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We present a novel approach to quantify heart rate variability (HRV) and the results of

applying this approach to synthetic and original data sets. Our approach evaluates the

periodicity of heart rate by calculating the transform of Relative Shannon Entropy, the

maximum value of the RR interval periodogram, and the maximum, mean values, and

sample entropy of the autocorrelation function. Synthetic data were generated using a

Van der Pol oscillator; and the original data were electrocardiogram (ECG) recordings

from anesthetized rats after acute lung injury while on biologically variable (BVV) or

continuous mechanical ventilation (CMV). Analysis of the synthetic data revealed that

our measures were correlated highly to the bandwidth of the oscillator and assessed

periodicity. Then, applying these analytical tools to the ECGs determined that the heart

rate (HR) of BVV group had less periodicity and higher variability than the HR of the CMV

group. Quantifying periodicity effectively identified a readily apparent difference in HRV

during BVV and CMV that was not identified by power spectral density measures during

BVV and CMV. Cardiorespiratory coupling is the probable mechanism for HRV increasing

during BVV and becoming periodic during CMV. Thus, the absence or presence of

periodicity in ventilation determined HRV, and this mechanism is distinctly different from

the cardiorespiratory uncoupling that accounts for the loss of HRV during sepsis.

Keywords: periodicity, HRV, continuous mechanical ventilation, biologically variable ventilation, periodogram

INTRODUCTION

Heart rate variability (HRV) refers to the variation in beat-to-beat intervals (RR interval) and
is measured from the electrocardiogram (ECG). Multiple analytic tools have been applied to
quantify HRV in both the frequency and time domains. Generally, power spectral analysis
is applied to quantify HRV in the frequency domain and changes in relative power in
defined bands may reflect changes in: (1) the balance of the autonomic nervous system
(Stein et al., 1994; Goldberger et al., 2001; Sztajzel, 2004), (2) clinical status of disease states
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such as cardiovascular disease (Hillebrand et al., 2013; Schuster
et al., 2016) and diabetes (Karmakar et al., 2015; Wulsin et al.,
2015; Ziegler et al., 2015), and (3) stress (Shah et al., 2015;
Williams et al., 2015). These studies revealed that disease can
reduce HRV. Analysis of HRV in the time domain complements
its analysis in the frequency domain. Mean HR plus and minus
standard deviation is a common but rarely referred to as a time
domain analysis of the variation of RR interval even though the
coefficient of variation can be derived by dividing the standard
deviation by the mean. Poincaré circle-return maps plot the RR
interval of n+t against the RR interval of n. This displays the
distribution of RR intervals as they relate to the prior RR interval
in plots where t = 1; or a previous RR interval, where t > 1. The
distribution of points in these plots often can be visualized by an
ellipse whose long axis lies on the line of identity. The short-axis is
interpreted as an index of short-termHRV and; similarly the long
axis, long-term HRV (Brennan et al., 2001; Fishman et al., 2012).
During the last 20 years, various nonlinear analyses have been
applied to assess HRV such as: detrended fluctuation analysis,
to detect long-range correlation (Penzel et al., 2003); sample
entropy to measure the irregularity of a RR interval time series
(Richman and Moorman, 2000); and temporal pattern variability
analysis, to quantify the nonlinear and temporal information
encoded in the Poincaré plot (Fishman et al., 2012). The details
of these tools was summarized in the literature (Shaffer and
Ginsberg, 2017).

Biologically variable ventilation (BVV) refers to a method of
mechanical ventilation that imposes variability in cycle duration
and tidal volume. It is biologic in that the ventilator’s pattern is
designed to reproduce normal breathing variations, and is often
based on a recorded spontaneous breathing pattern. In contrast,
continuous mechanical ventilation (CMV), refers to mechanical
ventilation that imposes a nonvarying rate and tidal volume
(Naik et al., 2015). As compared to CMV, BVV improves blood
oxygenation and respiratory system compliance in a porcine
model of oleic acid lung injury (Lefevre et al., 1996). This
opened the field of critical care to the possibility that applied
variability in ventilation patterns may benefit patients. Indeed,
Suki et al. modeled the respiratory system in silico and proposed
that variability improved gas exchange due to nonlinearity in
lung compliance (Suki et al., 1998). Following these seminal
studies, a wide range of studies report similar findings including:
preclinical studies that ventilated animalmodels of: (1) acute lung
injury/acute respiratory distress syndrome (ALI/ARDS) (Arold
et al., 2002, 2003; Boker et al., 2002; Funk et al., 2004; Graham
et al., 2005; Bellardine et al., 2006; Thammanomai et al., 2008;
Spieth et al., 2009b) a notable exception reported no benefit of
BVV (Nam et al., 2000), (2) prolonged anesthesia (Mutch et al.,
2000), (3) single lung ventilation (McMullen et al., 2006), (4)
severe bronchospasm (Mutch et al., 2007), and (5) others (Spieth
et al., 2009a, 2012; Beda et al., 2010; Graham et al., 2011a,b;
Berry et al., 2012). Further, preliminary clinical studies support
use of BVV in critically ill patients with ALI (Boker et al., 2002;
Kowalski et al., 2013; Spieth et al., 2014).

We have a longstanding interest in autonomic and respiratory
control, in particular whether changes cardio-respiratory
coupling can persist in the absence of the forces driving that

coupling. For example we reported that a single 10-min period
of volitional slow, deep-breathing in naïve subjects greatly
enhanced cardiorespiratory coupling during that 10-min period
but also affected HRV for ∼10-min after returning to an eupneic
pattern (Dick et al., 2014). Initially we wanted to test whether
beneficiary effects on lung compliance of BVV persisted during
spontaneous breathing after mechanical ventilation ceased.
During these experiments, the rats received the same minute
ventilation whether they received BVV or CMV and hypoxemia
was prevented. We reported an approximate 15% improvement
in lung compliance in BVV compared to CMV groups
(Knoch et al., 2011). Thus the effect of BBV on lung function
persisted in recovery. While performing these experiments,
we observed an obvious effect of the mode of ventilation
on HRV. However, application of the described analytical
methods could not distinguish the structural differences in
HRV between BVV and CMV. This manuscript describes an
analytical tool we developed to measure the impact of BVV
vs. CMV on HRV in adult rats that sustained lung injury and
whether the differences in cardio-ventilator coupling were
reflected in cardio-respiratory coupling during the recovery
period.

MATERIALS AND METHODS

Recording of Biologic Data
We recorded, analyzed and compared periodicity in HRV in
two groups of rats both of which sustained lung injury. One
group was ventilated with CMV; the other, with BVV. Our
protocols were approved by the Institutional Animal Care and
Use Committee at Case Western Reserve University. Briefly,
we anesthetized adult male rats (Sprague-Dawley/Charles River;
150–250 g; n = 15) with isoflurane to induce anesthesia followed
by ketamine to maintain a surgical plane of anesthesia. We
placed: (1) electrode leads in the diaphragm to record its
electromyogram (DiaEMG) and under the skin to record the
electrocardiogram (ECG) (2) a tube in the trachea to ventilate
the rat and to record endotracheal pressure (PET) and (3) a
MouseOx around the shaved skin (Starr Life Sciences, Oakmont,
PA) to record oxygen saturation transcutaneously. TheMouseOx
provided a continuous recording of oxygen saturation which
was maintained at 95 ± 2% throughout the experiment by
adjusting the fraction of inhaled oxygen. We recorded a 60min
baseline period during which rats breathed spontaneously. Then
we injured the rodents’ lungs by delivering 0.1N HCl (0.2 ml/kg)
directly to the lungs via the endotracheal tube. Immediately
after lung injury, we initiated either BVV (n = 7) or CMV
(n = 8). Whether it was BVV or CMV, we ventilated the rats
at the same average tidal volume (VT) of 7 ml/kg and the
same average minute ventilation of 55 ml/kg (VR × VT). The
BVV pattern was based on a plethysmograph recording of a
spontaneously breathing, healthy, unanesthetized rat and was
scaled to the minute ventilation of a spontaneously breathing
anesthetized rat; looped every 30min. Mechanical ventilation
lasted for 4 h for both BVV and CMV groups. Spontaneous
breaths occurred during ventilation and were evident in the
DiaEMG and as transient decrease in PET. When the rats were
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removed from the ventilator, they breathed spontaneously for
another hour. At the end of the recording, the rats received
an overdose of ketamine and tissue samples were harvested to
assess lung injury. Bronchoalveolar lavage fluid (BALF) reflected
a benefit of BVV; the BALF contained fewer cells following BVV
than CMV (254 ± 100 ×103 cells vs. 409 ± 175 ×103 cells,
P < 0.05).

HRV Analysis of Biologic Data
To test our hypothesis that HRV was greater during BVV than
during CMV treatment, we examined HRV using analyses in
the time and frequency domains as well as nonlinear tools to
assess complexity of HRV. As a first step to all these analyses,
we removed artifacts and baseline drift in ECG signal and
detected the R-wave peaks. In this data set, the rats were
anesthetized and the ECG signal strong so artifacts were rare
and not differentially distributed to a group. We calculated
the HRV measures using 2.5-min epochs. For the time-domain
HRV measures, we calculated the standard deviation of the RR
interval time series (SDNN), the square root of the mean squared
differences of the successive RR intervals (RMSSD), and the
HRV triangular index that is defined by the total number of
RR intervals divided by number of RR intervals in the modal
bin. For the frequency-domain measures of HRV, we applied
the Lomb-Scargle method to compute the periodogram (power
spectral density) of the (non-uniformly sampled) RR interval

time series (Rybicki and Press, 1995). We computed relative
power in the low-frequency range (LF, defined as the power
in the 0.1–1.0Hz frequency range divided by the total power),
relative power in the high frequency range (HF, defined as the
power in the 1.0–3.5Hz frequency range divided by the total
power), and the ratio of relative powers in the low- to high-
frequency ranges (LHR). These frequency bands were suggested
for HRV parameters in rodents (Rowan et al., 2007). Finally,
we performed a few basic nonlinear measures that included:
standard deviations from the Poincaré plot (SD1, SD2, and
SDRatio), short-term and long-term fluctuations from detrended
fluctuation analysis (DFA α1, α2 computed within range of 16
and 64 beats, respectively), and sample entropy (SampEn) using
m= 2 and r = 0.2 SDNN.

As we describe in the Results section, this analytical approach
did not identify differences in HRV between the two groups,
especially using the frequency domain analysis, even though
a dramatic difference was apparent in the periodogram of RR
interval. Thus, we developed a novel approach to measure the
periodicity of the RR interval time series, a distinct measure
of HRV. This analytical approach is based on differences
between in the frequency spectra of periodic and aperiodic
signals. Basically, the spectrum of a periodic signal is narrow
and has its peak at fundamental and harmonically related
frequencies; whereas, aperiodic signals have a continuous and
broad spectrum. Also, this difference in the spectra should

FIGURE 1 | Graphs and analysis of representative synthetic data sets with increasing noise (C) from left to right. (A) Simulated Van der Pol oscillator waveform at

different values of C. (B) Periodograms had wider bandwidths and lower maxima of relative power as C increased. (C) Autocorrelation functions decayed faster and

lost periodicity as C increased.
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be reflected in the autocorrelation plots; the autocorrelation
plot of a periodic signal is also periodic with the same
period. Our proposed methods measure the differences in
power spectral density and autocorrelation (summarized in
sections Power Spectral Density Approach and Autocorrelation
Approach).

Power Spectral Density Approach
This approach relies on the fact that the power spectrum
of periodic and non-periodic time series are different,
so we modified the spectral analysis approach to detect
these differences. First, we excluded the very low frequency
components (<0.3Hz). Second, we normalized the magnitudes
of the power spectral density between 0.3 and 2Hz by dividing
the magnitude at each frequency component by the total
power in the signal. Then, the normalized values were plotted
against frequency to display the relative power spectrum of
the RR-interval time series. We quantified the relative power
spectra using two methods. First, we detected the peak of
relative power (maxPER, maximum of the periodogram). This
measurement takes advantage of the concentration of relative
power in a narrow frequency band with a high peak in periodic
signal versus the dispersion of relative power over a wide
frequency band with low peak values in a non-periodic signal.
Conceptually, the advantages for this method are it is simple
and computational efficient; the disadvantage is that the result
depends on the relative power at a single frequency, which
could be sensitive to influences unrelated to our experiment.

Second, we evaluated the entire range of the relative power
spectrum and used the transformed Relative Shannon Entropy
(tRSE) to determine if the distribution of relative power
of the RR-interval time series over the frequency range is
uniform (Zlotnik, 2006). To compute tRSE, the frequency range
was divided into 20 bins, and for each bin i the sum of the
relative power P(i) was computed and the tRSE was defined
as:

tRSE = 1 +

∑M
i= 1 P (i) ln P(i)

lnM
. (1)

If the relative power P is similar to the uniform distribution
over the frequency range, then P (i) ≈ 1/M; i = 1,. . . , M and

tRSE = 1 +
ln 1/M
lnM

≈ 0. In contrast, if P is concentrated in a
narrow frequency band centered at bin i, then P (i) ≈ 1 for that
band and≈ 0 at bands above or below the ith band. In summary,
an increasing tRSE approaching 1 indicates a narrow band signal,
approximately periodic, signal. Of course, this method was more
computationally intensive.

Autocorrelation Approach
In this approach, periodicity was quantified by measuring the
regularity of the autocorrelation function. The autocorrelation
function measures self-similarity of a time series at increasing
time-delays. Given the quasi-stationarity of a RR-interval time
series in an anesthetized rat, the autocorrelation function of
this time series is approximately periodic. If the RR-interval
varies over a large frequency range, then the autocorrelation

FIGURE 2 | Representative paired traces consisting of raw data and derived instantaneous rates measured from BVV and CMV rats. (A) Diaphragm electromyogram

(DiaEMG, Volt) paired with instantaneous respiratory frequency (fR, Breaths/minute). (B) Electrocardiogram (ECG) & heart rate (HR, Beats/minute). (C) Endotracheal

pressure (PET, cm H2O) & ventilator rate (VR, Cycles/minute).
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function decreases as the time-delay increased. Before computing
the autocorrelation function, the RR interval time series was
detrended by dividing the time series into multiple linear
segments using a change-point detection algorithm such as given
in Spieth et al. (2014). Then, the time-series data in each segment
was estimated using a linear least squares fit to the data. Finally,
the linear trend was subtracted from each segment and the
autocorrelation function was computed as:

Rxx
(

d
)

=
1

N − d

N−d
∑

n= 1

x̂nx̂n+ d, (2)

where x denotes the RR-interval time series, d was the delay that
represents the number of heart beats rather than time because
the RR-intervals are not constant, x̂ = (x − µx)/σx, where
µx and σx denote the mean and standard deviation of x, with
Rxx

(

d
)

ǫ [−1 1].
In this study, the degree of correlation was measured by

calculating the maximum (maxACF) and mean (meanACF)
of the absolute values of autocorrelation function

∣

∣Rxx
(

d
)∣

∣

for d = 25–50. The values of maxACF and meanACF are
approximates 0 if the signal is random, and maxACF is
approximates 1 if the signal is periodic. In addition, we measured
the regularity/predictability of the autocorrelation function by
computing the sample entropy (SE.ACF). If SE.ACF is close to 0,

then the signal is regular/periodic, i.e., the cycle length is regular
and predictable; if SE.ACF is >0 then the cycle length varies
and can be complex. In our analysis, we used the false nearest
neighbor technique to determine the pattern length m and used
the first minimum of the Mutual Information (MI) of the data to
select the delay τ (Fraser and Swinney, 1986; Hegger and Kantz,
1999) and set the tolerance r= 0.4 SD where SD was the standard
deviation of Rxx

(

d
)

.

Testing the Analytical Approaches With
Synthetic Data
The analytical approaches were tested on synthetic data to test
their ability to quantify variability in periodic signals before they
were applied to our biologic data. We replicated our RR-interval
time series by simulating an oscillator with variability in a fixed
bandwidth. We used the Van der Pol oscillator

d2x

dt2
=

(

1− x2
) dx

dt
− (ω + Cz (t)) x (t) , (3)

where ω = 40 is the parameter that controls the frequency of
the oscillator. The variable C modulated the amplitude of the
Gaussian noise z (t) ∼ N(0, 1), which was applied directly to
ω to modify the bandwidth of the oscillator. We numerically
solved Equation (3) using the 4th order Runge-Kutta method

FIGURE 3 | Various HRV measurements do not distinguish modes of ventilation. (A) Time domain methods: standard deviation of RR intervals (SDNN, ms), root

mean square of the successive differences (RMSSD), and triangular index; (B) Frequency domain methods: relative power in low frequency band (LF, %); relative

power in the high frequency band (HF, %), and the ratio of low-to-high-frequency power (LF/HF); (C) Analyses of Poincaré plots: the axis perpendicular to the line of

identity (SD1), the axis on the line of identity SD2 and their ratio (SD1/SD2); and (D) Nonlinear methods: detrended fluctuation analysis (DFA), which has a short-term

fractal exponent (alpha1) and a long-term fractal exponent (alpha2), and sample entropy (SampEn). These indices of HRV were measured during baseline (Bsln),

ventilation (v1-3,1st h; V4-5, 2nd h; V6-7, 3rd h; & V8-9, 4th h) and recovery (Rcvry). These indices were not significantly different between BVV and CMV groups.
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with time span of 0–99.8 s and a step size of 0.2 s. Data sets were
generated for 21 values of C, from 0 to 40 with a step size of
2.5. Figure 1 shows representative examples of the synthetic data
x, the corresponding relative power spectra, and autocorrelation
functions at 3 levels of C. As C increased, the bandwidth of the
generated signal became wider; and the autocorrelation function
decayed faster.

To quantitate the apparent qualitative differences in Figure 1,
we generated 20 data sets for each value of Ci, i = 1, . . . , 21 for
x(i,k), k = 1, . . . , 20 using different realizations of the Gaussian
random noise z(t). For each of these data sets x(i,k), we measured
variability using our algorithms.

We compared our proposed variability measures according
to their ability to detect varying bandwidths. We computed
the degree of monotonicity using the algorithm modified from
(Kreuz et al., 2007) as follows. Let S ∈ R21×20 of which each
element S(i,k) is the result of a variability measure of a data set
x(i,k). If S depends monotonically on the variable C, we would

expect Si < Sk for all Ci < Cj, where Si is the mean value of
the vector Si (here, Si is row number i of matrix S). To determine

whether Si < Sk, we used the rank sum test with significance

level alpha = 0.05. If the null hypothesis Si = Sk cannot be
rejected, then h(i,j) is 0, if the null hypothesis is rejected with

Si = Sk, then h(i,j) is−1. Thus, the degree of monotonicity is

defined as:

M =

∣

∣

∣

∣

∣

∣

2

r(r − 1)

r−1
∑

i= 1

r
∑

j= i+1

h(i,j)

∣

∣

∣

∣

∣

∣

(4)

where r = 21 is the number of elements of the variable C.

Applying the Analytical Approaches to the
Biologic Data
Artifacts and baseline drift in the ECG signal were removed and
the R-wave peaks were detected. We divided the RR-interval
time series into multiple epochs with length of 2.5min and
then computed periodicity for each epoch using our proposed
measures. Also we divided the period when the rat was ventilated
into four parts to test whether the quantified changes in
HRV developed progressively during ventilation. The periodicity
indices of the BVV- and CMV- treated rats during baseline,
ventilation, and recovery periods were compared using repeated
measures ANOVA test.

RESULTS

Standard HRV Measures of Biologic Data
Representative signals recorded from the rats during BVV and
CMV are presented in Figure 2. Time domain analyses of

FIGURE 4 | Variability indices and the degree of monotonicity. Of these measurements, tRSE was sensitive to monotonicity over a broad bandwidth.
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HRV are presented in Figure 3A. Figure 3B illustrates frequency
domain analyses. Figures 3C,D present the results of Poincaré
plot analysis and of nonlinear analyses respectively. These
measures did not have significant differences for HRV between
ventilator modes. In summary, the common time and frequency
domain HRV measures did not differentiate HRV between lung
injured rats treated by BVV and CMV.

Synthetic Data
The results of the variability measures and degree of
monotonicity of the Van der Pol oscillator are presented in
Figure 4. From this plot, as C increased, widening the bandwidth
in the 0.5-1.5Hz frequency range and increasing the variability;
tRSE, maxPER, maxACF, and meanACF decreased and SE.ACF
increased. The values of the indices depended on the range of
C but each periodicity measure had a degree of monotonicity
>0.7. The most sensitive in detecting changes in bandwidth
was tRSE with a degree of monotonicity of 0.995. Further,
tRSE decreased almost linearly over a wide range of values of
C (5–37.5); whereas maxPER, maxACF, and meanACF had
sigmoidal shapes decreasing rapidly over a narrow range of C

(2.5–22.5). This behavior may be described by a Gaussian model.
On the other hand, SE.ACF had a threshold (C = 17.5) and then
increased linearly but with high variability if C > 32.5. Thus,
tRSE performed well over a wide range of bandwidths, whereas
maxPER, meanACF, and maxACF were limited to those cases
with a narrow bandwidth; and SE.ACF was limited to those cases
with a medium bandwidth.

Periodicity in BVV and CMV Treated ALI
Rats
All proposed periodicity measures consistently distinguished a
difference in HRV during the two different ventilator protocols
(Figure 5). The variables maxPER, maxACF, and meanACF were
significantly greater during the 1st through 4th parts of the
ventilatory period; whereas tRSE and SE.ACF were statistically
different in only the last three parts of ventilation. The difference
between the entropy measures versus simple measures of the
peak and mean indicates that periodicity of HRV develops in the
first hour of CMV, and then persists. All measures were similar
during baseline and the recovery period. Thus, the decreased
periodicity during BVV was associated with an enhanced high

FIGURE 5 | Variability of the RR intervals was greater during BVV than CMV by our measures of periodicity in the autocorrelograms. The box-and-whisker plots

display the values for: (A) tRSE, (B) maxPer, (C) maxACF, (D) meanACF, and (E) Sample entropy of the acutocorrelation function (SE.ACF). (A–D) For these indices

values closer to 1 indicate stronger periodicity. (E) Values of SE.ACF closer to zero have decreased probability in predicting the occurrence of the next heartbeat. We

analyzed sequential RR intervals from baseline (Bsln), ventilation (V1-3, V4-5, V6-7, V8-9), and recovery (Rcvry) periods for BVV and CMV treated groups. HRV was

significantly different during the two type of ventilation. HRV was not significant different during baseline and recovery.
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FIGURE 6 | Representative examples of differences in the periodicity of heart rate during BVV and CMV. (A) Histograms of instantaneous fR (breathing) and VR

(ventilator). (B) Power spectral density of the RR interval. (C) Autocorrelation plots of RR interval. As expected, the distribution of VR was much wider during BVV than

CMV and this was reflected not only in the distribution of spontaneous fR but also in the PSD of the RR intervals, which were distinctly different. These differences

were reflected in the autocorrelation plots which illustrated beat-to-beat variability during BVV but periodicity during CMV.

frequency component in the power spectral density of HRV
during recovery. These data suggest that CMV has a strong
influence on the periodicity of HRV that results in increases in
the linear correlation of RR-intervals during ventilation, whereas
BVV induces a more variable cardiac rhythm and that these
effects on HRV were limited to the period of ventilation.

DISCUSSION

In developing the proposed methodologies, we compared the
relative power spectrum of the RR- interval signals as well as
the instantaneous frequency of ventilator and breathing patterns
from the BVV and CMV groups following lung injury (Figure 6).
The power spectrum of the RR-interval time series from a
BVV treated rat (2.5min segment) had a wide frequency range;
whereas that from the CMV treated rat had a narrow bandwidth
with a dominant peak at the ventilator frequency. Differences
between BVV- and CMV- treated rats were also observed in
the autocorrelation plots of the RR-interval time series. The
autocorrelation plot for the BVV treated rat was flat; indicating
that the signal was irregular while that of the CMV treated
rat fluctuated at a regular interval, implying that the signal

was periodic. In summary, the RR-interval time series of rats
treated with non-varying ventilation (CMV group) oscillated
with a relatively constant frequency whereas that of the BVV
group treated with variable lung inflation was irregular. Thus, we
concluded that the RR-interval time series of the BVV group had
more variability than the CMV group.

However, it was puzzling that this difference was not identified
using standard HRV analyses. We observed the time-frequency
plot of the ventilator, RR-interval, and breathing signals of
BVV and CMV treated rats. The plots (Figure 7A) clearly show
the varying and constant frequency of ventilator in the BVV
and CMV mode, respectively. Interestingly, the frequency of
the RR-interval signals (Figure 7B) was more tightly coupled
with the frequency of the ventilator rather than the respiratory
signal (Figure 7C) in both BVV- and CMV- treated rats. The
coupling makes the RR-interval signal non-stationary; hence, the
application of frequency domain measures of HRV with fixed
frequency bands were not appropriate because the frequency of
the RR-interval changed with the frequency of the ventilator.

Time and frequency domain HRV analyses do not necessarily
distinguish between different types of variability in a time
series, i.e., differences that result from the temporal dependence
of a series of beats. Thus, these measures were not able to
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FIGURE 7 | Time-frequency plot of signals measured from a representative BVV and CMV treated rats. (A) Frequency of ventilator were varied during BVV but fixed

during CMV. (B) Respiratory frequency of CMV treated rat was constant and was half of the frequency of ventilator. However, the respiratory frequency of the BVV

treated rat was relatively independent to the frequency of ventilator. (C) Frequency of RR interval signal of both BVV and CMV treated rat were coupled with the

frequency of the ventilator rather than the respiratory frequency. The coupling caused the RR interval signal during BVV to be more non-stationary.

distinguish differences in HRV between the BVV and CMV
rats. Biologic variability has a random or stochastic component
but also a deterministic component, which is apparent in CMV
as a repetitive pattern associated with the periodic ventilator
rhythm. Thus, we developed analytical methods to quantify
periodicity of the RR-interval time series, i.e., methods that
would quantitate the deterministic variability in the CMVpattern
that was evident in its periodogram and autocorrelation plot.
In other words, the periodic heartbeats during CMV had a
narrow support (bandwidth) around the ventilator frequency
as well as a repetitive and regular autocorrelation function,
while the heartbeat periodogram during BVV had wider support
(bandwidth) and an autocorrelation function with a rapid decay
and irregular pattern.Measures used to quantify the periodogram
were tRSE and maxPER; differences in the autocorrelation
function were quantified by maxACF, meanACF, and SE.ACF.

Before we applied our approach to measure periodicity of
RR-interval time series in the physiologic data set, we tested
them on simulated data using the Van der Pol oscillator with
variable bandwidth. As the bandwidth of the signal increased, the
degree of monotonicity decreased for tRSE, maxPER, maxACF,
and meanACF (>0.7), while SE.ACF increased (degree of

monotonicity ∼0.8). Thus, these tools were sensitive to changes
in the structure of the synthetic data in which variability in the
form of noise was added to the bandwidth.

When these methods were applied to measure periodicity in
the RR-interval time series recorded from rats after acute lung
injury, they were able to identify differences in the variability of
the RR-interval time series between the BVV and CMV groups;
even though the conventional time and frequency domain HRV
methods could not distinguish any differences between the
groups. In both groups of rats, the generation of spontaneous
breathing was coupled to mechanical ventilation. Most common
was a spontaneous breath every other mechanical inflation (1:2
coupling), and during CMV the RR-interval time series had a
strong periodicity at the ventilator frequency. In contrast during
BVV, the relative power of the RR-interval time series was
associated with both the frequencies for spontaneous breaths
and mechanical inflation. Therefore, during CMV the periodicity
of HRV was much more apparent at the ventilator rate as
quantified by increasing tRSE, maxPER,maxACF, andmeanACF;
during BVV, the RR-interval time series had a broad range
of low-frequencies as quantified by increasing SE.ACF during
ventilation. Based on these analyses we concluded that BVV
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preserved more physiological-like variability in the RR-interval
time series in lung-injured rats compared to during CMV.

Fetal monitoring of ECG provided the first example of the
clinical relevance of conventional HRV (Hon and Lee, 1963b).
Hon and Lee (1963a) showed that non-variable heartbeats were
prognostic for fetal mortality. This finding was so dramatic that
ultrasonic fetal monitors began to incorporate an autocorrelation
function to enhance the signal-to-noise ratio of the fetal
ECG from other bio-signals such a uterine contractions and
noise in measuring fetal heart rate in external ultrasound
recordings (Divon et al., 1985). But ironically in this case
autocorrelation confounded HRV, and external recordings of
fetal ECG were limited compared to direct recordings of the fetal
ECG (Fukushima et al., 1985).

A reduction in HRV could lead to a false positive, i.e.,
incorrectly identifying a fetus at risk. We theorize that a
quantitative analysis of the autocorrelogram as proposed in
our approach may have distinguished false positives from true
positives, especially in measuring the sustained periodicity of
the autocorrelogram. While we hypothesized that HRV would
be greater during BVV than CMV, this would be due to the
strength of cardioventilator coupling during CMV. During BVV
HRV increased because the ventilatory signal was variable.
Cardioventilator coupling influenced HRV during both types of
ventilation. However, while spontaneous breaths are also coupled
to the ventilator, this manifested as 1 breath to 2 ventilator cycles
and the magnitude of HRV at this lower respiratory frequency
was weak. Our approach to measure periodicity reflects the
entrainment of heart beats as well as spontaneous breaths with
lung inflation.

In summary, we introduced a novel approach to quantify the
variability in a heartbeat time series, beyond the conventional
time and frequency domainHRVmetrics. The proposedmethods
included the transform of Relative Shannon Entropy (tRSE),
the maximum value of the RR-interval periodogram (maxPER),
and the maximum and mean values, and sample entropy of
the autocorrelation function (maxACF, meanACF, and SE.ACF,
respectively).We evaluated these approaches using synthetic data
generated by a Van der Pol oscillator with adjustable bandwidth.
The results showed that tRSE, maxPER, maxACF, and meanACF
monotonically decreased and SE.ACF increased as the bandwidth
of the signal increased. We applied these novel methods to
compare the effect of BVV and CMV on the variability of the
RR-interval time series of rats after acute lung injury using both
conventional HRV measures and the novel measure proposed
in the paper. While we observed an effect of the type of
ventilation on the RR-interval time series it was not detected

by the established time and frequency domain HRV measures.
Measuring periodicity of the RR-interval time series provided an
opportunity to test our hypothesis that the BVV group had a
higher RR-interval variability than the CMV group.

In analyzing the RR-interval variability, and even the
variability of any time-series data, we recommend applying a
series of complementary tools. Of course, certain tools have
been suggested for specific applications; such as: power spectral
density to evaluate autonomic tone, multiscale entropy to predict
survival outcome in inflammatory shock (Vandendriessche et al.,
2014, 2017), Poincaré plots to visualize variability in the
distribution of successive time series points, and tRSE to evaluate
periodicity as established in this work. However, a complete
tool box to assess variability should contain methods to assess
variability in both the time and frequency domains, as well as
nonlinear measures to assess the complexity of the dynamics. We
have described here analytical methods to assess periodicity in
time series data, with applications to quantifying variability in
RR-interval time series in rats with BVV and CMV.
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