost of increasing the number of degrees
of freedom (DOFs), which drives the CT. Indeed, current
simulations of the heart typically employ mesh sizes in the range
of tens to hundreds of micrometers for domains with lengths in
the order of centimeters, which ultimately translates into large
systems of equations with several millions of DOFs that need to
be solved at each time step. Such high dimensionality renders the
solution of heart simulations extremely challenging for personal
computers, and calls for improving their implementation in high-
performance computing (HPC) platforms (Niederer et al., 2011a;
Vazquez et al., 2011).

In the particular case of cardiac electrophysiology simulations,
a common criterion to select the mesh size is the ability of
the numerical simulation to recover an accurate conduction
velocity (CV) and wavefront shape (Pathmanathan et al., 2010;
Krishnamoorthi et al., 2013; Dupraz et al., 2015). It has been
shown that both the wavefront shape and the CV suffer from
a strong dependence on the spatial discretization, which for
the case of finite-element (FE) discretization using linear basis
functions results in a significant loss of accuracy for the case
of mesh sizes > 0.1mm (Pezzuto et al., 2016). In order to
achieve larger mesh sizes, higher-order FE formulations have
been proposed, which show that FE Lagrange basis functions
of order 2 and 3 result in accurate CV for coarser meshes
(Arthurs et al., 2012; Pezzuto et al., 2016). It should be noted,
however, that higher-order FE schemes based on Lagrange
basis functions necessarily increase the total number of DOFs
in simulations when compared to linear-element formulations,
as well as they require an additional computational effort
for quadrature procedures, as higher-order basis functions
demand the use of more quadrature-point evaluations (Cantwell
et al., 2014). Recently, Hurtado and Rojas (2018) introduced
a non-conforming finite-element scheme (NCFES) for the
spatial discretization of the monodomain equation of cardiac
electrophysiology that allows for the use of coarsemeshes without
significant loss of accuracy measured in terms of CV and
wavefront shape. More specifically, hexahedral trilinear elements
(Q1) were enhanced with non-conforming basis functions
of degree 2 to create a non-conforming element (Q1NC)
that is capable of representing a second-order polynomial
within the element domain, a concept widely employed in
the context of solid mechanics FE simulations (Wilson et al.,
1973; Taylor et al., 1976). Further, they showed that the DOFs

associated to the non-conforming basis functions can be solved
at the element level, and therefore the number of global
DOFs of the Q1NC scheme equals that of a standard Q1
FE scheme. As a result, Q1NC simulations delivered a CV
and wavefront shape similar to that of second-order Lagrange
formulations (Q2) at the computational cost in the order of a Q1
formulation.

During the development of the NCFES for cardiac
electrophysiology, a fully-implicit (FI) backward-Euler time-
stepping method was considered (Hurtado and Rojas, 2018).
While FI schemes have important advantages in delivering a
larger time-step stability region in cardiac simulations (Ying
et al., 2008; Hurtado and Henao, 2014), they require the solution
of a large system of non-linear equations at each time step that
can be very costly in computational terms, and may not be well-
suited to parallel-computing platforms when compared to other
numerical schemes. To improve the computational efficiency,
the semi-implicit integration method has been proposed in
the literature for solving the semi-discrete equations resulting
from standard FE discretizations, showing a relevant decrease
in the CT of cardiac simulations, as well as being amenable to
HPC platforms (Whiteley, 2006; Pathmanathan et al., 2010).
Consequently, the scientific question that motivates this work
is: Can we further improve the efficiency-accuracy trade-off in
cardiac simulations by combining non-conforming FE spatial
discretizations with semi-implicit time-integration schemes? To
answer such question, in the following we develop the numerical
framework and present an algorithm for the implementation
of a semi-implicit non-conforming FE scheme to solve the
monodomain electrophysiology equations, and investigate the
numerical consequences and potential contributions to cardiac
simulations.

2. METHODS

2.1. Monodomain Model of Cardiac
Electrophysiology
Let � ∈ R

3 be the heart domain where electrical impulses travel
during the time interval [0,T], and Vm :� × [0,T] → R be the
transmembrane potential. A local statement of current balance
yields the monodomain equation (Pullan et al., 2005)

Am

(

Cm
∂Vm

∂t
+ Iion(Vm, r)

)

−div(σ∇Vm) = 0, in �×(0,T],

(1)
where Am,Cm are the surface-to-volume ratio and membrane
capacitance, respectively, σ is the conductivity tensor, Iion is the
ionic current depending on the transmembrane potential Vm,
and r :� × (0,T] → R

m is a vector field of state variables that
include gating variables and ion concentrations. For convenience,
we consider the normalized transmembrane potential field

φ(x, t) =
Vm(x, t)− Vr

Vp − Vr
,

where Vp and Vr are the peak and resting voltages, respectively.
Based on this normalization, we obtain the non-dimensional
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monodomain equation,

∂φ

∂t
− div(D∇φ)− f (φ, r) = 0 in � × (0,T], (2)

where D = 1
AmCm

σ is the normalized conductivity tensor, and

f (φ, r) = − Iion(Vm(φ),r)
Cm(Vp−Vr)

is the normalized ionic current. The time

evolution of state variables is governed by kinetic equations of the
form

∂r

∂t
= g(φ, r) in � × (0,T]. (3)

The expressions for f (φ, r) and g(φ, r) will depend on the choice
of ionic model representing the transmembrane ionic current in
a single cell. Equations (2, 3) are complemented with Dirichlet
and Neumann boundary conditions,

φ = φ̄, on ∂�φ × (0,T], (4)

q · n = q̄, on ∂�q × (0,T], (5)

respectively, as well as initial conditions

φ(x, 0) = φ0(x), x ∈ �,

r(x, 0) = r0(x), x ∈ �.

To state the weak form of the cardiac electrophysiology problem,
we consider trial spaces Sφ ,Sr and test spaces Vφ ,Vr defined as

S
φ = {φ ∈ L2((0,T];H1(�,R)) : φ = φ̄ on ∂�φ × (0,T]} (6)

S
r = {r ∈ L2((0,T]; L2(�,Rm))} (7)

V
φ = {ν ∈ H1(�,R) : ν = 0 on ∂�φ} (8)

V
r = {η ∈ L2(�,Rm)} (9)

Multiplying (2) and (3) by appropriate test functions, integrating
over � and applying the divergence theorem yields the weak
equations, and the statement of the weak formulation reads: ∀ t ∈
(0,T], find (φ, r) ∈ S

φ × S
r such that

Gφ[(φ, r), (ν, η)] :=

∫

�

ν
∂φ

∂t
dx+

∫

�

∇ν ·D∇φ dx

−

∫

�

νf (φ, r) dx+

∫

∂�q

νq̄ ds

= 0, ∀ ν ∈ V
φ (10)

Gr[(φ, r), (ν, η)] :=

∫

�

η

{
∂r

∂t
− g(φ, r)

}

dx

= 0, ∀ η ∈ V
r (11)

2.2. Spatial Discretization Using a
Non-conforming Finite-Element Scheme
A Galerkin finite-element scheme to solve the weak formulation
of the monodomain problem can be stated as follows. Let �h =

∪
Nel
e=1�e be a domain discretization where Nel is the number of

elements, and all elements comply with the condition�i∩�j = ∅

for i 6= j. We construct finite-dimensional subspaces S
φ

h
⊂ S

φ ,

S
r
h
⊂ S

r and V
φ

h
⊂ V

φ , Vr
h
⊂ V

r , to solve the following FE
problem (Göktepe and Kuhl, 2009; Hurtado and Kuhl, 2014):

∀ t ∈ (0,T], find (φh, rh) ∈ S
φ

h
× S

r
h
such that

Gφ[(φh, rh), (νh, ηh)] = 0, ∀νh ∈ V
φ

h

Gr[(φh, rh), (νh, ηh)] = 0, ∀ηh ∈ V
r .

A traditional discretization FE scheme is the hexahedral
isoparametric finite-element space,

V
φ

h
: =

{

νh ∈ C0(�h,R) : νh|�e ∈ Qk(�e), e = 1, . . . ,Nel

}

where Qk(�e) represents the space of isoparametric functions
resulting from n-tensor product of 1-D Lagrange polynomials
of order k, which are defined over the standard (isoparametric)
domain �̂ = [−1, 1]n and mapping to a hexahedral element. We

expand an element νh ∈ V
φ

h
as

νh(x) =

Ndofs∑

A=1

NA(x)νA,

where {NA}a=1,Ndofs
are the basis functions, Ndofs is the number

of element nodes with unknown degrees of freedom, and
{νA}a=1,Ndofs

are the nodal coefficients. Using the same element
basis functions, we expand the trial functions as

φh(x, t) =

Ndofs∑

A=1

NA(x)uA(t)+ uBC(x, t), (12)

where {uA(t)}A=1,Ndofs
correspond to the nodal values of the

transmembrane potential field, and uBC ∈ S
φ is a function

that satisfies the boundary conditions (4), i.e., uBC = φ̄ in
∂�φ × (0,T]. For simplicity, and without loss of generality, in
the following we assume that uBC = 0. To construct the elements
of Vr

h
, we write

η
h(x) =

Nel∑

e=1

Nq
∑

q=1

Me
q(x)η

e
q, (13)

whereMe
q is a characteristic function defined by

Me
q(x) =

{

1, x ∈ �e,q

0, x /∈ �e,q
(14)

and �e,q ⊂ �e is the subdomain containing the q−quadrature

point xq, and is such that
⋃Nq

q=1 �e,q = �e and �e,q ∩ �e,q′ = ∅

whenever q 6= q′. Analogously, we expand an element rh ∈ S
r
h
as

rh(x, t) =

Nel∑

e=1

Nq
∑

q=1

Me
q(x)r

e
q(t), (15)

where req :(0,T] → R
m represents the time evolution of the state

variables at the q-quadrature point.
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In this work, we consider a non-conforming spatial-
discretization scheme for the monodomain equations (Hurtado
and Rojas, 2018). To this end, we rewrite the residuals as

Gφ[(φ, r), (ν, η)] =

Nel∑

e=1

{∫

�e

ν
∂φ

∂t
dx+

∫

�e

∇ν ·D∇φ dx

−

∫

�e

νf (φ, r) dx+

∫

∂�e,q

νq̄ ds

}

, (16)

Gr[(φ, r), (ν, η)] =

Nel∑

e=1

{∫

�e

η

{
∂r

∂t
− g(φ, r)

}

dx

}

, (17)

and note that in such form, integrability of the trial and test
functions and their weak derivatives is required only at the

element level. We enhance the polynomial basis of V
φ

h
at the

element level by adding polynomial terms not included in
Qk(�e). To this end, we consider the non-conforming space

E
φ

h
: =

{

βh
:βh|�e ∈ Pk+m(�e)\Qk(�e)

}

wherem ∈ Z+ and Pk+m(�e) is the space of polynomial functions
of degree k + m defined on the standard domain �̂. We then
consider enhanced test functions νh which we expand as

νh(x) =

Ndofs∑

A=1

NA(x)νA +

Nel∑

e=1

Nnc∑

c=1

We
c (x)β

e
c (18)

where βe
c ∈ R are coefficients, We

c are non-conforming element
basis functions, and it holds that We

c = 0, x /∈ �e. Analogously,

we enhance S
φ

h
with the time-dependent non-conforming space

F
φ

h
, and expand the enhanced trial functions as

φh(x, t) = uh(x, t)+ αh(x, t) (19)

where

uh(x, t) :=

Ndofs∑

B=1

NB(x)uB(t) (20)

αh(x, t) :=

Nel∑

e=1

Nnc∑

d=1

We
d(x)α

e
d(t). (21)

and αe
d
:(0,T] → R is a time-dependent coefficient that

scales the non-conforming basis functions We
d
. Substitution of

approximations Equations (13 15, 18, and 19) into the residuals
Equations (16) and (17) yields the following semi-discrete

problem: ∀ t ∈ (0,T], find (uh,αh, rh) ∈ S
φ

h
× F

φ

h
× S

r
h
such

that
∫

�
NA{u̇

h + α̇h}dx+

∫

�
∇NA ·D∇{uh + αh}dx−

∫

�
NAf (u

h

+ αh, rh)dx+

∫

∂�q

NAq̄ ds = 0, A = 1, . . . ,Ndofs, (22)

∫

�e
We

c {u̇
h + α̇h}dx+

∫

�e
∇We

c ·D∇{uh + αh} dx

−

∫

�e
We

c f (u
h + αh, rh)dx = 0, e = 1, . . . ,Nel; c = 1, . . . ,Nnc,

(23)
∫

�e
Me

q{ṙ
h − g(uh + αh, rh)}dx = 0, e = 1, . . . ,Nel; q = 1, ...,Nq (24)

2.3. Semi-implicit Temporal Discretization
To integrate (22), (23) and (24) in time, we consider partitioning
the time interval into [0, . . . , tn, tn+1, . . . ,T], and approximate
the time-dependent coefficients �(tn) ≈ �n. For a generic time
interval [tn, tn+1] we define 1t : = tn+1 − tn. We further group
the expansion coefficients into vectors, and write

un = [un,1, . . . , un,Ndofs
]T , α

e
n = [αe

n,1, . . . ,α
e
n,Nnc

]T ,

ren = [ren,1, . . . , r
e
n,Nq

]T
(25)

Following a semi-implicit (SI) time-integration approach
(Whiteley, 2006), time derivatives are replaced by the
finite-difference approximation

�̇(tn+1) ≈
�n+1 −�n

1t
. (26)

Diffusive terms in Equations (22) and (23) are evaluated at t =

tn+1 and the reaction terms are evaluated at t = tn. Evolution
Equation (24) were integrated using an explicit Forward-Euler
scheme. As a result, the incremental time update for t = tn+1

reads: Given un, {α
e
n, r

e
n}e=1,...,Nel

, find un+1, {α
e
n+1, r

e
n+1}e=1,...,Nel

such that

Ndofs∑

B=1

{∫

�

NANB

1t
+

∫

�

∇NA ·D∇NB

}

un+1,B

+

Nel∑

e=1

Nnc∑

d=1

{∫

�

NAW
e
d

1t
+

∫

�

∇NA ·D∇We
d

}

αe
n+1,d

−

{∫

�

NA

1t
{uhn + αh

n} +

∫

�

NAf (u
h
n + αh

n , r
h
n)

}

= 0,

A = 1, . . . ,Ndofs, (27)

Nen∑

b=1

{∫

�e

We
cN

e
b

1t
+

∫

�e
∇We

c ·D∇Ne
b

}

︸ ︷︷ ︸

=: Le
cb

uen+1,b

+

Nnc∑

d=1

{∫

�e

We
cW

e
d

1t
+

∫

�e
∇We

c ·D∇We
d

}

︸ ︷︷ ︸

=:Ke
αcd

αe
n+1,d

−

{∫

�e

We
c

1t
{uhn + αh

n} +

∫

�e
We

c f (u
h
n + αh

n , r
h
n)

}

︸ ︷︷ ︸

=: peαc

= 0

e = 1, . . . ,Nel; c = 1, . . . ,Nnc (28)

∫

�e
Me

q







Nq
∑

s=1

Me
s

ren+1,s − ren,s

1t
− g(uhn + αh

n , r
h
n)






dx = 0,
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e = 1, . . . ,Nel; q = 1, ...,Nq, (29)

where Ne
b
: = NB

∣
∣
∣
�e

is the restriction of the basis function

to the local element domain, and ue
b
is the corresponding

nodal value, where lowercase letters indicate the local degree of
freedom b corresponding to its global counterpart B. At this
point, we note that Equation (28) can be written in matrix
form as

Leuen+1 + Ke
αα

e
n+1 − pe(uen,α

e
n, r

e
n) = 0,

for e = 1, . . . ,Nel, from where we define the time update for the
element non-conforming coefficient vector as

α
e,∗
n+1(u

e
n+1; u

e
n,α

e
n, r

e
n) :=

{

Ke
α

}−1
peα(u

e
n,α

e
n, r

e
n)

−
{

Ke
α

}−1
Leuen+1 (30)

which is computed exclusively using element-level variables,
given the element vector uen+1. To update the gating-variable
field, we note fromEquation (14) that Equation (29) can be solved
point-wise at each quadrature point xq inside an element, and
thus is equivalent to writing

req,n+1 − req,n

1t
− g(uhn(xq)+ αh

n(xq), r
e
q,n) = 0,

e = 1, . . . ,Nel; q = 1, ...,Nq,

from which the (explicit) time update for the gating variables can
be solved at the quadrature-point level as

re,∗q,n+1(u
e
n,α

e
n, r

e
n) : = req,n + 1t g(uhn(xq)+ αh

n(xq), r
e
q,n). (31)

We now turn to residual Equation (27), and note that it can
be constructed by assembling element-level nodal contributions
defined by

Ru,ea :=

Nen∑

b=1

{∫

�e

NaNb

1t
+

∫

�e
∇Na ·D∇Nb

}

︸ ︷︷ ︸

:=Ke
uab

uen+1,b

+

Nen∑

b=1

{∫

�e

NaWd

1t
+

∫

�e
∇Na ·D∇Wd

}

︸ ︷︷ ︸

LeT
ad

αe
n+1,d

−

{∫

�e

Na

1t
{uhn + αh

n} +

∫

�e
Naf (u

h
n + αh

n , r
h
n)

}

︸ ︷︷ ︸

:=peua

, (32)

which can also be written in matrix form at the element level as

Ru,e = Ke
uu

e
n+1 + LeTα

e
n+1 − peu(u

e
n,α

e
n, r

e
n). (33)

Substituting update Equation (30) into Equation (33), we obtain
an element residual that only depends on uen+1 that reads

Ru,e =
(

Ke
u − LeT

{

Ke
α

}−1
Le

)

︸ ︷︷ ︸

Ae

uen+1

+ LeT
{

Ke
α

}−1
peα(u

e
n,α

e
n, r

e
n)− peu(u

e
n,α

e
n, r

e
n)

︸ ︷︷ ︸

ben(u
e
n ,α

e
n ,r

e
n)

(34)

As a consequence, solving residual Equation (27) is equivalent to
solving the matrix linear system

Aun+1 + bn = 0 (35)

where A and bn are the global matrix and vector assembled from
element contributions defined in Equation (34). We note that
Equation (35) defines the time update for the global potential
vector

u∗n+1(un, {α
e
n, r

e
n}e=1,...,Nel

) : = −A−1bn (36)

We remark that matrix A does not depend on the coefficient
vectors, and therefore will take the same values for all time steps.
Thus, it can be computed on a initialization stage, inverted and
stored for later use in updating the potential vector. For the sake
of clarity, the steps for the solving the semi-implicit scheme are
summarized in Algorithm 1.

2.4. The Q1NC Element
We materialize the non-conforming scheme defined in the
previous section using incompatible-modes basis functions
(Wilson et al., 1973; Taylor et al., 1976), which enhance Q1
elements. We recall that the isoparametric basis functions for Q1
3D (solid) elements are

N̂1 =
1

8
(1− ξ1)(1− ξ2)(1− ξ3), N̂2 =

1

8
(1+ ξ1)(1− ξ2)(1− ξ3),

N̂3 =
1

8
(1+ ξ1)(1+ ξ2)(1− ξ3), N̂4 =

1

8
(1− ξ1)(1+ ξ2)(1− ξ3),

N̂5 =
1

8
(1− ξ1)(1− ξ2)(1+ ξ3), N̂6 =

1

8
(1+ ξ1)(1− ξ2)(1+ ξ3),

N̂7 =
1

8
(1+ ξ1)(1+ ξ2)(1+ ξ3), N̂8 =

1

8
(1− ξ1)(1+ ξ2)(1+ ξ3),

where (ξ1, ξ2, ξ3) ∈ �̂ : = [−1, 1]3, and

Ne
a = N̂a ◦ x̂

−1

with

x̂ =

8
∑

a=1

N̂ax
e
a,

where xea is the vector with nodal coordinates. Incompatible
modes enhance the Q1(�e) element basis by adding basis
functions {Me

c}c=1,2,3, withMe
c = M̂c ◦ x̂

−1, where

M̂1 = 1− (ξ1)
2, M̂2 = 1− (ξ2)

2, M̂3 = 1− (ξ3)
2
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Algorithm 1: Solution algorithm

/* initialization */

u0 = 0

r0 = rinit
α
e = 0

A = 0

for e = 1 to Nel do
Compute Ke

α , K
e
u and Le (Equations (28) and (32)) and

store
Compute Ae (Equation (34)) and assemble contribution
to A

end

Compute A−1 and store
/* time integration loop */

for n = 0 to Nsteps do

for e = 1 to Nel do
Compute be(uen,α

e
n, r

e
n) (Equation (34)) and assemble

contribution to bn
end

Update un+1 = u∗n+1(un, {α
e
n, r

e
n}e=1,...,Nel

) = −A−1bn
for e = 1 to Nel do

Update α
e
n+1 = α

e,∗
n+1(u

e
n+1; u

e
n,α

e
n, r

e
n) (see Equation

30)
for q = 1 to Nq do

Update req,n+1 = re,∗q,n+1(u
e
n,α

e
n, r

e
n) (see Equation

31)
end

end

end

TABLE 1 | Element DOFs and quadrature rules employed in numerical integration

of residuals and tangents.

Element DOFs Quadrature rule

Q1 8 DOFs 2× 2× 2 = 8-point

Q1NC 8 DOFs + 3 IMs 2× 2× 2 = 8-point

Q2 27 DOFs 3× 3× 3 = 27-point

DOFs, degrees of freedom; NC, incompatible mode (internal variable).

for (ξ1, ξ2, ξ3) ∈ �̂. Table 1 details the number of DOFs
used for the 3D elements considered in this work. Integrals
have been approximated using Gaussian quadrature on the
standard domain. Table 1 reports the quadrature rules employed
in the numerical integration of Q1, Q1NC and Q2 element
implementations.

2.5. The Modified Aliev-Panfilov Model for
Transmembrane Ionic Current
All simulations considered the modified Aliev-Panfilov
model, which accounts for physiological voltage upstroke
slopes and conduction velocities (Aliev and Panfilov, 1996;
Hurtado et al., 2016), whose expressions are described below for

TABLE 2 | Parameter values for the modified Aliev-Panfilov model.

α c1 c2 µ1 µ2 b γ Vr[mV] Vp[mV]

0.05 52 8 0.1 0.3 0.25 0.002 −85 15

completeness:

f (φ, r) = c1φ(φ − α)(1− φ)− c2rφ (37)

g(φ, r) =

(

γ +
µ1r

µ2 + φ

)
(

−r − c2φ(φ − b− 1)
)

(38)

where c1, c2, α, γ , µ1, µ2 and b are constants, whose values are
included in Table 2, and are the same employed by Hurtado and
Rojas (2018). To account for a steady-state regime, initial values
of the recovery value where set to r = 0.1146.

3. RESULTS

Finite-element simulations using Q1, Q2, and Q1NC element
formulations were implemented for the FI and SI time-
integration schemes described in the previous section in an
enhanced version of FEAP (Taylor, 2014).

3.1. Plane-Wave Tests on CV and CT
A 3D cardiac rod with a total length of 25 mm was discretized
using regular hexahedral elements with a uniform element size,
with the exception of elements adjacent to the boundary where
the size was at times smaller to fit the geometry. To study the
effect of the element size, simulations were carried out with mesh
sizes ranging from h = 2mm to h = 0.0156mm. A zero-flux
boundary condition was assumed for all boundary surfaces, with
exception of the left end of the rod which was stimulated with
a normalized external current of 20mV/ms, which corresponds
to 28, 000µA/cm3, for 2ms to elicit a plane traveling wave
along the direction of the rod. A time-step size of 0.001ms
was set for all simulations, which is small when compared to
standard cardiac simulations using the selected ionic model
(Hurtado et al., 2016). Such small time-step size is chosen to
minimize the contribution of the temporal discretization error
to the overall numerical error. To compute the CV, we tracked
the voltage evolution on x1 = 18mm and x2 = 22mm
and recorded the activation time, which is defined as the time
when the φ > 0.5 for the first time at a certain point. Then,
the CV was calculated as the difference between x2 and x1
divided by the difference in the activation time. The results
for the CV for different element sizes are shown in Figure 1A.
All formulations converged to a CV = 36.9 cm/s as the mesh
size approached h = 0.0156mm. CV monotonically decreased
as mesh size was decreased for Q1 and Q2 formulations. The
computational effort of simulations in terms of CT is reported
in Figure 1B. We observe that the computational demand of
simulations monotonically increases as the mesh size decreases,
independently of the element formulation. We do observe,
however, that the FI time-integration scheme always results in
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FIGURE 1 | CV tests for plane-waves propagating on a 3D bar for FI and SI schemes on different element formulations. (A) Convergence study of CV as a function of

the mesh size h. (B) Computational effort in terms of CT as a function of h.

FIGURE 2 | Accuracy-efficiency analysis: Computation time vs. conduction-velocity error for the different spatial discretization schemes using (A) fully-implicit time

integration, and (B) semi-implicit time integration. Dashed gray line displays the Pareto frontier, which encompasses optimal cases. Suboptimal combinations are

shown in transparent color.

higher CT than the SI scheme for all element formulations
considered.

To facilitate the analysis of the accuracy-efficiency trade-off
of the different schemes studied, Figure 2 shows the CT vs. the
error in CV for the Q1, Q2, and Q1NC formulations for both
the implicit and semi-implicit time updates. Since we seek to
minimize two objective functions, namely the CT and the CV
error, the Pareto frontier, defined as the set of choices that are
Pareto-efficient, is included in each subfigure. The subset of the
Pareto-efficient cases that correspond to the Q1NC formulation
are {1.2, 1.5}[mm] and {1.0, 1.2, 1.5, 2.0}[mm] for the FI and SI
cases, respectively.

3.2. Benchmark Simulations on a Cardiac
Cuboid
We studied the behavior of the SINCFES using as a second test
case the benchmark study on a cardiac cuboid developed by

Niederer et al. (2011b), and adapted to the case of the Aliev-
Panfilov model by Hurtado et al. (2016). To this end, we consider
a cuboid domain with dimensions of 20 × 7 × 3mm with
cardiac fibers oriented in the longest axis direction. A subdomain
with dimensions 1.5 × 1.5 × 1.5mm located at one of the
corners of the cuboid was stimulated with an electrical current
density of 50, 000/cm3 for 2ms. The normalized longitudinal
and transversal conductivities were 0.0952 and 0.0126mm2/ms,
respectively. Figure 3A shows the activation map and isochrones
obtained on a plane that contains opposite corners in the
diagonal, as defined inNiederer et al. (2011b), for a fine (Baseline)
and coarse discretization using Q1 elements, and for the same
coarse discretization using Q1NC elements. We note that the
Q1NC case with mesh size h = 0.8mm resulted in an activation
map and isochrones similar to the baseline case, defined as a Q1
model with mesh size h = 0.1mm. In contrast, the activation
map delivered by the Q1 coarse-mesh case with mesh size h =

0.8mm largely differed from the baseline case, delivering a less
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FIGURE 3 | Numerical simulations on cuboid benchmark test (A) Meshes and activation maps, and (B) Activation time profile along the cuboid diagonal.

FIGURE 4 | Numerical simulations on human biventricular idealized geometries. The Q1NC model displays a propagating wave similar to the baseline case during the

ventricular activation sequence, whereas the Q1 model hastens the electrical stimulation ahead of the baseline case.

curved wave-front profile. Figure 3 displays the activation time
values along the diagonal of the cuboid for the three cases
under study. We observe that the Q1NC case closely follows
the baseline case, whereas the Q1 coarse-mesh case resulted in
shorter activation times at all locations along the diagonal. As a
reference, the CT for the Baseline (Q1 fine), Q1NC and Q1 cases
were 122, 341 , 344, and 184 s, respectively, which is equivalent to
a CT ratio of 665 : 2 : 1.

3.3. Biventricular Human Heart Simulations
To study the potential of the Q1NC-SI formulation in whole-
heart cardiac simulations, we modeled the propagation of an

action potential on an idealized human biventricular domain
stimulated at the atrio-ventricular node. The heart biventricular
geometry was generated from two truncated ellipsoids (Streeter
and Hanna, 1973), and later discretized using non-regular
hexahedral elements. For the baseline case, a size-varying mesh
with average characteristic length of 0.48mm was employed. A
coarse mesh with average element length of 1.0mm was also
considered for two additional cases with Q1 and Q1NC element
formulations, see left column of Figure 4 for a representation
of the biventricular meshes. All three cases considered the same
initial boundary conditions and time step size of 0.001ms.
The transmembrane potential distribution at different time
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FIGURE 5 | Spiral generation simulation in a 2D slab. Due to the higher CV, the Q1 case (coarse mesh) cannot capture the genesis of the spiral wave.

instants during ventricular activation is depicted in Figure 4. We
clearly observe that, as time elapses, the action-potential wave
front of the Q1NC case is very similar to the Baseline case,
whereas the Q1 case results in a wave front that propagates
faster than the other two models due to the artificially high
CV. The last column in Figure 4 shows the activation maps,
where we observe that isochrones for the Baseline and Q1NC
cases are very similar, and they both differ from the Q1 case.
Biventricular simulations were ran in a HPC cluster with 128
GB of RAM memory using 32 processors using the parallel
implementation of the code FEAP (Taylor, 2014). The CT for
the baseline, the Q1NC and the Q1 simulation were 1805, 452
and 154 min respectively, which is equivalent to a CT ratio of
18 : 3 : 1.

3.4. Spiral Wave Simulations
To assess the performance of the proposed non-conforming
scheme in the simulation of spiral waves, we considered a 50 ×

50mm cardiac domain excited by means of an S1–S2 stimulation
protocol. To this end, we first applied a surface stimulus (S1) of
12mV/(msmm2) for 2ms on the border defined by x = 0 to
create a plane wave. After 280ms, we applied a second stimulus
(S2) of 15mV/(msmm3) in the quadrant x < 25, y < 25mm for
5ms, which resulted in the formation of a spiral wave (Costabal
et al., 2017). This S1–S2 model was solved using three numerical
models: a fine mesh with element size h = 0.1mm using Q1
elements (Baseline), a coarse mesh with element size h = 1mm
using Q1 elements (Q1), and a coarse mesh with h = 1mm using

the proposed non-conforming element formulation (Q1NC). In
all cases, we considered a semi-implicit time update with time-
step size 1t = 0.005ms. Figure 5 shows the distribution of the
transmembrane potential of the three models under study for
several time instants. We note that at early times (t = 110ms)
the Q1 case displays a wave front that advanced considerably
faster than the baseline and Q1NC cases. At t = 400ms a spiral
wave formed in the Baseline and Q1NC cases, whereas for the
Q1 case a curved wave front propagated in the outward direction
but did not create a spiral. At a later instant (t = 600ms),
a spiral was steadily rotating in the Baseline and Q1NC cases,
constantly reexciting tissue, whereas in the Q1 case cardiac tissue
was found under complete rest, and no electrical activity was
observed.

4. DISCUSSION

In this work we have studied the features and advantages of a
novel SINCFES in the solution of the monodomain model of
cardiac electrophysiology. From plane-wave CV tests we note
that the FI and SI schemes yield similar results for the conduction
velocity for the time-step size employed, see Figure 1A. This
is expected, as the time-step size considered here is small
compared to standard values employed in numerical simulations
(Krishnamoorthi et al., 2013). Interestingly, we observe that in
the case of mesh sizes h < 0.6mm, the Q1, Q2, and Q1NC
element formulations delivered very similar results in terms of
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CV error. For the cases where h > 0.6mm, the CV error incurred
by the Q1 formulation grows at a much faster rate than the
Q2 and Q1NC formulations. An interesting result that deserves
further study is the convergence trend of the Q1NC formulation,
as it is not monotonically convergent in the whole range of
mesh sizes studied, and it reverts the sign of the CV error in a
bounded interval of mesh sizes. A similar convergence trend has
been reported in the literature for standard FE discretizations, in
the context of mass-lumping techniques (Pezzuto et al., 2016),
which suggest as future work a more detailed study of the effect
of NC spatial discretization schemes on the stiffness and mass
matrices that govern the dynamics of the problem. To better
analyze the accuracy-efficiency trade-off for each scheme, we
constructed CT vs CV-error plots, where the Pareto frontier
has been identified. We conclude that the SINCFES delivers
Pareto-optimal results for cases with mesh size in the range
of {1.0, 1.2, 1.5, 2.0}[mm]. For smaller mesh sizes, traditional
Q1 formulations deliver better combinations of CT and CV-
error than Q1NC and Q2. It is interesting to note that, in
general, Q2 elements are less efficient than the Q1 and Q1NC
elements from a Pareto-optimality viewpoint for the whole range
of mesh sizes studied. We also note that these conclusions are
particular to a plane-wave propagation case, where anisotropy
of conductivity and curvature of propagating wavefronts are
absent.

We further studied the performance of Q1NC elements
using a benchmark problem on a cuboid cardiac domain
(Niederer et al., 2011b). Our simulations showed that the
Q1NC formulation on a coarse mesh (h = 0.8mm) can
result in activation maps that are similar to those obtained on
fine meshes using Q1 (h = 0.1mm) , adequately capturing
the anisotropic conduction of the propagating waves, see
Figure 3A. An analysis of the activation-time profile along
the cuboid diagonal shows that the Q1NC scheme delivers
an accurate conduction velocity, which is comparable to Q1
meshes with mesh sizes that are 8 times smaller, see Figure 3B.
This result confirms the ability of Q1NC elements to capture
the propagation of electrical waves in anisotropic media with
good accuracy at significantly reduced CTs. In contrast, Q1
coarse-mesh simulations resulted in markedly higher conduction
velocity profiles, and did poorly in capturing the anisotropic
propagation of wavefronts when compared to the Q1NC
formulation.

Numerical simulations on a biventricular domain showed
that our non-conforming scheme can be effectively used in
unstructured meshes of idealized anatomical geometries of
the heart, see Figure 4. Similarly to the cardiac rod case,
a coarse mesh using Q1NC elements performs much better
than a simulation using standard Q1 elements on the same
discretization level, as it predicts more accurately the wavefront
propagation pattern, when compared to the baseline case. This
conclusion is also reached from observing the resulting activation
maps, where the spatial distribution and curved shape of
isochrones in the Q1NC and baseline are similar, whereas the
Q1 formulation delivers an isochrone distribution with lower

activation-time values. We note here that this study considered
an idealized and smooth geometrical representation of the
ventricles of the human heart, useful for numerical verification
purposes. It is important to note that such idealized domain
does not include important anatomical structures such as the
intricate endocardial surface, papillary muscles, and Purkinje
network, that are currently included in advanced heart models
(Ponnaluri et al., 2016; Sahli Costabal et al., 2016). Future
work should focus in understanding how non-conforming
formulations can handle such fine-scale anatomical details and
structures.

The performance of the SINCFES was studied in the
simulation of spiral waves. Remarkably, a very coarse mesh using
Q1NC elements is capable to correctly produce, and sustain in
time, a spiral wave, whereas a standard Q1 formulation using
the same mesh size results in no activation of cardiac tissue.
The ability of SINCFES to reproduce spiral wave formation
and dynamics is a key result of this work, as it shows
that the method is physically more accurate than standard
FE formulations for coarse discretizations. This result can
be explained by the reduced dependance of the CV on the
mesh size, and highlights the potential of the SINCFES in
the simulation of cardiac arrhythmias, the main clinical focus
of cardiac electrophysiology simulations. While spiral patterns
and dynamics obtained with the Q1NC formulation are very
similar to the baseline results, a time delay is observed for the
former, which resulted in differences in the spatial distribution
of the transmembrane voltage, see last column of Figure 5. Such
delay, which can ultimately be attributed to differences in the
local CV, has also been observed in studies employing very
high-order space-time formulations (Coudière and Turpault,
2017), confirming that state-of-the-art simulations of spirals
using standard values of mesh size and time step are also
affected by this time delay. Despite this persistent numerical
error, we believe that the focus of future studies should be
in recovering the overall dynamical features of spirals, i.e.,
spiral tip trajectories (Fenton and Karma, 1998; Gizzi et al.,
2013).

We close by noting that while whole-heart simulations
reported in the literature predominantly employ tetrahedral
discretizations, effective methods for generating patient-
specific hexahedral meshes are currently available (Lamata
et al., 2011). Further, hexahedral meshes have gained great
attention in the context of cardiac simulations, as the
numerical performance of hexahedral elements is superior
to tetrahedral elements when solving mechanics of the heart,
particularly under the assumption of incompressible and
quasi-incompressible regimes (Hadjicharalambous et al.,
2014). As a conclusion, a natural continuation of this
work is the application of non-conforming schemes in the
solution of electromechanical models of the heart (Nash and
Panfilov, 2004). One important reason for mesh-coarsening
FE models of the heart is to reduce the number of DOFs,
which in the case of electromechanical cardiac models is
much larger than in pure electrophysiological simulations,
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as displacement, fiber stretch/stress variables, and the non-
linearity of tissue constitutive models drastically increase the
dimensionality and computational effort needed to solve the
governing equations (Göktepe and Kuhl, 2010; Hurtado et al.,
2017).
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