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Multi-omics integration analysis identifies novel
genes for alcoholism with potential overlap with
neurodegenerative diseases
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Identification of causal variants and genes underlying genome-wide association study

(GWAS) loci is essential to understand the biology of alcohol use disorder (AUD) and drinks

per week (DPW). Multi-omics integration approaches have shown potential for fine mapping

complex loci to obtain biological insights to disease mechanisms. In this study, we use multi-

omics approaches, to fine-map AUD and DPW associations at single SNP resolution to

demonstrate that rs56030824 on chromosome 11 significantly reduces SPI1 mRNA expres-

sion in myeloid cells and lowers risk for AUD and DPW. Our analysis also identifies MAPT as

a candidate causal gene specifically associated with DPW. Genes prioritized in this study

show overlap with causal genes associated with neurodegenerative disorders. Multi-omics

integration analyses highlight, genetic similarities and differences between alcohol intake and

disordered drinking, suggesting molecular heterogeneity that might inform future targeted

functional and cross-species studies.
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A lcohol use disorders (AUDs) are complex, moderately
heritable (50–60%)1–4, psychiatric disorders associated
with heightened morbidity, and mortality5. An AUD

diagnosis includes aspects of physiological dependence, loss of
control over drinking, as well as persistent alcohol intake despite
physiological, psychological, and interpersonal consequences6,7.
In contrast, typical alcohol intake, as assessed using measures
such as drinks per week (DPW), represents the distribution of
alcohol use from casual or social drinking to excessive drinking
demarcating risk for AUD8,9. While heritable, measures such as
DPW are more likely to be influenced by environmental and
socio-cultural factors and have complex and variable associations
with morbidity and mortality8,9.

Genome-wide association studies (GWASs) of AUD and DPW
have identified multiple risk loci. The largest GWAS of proble-
matic alcohol use (PAU; N= 435,563) which meta-analyzed
AUD with a GWAS of the problem-subscale of the Alcohol Use
Disorders Identification Test (AUDIT-P) reported genome-wide
associations at 29 loci encompassing 66 genes, the largest tranche
of signals for any addictive disorder to date10. In comparison to
Zhou and colleagues PAU GWAS, other comparatively large
GWAS of alcoholism concentrated on the consumption aspect of
addictive disorders. For example, the largest GWAS of typical
alcohol intake (N= 941,280) identified more than 200 indepen-
dent genome-wide significant variants within or near more than
150 genes at 81 independent loci11. Despite a genetic correlation
(SNP-rg) of 0.77 between PAU and DPW (less so for AUD and
DPW, SNP-rg=0.67), genetic correlations between these aspects
of alcohol involvement and other anthropometric, cardio-meta-
bolic, and psychiatric disorders revealed marked distinctions10–14.
For instance, while AUD and PAU appear to be consistently
associated with increased genetic liability for other psychiatric
disorders and positively with liability to educational achievement,
DPW is genetically uncorrelated with most psychiatric disorders
(except ADHD and tobacco use disorder) but correlated nega-
tively with educational achievement and cardio-metabolic disease
(which remains uncorrelated with PAU or AUD)10–14. These
findings strongly hint at some common pathological under-
pinnings to AUD, PAU, and other mental illnesses while genetic
liability to DPW appears to be confounded with socio-economic
correlates of alcohol use10,11,13,14.

Few studies have examined the intersection between the loci
and genes associated with AUD and DPW, especially with respect
to their functional and regulatory significance. As observed in
other large GWAS, most genome-wide significant variants asso-
ciated with AUD and DPW are intergenic and thus not directly
mappable to a specific gene15,16. Furthermore, positionally
mapping a non-coding variant to the nearest gene often does not
identify the causal gene(s)15–17. Indeed, most variants identified
by GWAS reside within and affect the activity of regulatory ele-
ments (e.g., enhancers and promoters) that regulate the expres-
sion of target causal genes in specific cell types; the affected genes
are often located at quite a distance from the risk variant/ reg-
ulatory element13,15,16,18. Several recent studies have integrated
GWAS data with expression QTLs (eQTLs) using co-localization
or integration methods to identify causal variants and genes
associated with schizophrenia, Alzheimer’s disease, and many
other complex disorders13,15,16,18. While similar efforts have been
targeted at AUD and DPW, they have predominantly relied on
bulk mRNA expression data from the small number of brain
tissue samples in GTEx10–14.

Here we present a multi-omics systems approach to identify
causal variants and genes associated with AUD and DPW. Using
Mendelian Randomization-based methods on the largest available
transcriptomic and epigenomic data for brain tissues (Supple-
mentary Data 1) and myeloid cells, we prioritized regulatory

variants that influence AUD and DPW (Fig. 1). The current
manuscript explored the multi-omic integration results in AUD
and DPW separately and subsequently focused on the over-
lapping genes between these two traits. Overlapping genes
prioritized in current analysis are primarily driven by individual
GWASs. Therefore, these signals are minimally influenced by the
sample size bias that might arise due to the integration of two
correlated traits with extreme differences in power. Results of
predicted mRNA expression (integration analyses) were

Fig. 1 Overview of the study. Series of analyses were undertaken to identify
the candidate causal genes associated with risk of AUD and DPW. We
used the stratified linkage disequilibrium score (LDSC) regression to test
whether the heritability of AUD and DPW is enriched in regions surrounding
genes with chromatin markers in a specific tissue. This analysis helped us to
identify the large eQTL/mQTLs datasets in the relevant tissues to perform
the multi-omic integration analysis using SMR. The candidate causal SNPs
and genes prioritized using SMR were further filtered according to threshold
of association in GWAS and linkage disequlibrium (Heidi P and COJO). The
complex loci with multiple genes were further validated and prioritized by
exploring differential gene expression data from brains of people with alcohol
use disorder and controls. Integration of eQTL data from monocytes also
helped to prioritize candidate genes specifically expressed in the myeloid
cells. The cell type specific epigenetic data from the human brain was also
used to identify the causal SNP/s associated with DPW and AUD.
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compared with the mRNA expression from the brains of indivi-
duals diagnosed with AUD and controls (N= 138) to validate the
differential expression of genes prioritized in the GWAS inte-
gration analyses. To the best of our knowledge, this is the largest
systematic multi-omics integration analysis to identify the func-
tional impact of variants and genes associated with two correlated
but etiologically distinct aspects of alcohol involvement.

Results
AUD meta-analysis. The large meta-analysis of AUD GWAS
summary statistics (N= 48,545 AUD cases and 187,065 controls)
from the Million Veterans Program (MVP)19, the Psychiatric
Genetics consortium (PGC-SUD)12 and the Collaborative Studies
on Genetics of Alcoholism (COGA)20 identified 1157 SNPs (31
independent lead SNPs) within or near 79 genes at 10 indepen-
dent loci associated with AUD (Supplementary Figs. 1–4). We did
not include UKB-AUDIT-P in this meta-analysis to specifically
focus on AUD. Many of these loci were shared between the AUD
GWAS meta-analysis and the DPW GWAS by Liu et al.11 who
identified 81 independent loci represented by 5197 (>200 inde-
pendent lead) SNPs. A total of 360 SNPs associated with AUD
and DPW were in common (i.e., p < 5 × 10−8 in both GWAS)
(Supplementary Fig. 5). A large and nominally significant pro-
portion (45%) of AUD and DPW-associated SNPs were within
intronic, UTR and non-coding regions of the genome (Supple-
mentary Fig. 6).

LDSC analysis using tissue specific epigenetic annotations. We
used the stratified linkage disequilibrium score (LDSC)
regression21 to test whether the heritability of AUD and DPW is
enriched in regulatory regions surrounding genes in a specific
tissue. Using multi-tissue chromatin (ROADMAP and ENTEX)
data22, we observed a significant enrichment of promoter-specific
epigenetic markers (H3K4me1/me3) in the fetal and the adult
(germinal matrix, frontal-cortex) brain (P < 5 × 10−8) (Fig. 2;
Supplementary Data 2 and 3) for the SNPs associated with AUD
and DPW, respectively.

Integration of GWAS and eQTL/ mQTL data from fetal and
adult brain. Summary based Mendelian Randomization (SMR)
analysis of genome-wide AUD summary statistics with eQTLs
and mQTLs in the adult and fetal brain identified 21 genes at 18
loci across the genome (PeQTL= 5 × 10−8; P-SMR FDR < 20%;
Heidi >0.05) [Supplementary Data 4; Supplementary Figs. 7–10].
Among these 18 loci, SMR analysis nominated a single candidate
causal gene at 16 loci, while more than 1 causal gene was
nominated at 3p21.31 (GPX1, AMT) and 11p11.2 (SPI1, MTCH2,
NUP160). To avoid the occurrence of false positive co-localiza-
tions that might be exclusively driven by stronger eQTL/mQTL
signals, we focused on the loci where the strongest SNP was at least
suggestively significant in the GWAS (P-GWAS < 5 × 10−5) and
genome-wide significant in respective eQTL/mQTL datasets (P-
eQTL/mQTL <5 × 10−8) [Table 1; Fig. 3]. Because of the much
larger sample size of the DPW GWAS, 61 genes at nearly 31 loci
passed the threshold for significance (P-SMR FDR < 20%; Heidi
>0.05; GWAS P < 5 × 10−5; eQTL/mQTL P < 5 × 10−8) [Supple-
mentary Data 5; Fig. 3; Supplementary Figs. 11–15]. On chromo-
some 11p11.2, our SMR based integration analysis co-localized a
fetal brain specific mQTL (SPI1) and an adult brain specific eQTL
(NUP160) with both traits (AUD and DPW) [Supplementary
Data 7]. On chromosome 17q.21.31, the integration analysis
prioritized different candidate genes for AUD (MAP3K14) and
DPW (MAPT, CRHR1, and LRRC37A) [Supplementary Data 4–7].
Indeed, the AUD and DPW associations at 11p11.2 are likely to be
two distinct loci, because the lead co-localized SNPs for each

phenotype were not in LD (r2 = 0.2). The DPW association tagged
the H2 haplotype at 17q.21.31, while AUD’s association with
MAP3K14 was outside the inversion area, defined by the H1/H2
haplotypes in this region.

Fine mapping of 17q.21.31. At 17q.21.31, eQTL and/ or mQTL from
both fetal and adult brains co-localized with DPW signals. We
observed stronger evidence of co-localization (SMR P < 5 × 10−15)
for DPW with MAPT and LRRC37A, than at any other locus. These
genes are within a large inversion polymorphism (approximately
900 kb) that arose about 3 million years ago23. Since that time, these
haplotypes have been recombinationally suppressed and have accu-
mulated many haplotype-specific variants. As a result, there is
extended LD within more than 1Mb, which makes it difficult to fine
map the causal variants and genes at this locus. Integration analysis of
adult brain eQTL data with the DPW GWAS predicted that
increased MAPT expression (SMR Beta = 0.01) is associated with
increased number of alcoholic DPW, while decreased expression of
LRRC37A (SMR beta=−0.02) was associated with a decrease in
DPW. The predicted gene expression results from AUD and DPW
GWAS were compared with observed expression differences in the
brains of AUD subjects and controls to validate the results. Our
differential expression analysis of alcohol consumption in the human
brain indeed showed that the mRNA expression of MAPT was
associated with increased alcohol consumption (Fig. 4c). The asso-
ciation between MAPT expression and alcohol consumption did not
pass multiple test correction, most likely due to the small sample
size of the brain dataset from people with AUD (P= 7.4 × 10−3;
PBonferroni= 0.46). We did not observe any association between the
expression of LRR37A and the level of alcohol intake in this brain
dataset. The co-localized SNPs within the 17q.21.31 locus were also
compared with the promoter (H3K27ac, H3K4me3), enhancer
(ATAC-Seq), and promoter–enhancer interactome (PLAC-Seq) data
from four specific brain cell types (microglia, neuron, astrocytes, and
oligodendrocytes) to elucidate the functional significance of these
variants. The co-localized mQTLs (rs3785884 and rs17651887)
overlapped with the chromatin interaction region specifically in oli-
godendrocytes and these interactions looped at the MAPT promoter
(Fig. 4b). This observation combined with differential expression data
in the human brain provides strong supporting evidence that MAPT
is likely to be the causal gene at this locus associated with increased
alcohol consumption.

Fine mapping at 11p11.2. SMR analysis with mQTLs from fetal
brain and eQTLs from adult brain prioritized SPI1 and NUP160
respectively at 11p11.2 for association with DPW and AUD
(Fig. 3). Both SPI1 and NUP160 are primarily expressed in
myeloid cells. The predicted causal SPI1 mQTL (rs56030824) and
NUP160 eQTL (rs10838753) were in fact in low LD (R2= 0.31)
with each other. rs56030824 (mQTL) showed a stronger asso-
ciation with both AUD (P= 8.91 × 10−6) and DPW
(4.90 × 10−12) than rs10838753 (eQTL) (DPW P= 1.28 × 10−10;
AUD p= 4.85 × 10−5). Adding rs56030824 as a covariate in
conditional analyses had a larger effect on the association between
rs10838753 and AUD (Porig= 4.85 × 10−5; Pcond= 0.09) than
with DPW (Porig= 1.28 × 10−10; Pcond= 8.1 × 10−3). rs56030824
remained significantly associated with both AUD (Porig= 8.91 ×
10−6; Pcond= 2.0 × 10−2) and DPW (Porig= 4.90 × 10−12;
Pcond= 7.0 × 10−4) even after adding rs10838753 as a covariate.
Rs56030824 overlapped the promoter marks (H3K27ac,
H3K4me3) for SPI1 specifically in microglia (Fig. 5A). This SNP
also alters the binding site regulatory motif for RXRA, a tran-
scription factor which is involved in the promotion of myelin
debris phagocytosis and remyelination by macrophages24. Since
SPI1 is expressed in myeloid lineage cells, its mRNA expression in
the bulk brain was too low to perform differential expression or
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integration analysis. Therefore, we chose eQTLs from a large
sample of peripheral blood monocytes to examine if rs56030824
is associated with the expression of SPI1 in these cells. The effect
sizes of eQTLs at 11p11.2 locus were linearly correlated with effect
sizes from the DPW GWAS at this locus (Fig. 5B, C). In fact,

rs56030824 had the strongest effect size for SPI1 expression and
DPW in the common variant category (Fig. 5C). These obser-
vations together established rs56030824 as a stronger candidate to
be considered as a causal variant and SPI1 as a potential candidate
gene associated with AUD and DPW.

Fig. 2 LDSC analysis using tissue specific chromatin data. LDSC analysis showed significant enrichment of promoter-specific markers (H3K4me1/me3) in
the fetal and adult brain for the SNPs identified in (A) DPW and (B) AUD GWAS meta-analysis. Y-axis represents the annotations and X-axis represents
the −log 10 P value for enrichment calculated using partition heritability method as implemented in LDSC. The dotted red line represents the threshold of
multiple test correction according to Bonferroni.
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Table 1 SMR analysis results with summary statistics of AUD GWAS meta-analysis.

Chr BP Gene Adult brain Fetal brain

eQTL p value mQTL p value eQTL p value mQTL p value

11 46399942 SPI1N x x x 1.91E−04
46664086 MTCH2 1.89E-05 x x x
46843734 NUP160 3.88E-04 x x x

3 48395716 GPX1 4.93E-05 x x x
48459884 AMT 2.07E-04 x 4.39E−04 4.47E−01

17 43361331 MAP3K14N x x x 2.99E−05

The reported genes from the integration analyses survived four different P value thresholds to be nominated as potential causal candidate genes (GWAS P =0.05; FDRSMR-P <=0.2). SMR P-values for
the co-localized SNPs are obtained using the Wald test. The superscript N in front of gene indicates the potential candidate causal gene prioritized using current multi-omic analysis.
Chr chromosome, BP start position of the gene, Gene candidate causal gene, p value SMR P values for integration of AUD summary statistics with respective eQTL/mQTL annotation from adult or fetal
brain). x denotes the missing values either due to non-significant results or sub-threshold expression or methylation values in the respective tissue.

Fig. 3 Results of SMR based integration analysis of DPW and AUD GWAS meta-analysis with eQTL/mQTL from fetal and adult brain. X-axis
represents the chromosomes and Y-axis shows the standardized direction of effect (Z scores) of co-localized SNP on gene expression/ methylation and
GWAS phenotype. Z scores were derived from the effect size (betas) and standard errors (SE) from the SMR analyses. Positive Z score shows that
increase in mRNA expression or methylation is associated with excessive drinking or increased risk of AUD, while negative Z score depicts the vice-versa.
Genes marked on the plots represent the genes that passed the strict threshold of co-localization (FDR SMR-P< 20%; SMRHeidi P > 0.05; GWAS
P < 5 × 10−5; eQTL P < 5 × 10−8) and multiple levels of transcriptomic and/ or epigenetic evidence. SMR P-values for the co-localized SNPs are obtained
using the Wald test.
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This study identified several other genes for DPW with
multiple lines of evidence (eQTL, mQTL, differential expression;
FDR < 20%; HEIDI P > 0.05; GWAS P < 5 × 10−5). For example,
at locus 16p11.2, SULT1A1 and SULT1A2 were the strongest
candidates with co-localization evidence emerging from mQTL
and eQTLs from adult brain tissue (Supplementary Data 5;
Supplementary Data 6). On chromosome 19, FUT2 was the
strongest candidate; mRNA expression of FUT2 was also
nominally associated with increased alcohol consumption (Beta=
0.09, P= 4.6 × 10−2) when comparing the DLPFC of individuals
with AUD and control subjects (Supplementary Data 5).

Pathway and network analysis. Ingenuity pathway analysis of the
prioritized genes associated with DPW showed suggestively sig-
nificant enrichment for pathways related to TR (Thyroid

hormone receptor)/RXR (Retinoic X receptor) activation
(P= 1.45 × 10−4), Lipoate biosynthesis (3.29 × 10−4), Estrogen
biosynthesis (P= 6.39 × 10−3) and Sirtuin signaling (7.27 × 10−3)
(Supplementary Data 8). In all, 410 pathways were tested using
IPA and none of the pathway survived the threshold for multiple
test correction (PBonferroni= 1.2 × 10−4). The DPW-associated
genes were also part of networks associated with immune cell
trafficking and cellular movements (cell migration). Due to
insufficient power and a smaller number of genes passing the
threshold of significance, we were not able to perform the path-
way enrichment analysis for AUD.

Discussion
In this study, we used a multi-omics integration approach to
detect genes relevant to typical drinking (DPW) and AUD. The

Fig. 4 MAPT was identified as a candidate gene associated with increased DPW. A Locus zoom plot showing DPW and eQTL (DLFPC) associations at
17q.21.3. X-axis represents the positions along chromosome 17 and the y-axis represents the P values of each SNP at this locus. P-values for the DPW GWAS
are obtained from aggregated weighted Z statistics (Liu et al, 2019). P-values for DLFPC-eQTL meta-analysis were obtained using conventional inverse-
variance-weighted meta-analysis as implemented in the SMR software package. Color of each dot presents the R2 for LD at the locus (Red= 0.8–1.0; Orange
0.6–0.79; Green 0.4–0.59; Blue 0.2–0.39 and dark blue <2.0). B The co-localized SNPs were found to be overlapping with the chromatin interaction region
that loops back to the promoter of the MAPT gene. C In independent transcriptomic data from the human brain (N= 92), mRNA expression of MAPT was
found to be associated with the alcohol consumption. The analysis was performed using DeSeq2 program and P-value for association resulted from the Wald
test. The shaded area around trend-line depicts the 95% confidence level intervals plotted using “geom_smooth(method= “lm”)” from ggplot2.
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AUD GWAS meta-analysis used here specifically focused on the
diagnosis rather than the disordered drinking. Importantly, our
work highlights that GWAS variants for AUD and DPW are
enriched in promoter regions of the fetal and adult brain. Using
large-scale transcriptomic and epigenomic data from these tis-
sues, we successfully fine mapped complex loci (17q.21.31,

11p11.2, 16p11.2) and identified likely functional variants and
candidate causal genes associated with alcoholism. Prior tran-
scriptomic data from human and animal brains highlighted the
contribution of immune networks in drinking behaviors25–31. But
these observations were never consistent with results from GWAS
of AUD and DPW, most likely due to lack of power in these
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genomic studies. Transcriptomic changes can be either a cause or
a consequence of chronic excessive alcohol consumption. The
identification of genes and/ or pathways involved in immune
signaling (SPI1, RXR activation), lipid metabolism (RXR and
sulfotransferases), and regulation of alcohol metabolism (Sirutuin
signaling) are therefore important as an attempt to fill gaps in our
understanding of disease predisposition and underlying biological
mechanisms in a genomic context.

For example, our LDSC based enrichment analysis shows that
GWAS variants for both AUD and DPW are enriched in the
genes expressed during early brain development. Drinking in later
years might interact with this genetic predisposition making
individuals more susceptible not only to AUD but also to other
neuropsychiatric disorders32. Identification of SPI1 and MAPT as
genes for AUD are good examples of pleiotropy and/ or causal
links between the alcohol intake and susceptibility to AUD, other
psychiatric disorders (e.g., depression), and even Alzheimer’s
disease15,33 and other neurodegenerative diseases. We found that
increased SPI1 expression in myeloid lineage cells was associated
with a higher DPW and higher risk for AUD. Recently, Zhang
and colleagues33 observed that protein expression levels of SPI1 in
the cerebellum and spleen from subjects with Major depressive
disorder and schizophrenia were significantly higher than in
controls. In the past, we have demonstrated that functional var-
iants related to SPI1 expression are associated with the risk of
Alzheimer’s disease15. Similar to this study, higher levels of
expression of SPI1 is associated with increased risk for Alzhei-
mer’s disease.

SPI1 (Spi-1 Proto-Oncogene) encodes an ETS-domain tran-
scription factor (PU.1) that regulates gene expression during
myeloid and B-lymphoid cell development and homeostasis. This
nuclear protein binds to a purine-rich sequence known as the PU-
box found near the promoters of target genes and, in coordina-
tion with other transcription factors and cofactors, regulates their
expression; among the genes are LXR/RXR nuclear receptors34. In
the brain, SPI1 is specifically expressed in microglia15. Given
SPI1’s control over expression of several downstream genes, this
gene may be a major reason enrichment of immune pathways is
observed in transcriptomic analysis of human and animal brains.
Because of the small fraction of microglia in bulk brain tissue, it is
difficult to study the expression of this transcription factor in
transcriptomic datasets from whole brains. Some studies using
animal models have reported that chronic alcohol consumption
can influence the expression of PU.1 in isolated microglia35 and
peripheral lung macrophages36,37. However, these studies report
the consequences of drinking on PU.1 expression whereas our
study uses genomic evidence to demonstrate that regulation of
innate immune response likely underlies, at least in part, sus-
ceptibility to increased drinking and eventual risk for AUD.

MAPT is another example of a pleiotropic relationship between
AUD and other neuropsychiatric and neurodegenerative

disorders. Located on chromosome 17, MAPT, encodes the tau
proteins best known medically for their role in central nervous
system disorders such as Alzheimer’s disease38, frontotemporal
dementia39, Parkinson’s disease38, and the primary tauopathies
progressive supranuclear palsy and corticobasal degeneration40.
Recently, Hoffman and colleagues41 showed that alcohol use can
upregulate the expression of pTau (Ser199/Ser202) in the hip-
pocampus of C57BL/6J mice. Another study in humans observed
differences in CSF-Tau levels in demented people with alcohol
use vs Alzheimer disease patients42. CRHR1 (corticotropin-
releasing hormone type I receptor) is another gene on 17q.21.31,
that has been reported to be associated with alcoholism43.
However, in our analysis, we did not observe an association
between CRHR1 expression and alcohol consumption.

We also identified other genes that might be involved in
increased alcohol consumption through a variety of biological
mechanisms. For example, VPS4A at 16q23.1 has been implicated
in dopamine regulation, reward anticipation, and hyperactivity in
an fMRI study44. We also identified functional variants for
SULT1A1 and SULT1A2 genes that encode for Sulfotransferase
Family 1A enzymes catalyzing the sulfate conjugation of many
hormones, neurotransmitters, drugs, and xenobiotic
compounds45. In IPA disease enrichment analysis, we observed a
nominally significant overlap between genes implicated in DPW
with other neurological, behavioral and immune-related disorders
(Supplementary Fig 16). The genes associated with DPW also
showed significant enrichment for pathways related to TR/ RXR
activation, Lipoate biosynthesis, Estrogen biosynthesis, and Sir-
tuin signaling (Supplementary Data 8). TRs (Thyroid hormone
receptor) control the expression of target genes involved in
diverse physiological processes and diseases, such as metabolic
syndrome, obesity, and cancer, and, therefore, are considered as
important targets for therapeutic drug development46. RXRs
(Retinoic X Receptor) are known to potentially regulate the
ethanol metabolizing enzymes after chronic alcohol
consumption47. It has been reported that the human aldehyde
dehydrogenase-2 (ALDH2) promoter contains a retinoid response
element, which might be contributing to the regulation of the
gene47. Sirtuins signaling has been shown to play an important
role in cocaine and morphine Action in the Nucleus Accumbens.
Ferguson and colleagues48 demonstrated that systemic adminis-
tration of a nonselective pharmacological activator of all sirtuins
can increase the cocaine reward.

We have identified a number of candidate causal genes for
DPW and AUD, resulting from a multi-omic analysis of human
genetic and expression data. Our resource in conjunction with
data generated in animal studies will guide researchers to plan
well-informed experiments. The current study also has some
limitations. We want to emphasize that due to the limited
availability of raw GWAS and e/mQTL data we were not able to
perform sex-stratified analyses. There was also no data on alcohol

Fig. 5 SPI1 was nominated as candidate gene associated with increased DPW and AUD. A Locus zoom plot showing DPW, AUD, and mQTL (Fetal brain)
associations at 11p.11.2. X-axis represents the positions along chromosome 11 and y-axis represents the −log10 (P) values of each SNP at this locus. P-
values for the DPW GWAS (Liu et al, 2019) and AUD GWAS are obtained from aggregated weighted Z statistics. P-values for mQTL meta-analysis were
obtained using conventional inverse-variance-weighted meta-analysis. Color of each dot presents the R2 for LD at the locus (Red= 0.8–1.0; Orange
0.6–0.79; Green 0.4–0.59; Blue 0.2–0.39 and dark blue <2.0). Yellow line represents the position of rs56030824 identified as a functional variant co-
localized with AUD, DPW, and mQTLs in the fetal brain. The tracks show the peaks for promoter marks in 4 major cell types of the brain. Rs56030824 was
found to overlap with promoter-specific marks (H3K4me3 and H3K27ac), specifically in microglia. B Effect sizes for DPW GWAS and SPI1 expression in
CD14+ monocytes were found to be correlated i.e. decreased alcohol intake was associated with decreased SPI1 expression. Rs56030824 showed the
strongest association with DPW and mQTL in the common variant category. The shaded area around trend-line depicts the 95% confidence level intervals
plotted using “geom_smooth(method= “lm”)” from ggplot2. C rs56030824 is a strong eQTL and associated with SPI1 expression in CD14+ monocytes.
The box in the Box Plot is extending from the 25th percentile to the 75th percentile, with median horizontal line within the box. The whiskers are extending
to one and a half times the interquartile range.
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consumption/ alcohol dependence in individuals contributing to
the myeloid datasets. This limited us in comparisons of predicted
gene expression changes (SMR analyses) in the myeloid cells to
actual gene expression changes in monocytes or other myeloid
cells. The differential expression results from the brains of people
with alcohol use were also generated in a small dataset (Total
N= 138; NAlc Con= 92) (although this represents the largest
dataset to date). Given the smaller effect sizes of GWAS signals it
will require a very large brain dataset to detect associations of
SNP mediated mRNA expression with phenotype. Still our data
validated key genes at nominal association levels, which are
encouraging for further targeted studies.

In conclusion, our study prioritizes risk variants and genes for
subsequent experimental follow-up, which will help interrogate
the molecular mechanisms underlying the link between alcohol
consumption and AUD. Our database of multi-omics analysis in
the fetal and adult brain is also made available with this study (see
URLs) and provides a starting point to elucidate the biological
mechanisms underlying AUD. We have demonstrated that
individuals susceptible to AUD may have altered expression of
disease-causing genes at earlier stages of life. Moreover, our
results show the pleiotropic role of AUD-related variants in a
variety of other brain disorders including Alzheimer’s disease. We
expect results of multi-omic integration analysis will help
researchers to design genetically informed experiments to identify
biological mechanisms and drug targets related to AUD.

Methods
Samples
Alcohol use disorder. We meta-analyzed three published GWAS: the Million
Veteran Program (MVP)19 GWAS of AUD (European [EUR] N= 202,004; Ncases =
34,658), with case status derived from International Classification of Diseases (ICD)
codes of alcohol-related diagnoses from electronic health records (EHR) data, the
Psychiatric Genomics Consortium (PGC) GWAS of alcohol dependence12 (cases
based on DSM-IV diagnoses; EUR unrelated genotyped N= 28,757; Ncases = 8485)
and the Collaborative Studies on Genetics of Alcoholism (COGA) GWAS of alcohol
dependence (cases based on DSM-IV diagnoses; EUR unrelated genotyped
N= 4849; Ncases = 2411)20. Genetically calculated principal component 1 (PC1) was
added as additional covariate in analyses of individual GWAS data from individuals
with European ancestry. The final meta-analysis in PGC was performed by com-
bining summary statistics weighted on sample size from individual datasets.
Appropriate PCs calculated using SNP data were also included as a covariate in
MVP19 and COGA datasets.

Drinks per week. We used genome-wide summary statistics for DPW (EUR
N= 537,349 without the 23andMe samples) from GSCAN11 to contrast with AUD.

eQTLs from adult brain. We meta-analyzed three eQTL datasets with data from the
dorsolateral prefrontal cortex (DLFPC): PsychEncode (N= 1387)49, ROSMAP
(N= 461)50, and COGA-INIA (N= 138). ROSMAP eQTL analysis50 was limited to
participants of European descent only and obtained from AMP-AD Knowledge Portal
(https://www.synapse.org/#!Synapse:syn3219045). A full set of PsychEncode cis-eQTL
summary statistics without P-value threshold restriction was downloaded from the
PsychENCODE Integrative Analysis website (http://resource.psychencode.org/)49.
The PsychENCODE Integrative Analysis contained adult brain prefrontal cortex data
of 1387 individuals from the PsychENCODE and the Genotype-Tissue Expression
(GTEx, https://www.gtexportal.org) data. Briefly, PsychEncode consortium included
data from gene expression matrix normalized using quantile normalization, followed
by inverse quantile normalization to map to a standard normal distribution (and to
remove outliers). In all QTL analyses, known confounding factors such as age, sex,
population substructure, and technical covariates were corrected for, and unidentified
confounding factors were minimized through principal component analysis or similar
methods. Detailed information about the data collection and analysis process can be
found in the original study41. Human post-mortem brain samples (COGA-INIA)
samples were obtained from the New South Wales Tissue Resource Centre at the
University of Sydney (http://sydney.edu.au/medicine/pathology/btrc/). Fresh frozen
samples of the superior frontal gyrus were collected from each post-mortem sample
after obtaining ethical approval for the COGA research project from Icahn School of
Medicine and the Scientific Review Committee at New South Wales Tissue Resource
Centre at the University of Sydney. The samples were genotyped using the UK
Biobank Axiom array as part of the COGA-INIA collaboration.

mQTLs from adult brain. Brain-mMeta mQTL summary data51 in SMR binary
(BESD) format were obtained from the SMR data resource (Supplementary

Data 1). This is a set of mQTL data from a meta-analysis (N= 994) of ROSMAP52,
Hannon et al.53, and Jaffe et al.54.

eQTLs from fetal brain. Summary data for eQTLs from developing human brains
(Supplementary Data 1) were obtained from an online repository shared by Heath
O’Brien and Nicholas J. Bray55. The analyses were performed on 120 human fetal
brains from the second trimester of gestation (12–19 post-conception weeks).

mQTLs from fetal brain. Summary data for mQTLs from developing human brains
(Supplementary Data 1) were obtained from an online repository shared by Ellis
Hannon and Jonathan Mill53. The mQTLs were characterized in a large collection
(n= 166) of human fetal brain samples spanning 56–166 days post-conception,
identifying >16,000 fetal brain mQTLs.

eQTL data from CD14+ monocytes. We used the gene expression and genotype
data generated on primary monocytes from 432 healthy Europeans to quantify the
relationship between the co-localized SNPs and expression of myeloid lineage
genes56.

Whole-genome transcriptomic data in the brain of people with AUD and with daily
alcohol intake. mRNA expression data in the Dorso-lateral Pre-frontal cortex
(DLFPC) region of the human brain was generated in 138 brains obtained from the
New South Wales Brain Bank (NSWBB). We also had access to alcohol con-
sumption (gm/day) data in a subset of 92 brains. Alcohol-dependence diagnoses
and consumption data were collected by physician interviews, review of hospital
medical records, questionnaires to next-of-kin, and from pathology, radiology, and
neuropsychology reports.

Brain cell type specific enhancer and promoter data. We used the promoter
(H3K27ac, H3K4me3), enhancer (ATAC-Seq), and promoter–enhancer inter-
actome (PLAC-Seq) data for four specific cell types of brain (microglia, neuron,
astrocytes, and oligodendrocytes) to elucidate the functional significance of co-
localized SNPs57. The location of each epigenetic mark was intersected with the
location of variants prioritized by SMR analysis. UCSC browser (ttps://geno-
me.ucsc.edu/) was used to visualize the overlap of epigenetic markers with SNPs at
17q.21.31 [MAPT] and 11p11.2 [SPI1] loci.

Analysis
eQTL meta-analysis in adult brain. RNA Sequencing data on the DLFPC region of
the brain for 138 samples was generated as part of COGA-INIA collaboration28.
We also genotyped the brain samples using the UK Biobank Axiom array. More
than 97% of subjects (N= 133) included in this study belonged to European
ethnicity. All NSWBB samples were imputed to 1000 Genomes using the cosmo-
politan reference panel (Phase 3, version 5, NCBI GRCh37) using SHAPEIT then
Impute258 within each array. Only variants with non‐A/T or C/G alleles, missing
rates <5%, MAF > 5%, and HWE P ‐values > .0001 were used for imputation.
Imputed variants with R2 < .30 were excluded, and genotype probabilities were
converted to genotypes if probabilities ≥ .90. All genotyped and imputed variants
(4,615,871 SNPs) with missing rates <10%, MAF ≥ 5% and HWE P ‐values
>1 × 10−6 were included in the downstream analyses using MatrixQTL. The gene
expression was corrected for the batch, age, sex, RNA integrity number (RIN),
Post-mortem Interval (PMI), and alcohol status using the “removeBatchEffect”
option from the limma package. The genetically derived PC1 was also added as
additional covariate in the eQTL analysis. The eQTL summary statistics from
PsychEncode49, ROSMAP50, and COGA-INIA datasets were processed and
munged together at single bp and allele level to remove ambiguity due to dbSNP
rsids. The gene labels in all three datasets were also matched to Ensembl ids. The
summary statistics were saved in binary format files (BESD) using the SMR
(https://cnsgenomics.com/software/smr/#DataManagement). The meta-analysis
for eQTLs was performed using the conventional inverse-variance-weightedmeta-
analysis assuming all cohorts are independent. SMR “–meta” option was used to
perform the meta-analysis in all three datasets.

LDSC analysis. We performed the partition heritability analyses for functional
annotation using the LDSC program. We obtained the weights for the multi-cell
and tissue chromatin marks and performed the LDSC partition heritability analyses
on munged summary statistics of AUD and DPW GWAS21. We specifically fol-
lowed the default parameters to perform the LDSC analyses as listed in the tutorial
for partition heritability analysis (https://github.com/bulik/ldsc/wiki/Partitioned-
Heritability).

SMR analysis. To examine whether the GWAS variants associated with both AUD
and DPW are mediated by changes in methylation and gene expression patterns, we
conducted a summary data-based Mendelian randomization (SMR) analysis59 on a
set of mQTLs and eQTLs (Top SNP P < 5 × 10−8) from fetal and adult brains. SMR
is a Mendelian randomization-based analysis which integrates GWAS summary
statistics with eQTL data in order to test whether the effect size of a SNP on the
phenotype of interest is mediated by gene expression. We used this method as it
does not require raw eQTL data to build the weights, so we were able to use the
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meta-analysis of eQTL data for the integration analysis. The gene and SNP positions
for the summary statistics of the eQTL and mQTL datasets were standardized and
aligned using an in-house summary statistics munging pipeline. The summary sta-
tistics were then converted into binary format (BESD) to perform the SMR analysis.
The scripts used to create the binary (BESD) files for each dataset have been deposited
in GitHub. The European subset of ADGC GWAS (phs000372.v1.p1) was used as the
LD reference panel to perform the SMR analyses. The analysis was performed using
default parameters as listed in the SMR tutorial. The genes below FDR threshold
(FDR < 20%; GWAS P < 5 × 10−5; eQTL/mQTL P < 5 × 10−8) and with heterogeneity
P value > 0.05 were considered to be causal within each combination of analysis.

Conditional and joint (COJO) analysis. We used a summary data-based conditional
analysis approach to identify the independent lead SNP associated with AUD and
DPW. This conditional and Joint analysis (COJO)60 approach is implemented in
Genome-wide Complex Trait Analysis (GCTA) software61 package and is valuable
when the individual-level genotype data is not available for the conditional analysis.
To perform the COJO analysis we used the summary statistics of AUD and DPW
GWAS along with the European subset of COGA samples as the LD
reference panel.

Differential expression analysis. We first performed a linear regression with alcohol
intake as a dependent variable to identify possible covariates (e.g. sex, age, post-
mortem interval [PMI], RNA integrity number (RIN)). Gene-level analyses started
with the featureCounts-derivedsample-by-gene read count matrix. The basic nor-
malization and adjustment pipeline for the expression data matrix consisted of: (i)
removal of low expression genes (<1 CPM in >50% of the individuals); (ii) dif-
ferential gene expression analysis based upon adjustment for the chosen covariates.
We filtered out all genes with lower expression in a substantial fraction of the
cohort, with 18,463 genes with at least 1 CPM in at least 50% of the individuals;
note that only these genes were carried forward in all subsequent analyses. The
log10 normalized alcohol consumption (from NSWBB brains) was used for dif-
ferential expression analysis using the DeSeq2 program. The analysis was con-
trolled for sex, age, PMI, Body mass index (BMI), RIN, batch and severity of
alcoholism (AUDIT scores).

Comparison of overlapping results between AUD and DPW integration analyses.
The analyses presented in this manuscript performed multi-omic integration
analyses separately for AUD and DPW and only later looked at the overlap. We
specifically employed this approach as it minimizes the bias in results due to large
sample size differences between the two GWASs. Hence, the summary statistics
from the correlated meta-analysis of DPW and AUD GWAS will be primarily
driven by DPW signals due to very large sample size for DPW GWAS and smaller
standard errors. As a result, the multi-omics analysis using these summary statistics
will predominantly prioritize genes associated with the DPW phenotype. In fact, we
used the Multi-Trait Analysis of GWAS (MTAG) method to meta-analyze the
summary statistics from DPW and AUD GWASs. Although, this method is robust
to correlated multi-trait meta-analysis, the SMR analysis using the MTAG results
was primarily driven by the DPW variants. To reduce this bias, we also focused on
SMR results from MTAG using stricter threshold (GWAS AUD 5 × 10−5; e/mQTL
P 5 × 10−8; SMR P < 20%; Heidi P > 0.05). The results from this threshold were
similar to our original analyses that focused on overlapping results after integration
analysis (Supplementary Data 7 and Supplementary Data 9). In fact, many SNPs in
the combined analysis were filtered out due to inflated summary statistics of the
heterogeneity (Heidi P values) test (Supplementary Data 9).

Pathway analysis. The results of integration analysis for the DPW and AUD
GWAS meta-analysis (SMR PFDR <20%, Heidi P > 0.05; PeQTL <5 × 10−8;
PGWAS= 5 × 10−5) were used to perform gene ontology and pathway enrichment
analyses using the EnrichR and Ingenuity Pathway Analysis (IPA).

Database for query and visualization. We used ShinyApp to create a database for
query and visualization of the results of integration analyses. Users can create
volcano, Manhattan plots, and heatmaps to visualize the results of eQTL, mQTL,
and epigenetic integration analyses with summary statistics of AUD and DPW
GWAS. Users will also be able to see whether the genes of interest are differentially
expressed in the brains of people with AUD and controls.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The individual Manhattan plots with SMR analysis for all conditions can be found in
supplementary information Figs. 7–15. Supplementary Figs. 1−4 reports the AUD-meta
association plots generated through FUMA. Additionally all the results can be visualized
at our Shiny web app (https://lcad.shinyapps.io/alc_multiomics/). No raw data was
generated in this manuscript. AUD meta-analysis summary statistics along with summary
statistics of all SMR analyses are available to download at figshare.com: AUD meta-
analysis summary statistics: https://doi.org/10.6084/m9.figshare.15054198.v1. SMR Input

BESD files for brain meta-analysis: https://doi.org/10.6084/m9.figshare.15054183.v1.
mRNA expression analysis of alcohol consumption (corrected for BMI, AUDIT scores,
age, sex, and PMI): 10.6084/m9.figshare.15054171.v1. SMR results (Complete summary
statistics files): https://doi.org/10.6084/m9.figshare.15054120.

Code availability
Standard tools (LDSC, SMR, GCTA-COJO, UCSC browser) were used to perform all the
integrative analysis reported in this manuscript. Pipelines used in the analysis can be
accessed at the GitHub repository (https://github.com/kapoormanav/alc_multiomics)
[https://doi.org/10.5281/zenodo.5076223.
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