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Effect of de novo transcriptome 
assembly on transcript 
quantification
Ping-Han Hsieh1, Yen-Jen Oyang1,2 & Chien-Yu Chen3,4

Correct quantification of transcript expression is essential to understand the functional elements in 
different physiological conditions. For the organisms without the reference transcriptome, de novo 
transcriptome assembly must be carried out prior to quantification. However, a large number of 
erroneous contigs produced by the assemblers might result in unreliable estimation. In this regard, this 
study investigates how assembly quality affects the performance of quantification based on de novo 
transcriptome assembly. We examined the over-extended and incomplete contigs, and demonstrated 
that assembly completeness has a strong impact on the estimation of contig abundance. Then we 
investigated the behavior of the quantifiers with respect to sequence ambiguity which might be 
originally presented in the transcriptome or accidentally produced by assemblers. The results suggested 
that the quantifiers often over-estimate the expression of family-collapse contigs and under-estimate 
the expression of duplicated contigs. For organisms without reference transcriptome, it remains 
challenging to detect the inaccurate estimation on family-collapse contigs. On the contrary, we 
observed that the situation of under-estimation on duplicated contigs can be warned through analyzing 
the read proportion of estimated abundance (RPEA) of contigs in the connected component inferenced 
by the quantifiers. In addition, we suggest that the estimated quantification results on the connected 
component level have better accuracy over sequence level quantification. The analytic results 
conducted in this study provides valuable insights for future development of transcriptome assembly 
and quantification.

Quantification and comparison of transcript expression are essential to understanding the role of RNA in differ-
ent physiological conditions or developmental stages. Such experiments and analyses are widely used in the stud-
ies of molecular biology. Over the past decades, several biological technologies have been developed to quantify 
the abundance of transcripts, such as expression microarray1 and high-throughput RNA sequencing (RNA-Seq)2. 
For organisms with sufficient genomic information, the design of microarray provides a high throughput and 
cost-effective solution to examine transcript expression. On the other hand, RNA-Seq is superior in delivering 
lower background signals and larger dynamic ranges3. Despite the fact that many genome sequencing projects 
have been carried out, such as Genome10K4, 5000 arthropod genomes initiative (i5K)5 and Bird10K6, whole 
genome studies are still demanding efforts for many research groups. For non-model organisms, the expression 
microarray needs to rely on cross-species hybridization7. On the contrary, RNA-Seq is more suitable owing to its 
capability of detecting novel transcripts without additional genomic information3.

When the reference genome and transcriptome are not available, RNA-Seq reads are first used to reconstruct 
the transcriptome8,9. Nowadays, many programs have been developed for de novo transcriptome assembly, such 
as Oases10, rnaSPAdes11, SOAPdenovo-Trans12, Trans-ABySS13 and Trinity14. After transcriptome sequences are 
reconstructed, quantification methods including BitSeq15, Kallisto16, RSEM17 and Salmon18 can be applied. These 
methods are able to inference the abundance of expression without the need of genomic sequences, using the 
number of RNA-Seq reads that overlap with the assembled contigs9. Nevertheless, quantification is much more 
challenging without reliable reference sequences because of the erroneous contigs produced by the assemblers, 
which often result from sequencing errors, insufficient sequencing depth and biological variability19. To address 
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these problems, a great number of comparative studies have been published recently. While many studies eval-
uated transcriptome assembly19–21 or quantification22,23 programs independently, few have discussed how tran-
scriptome assembly influences the downstream quantification analysis. In 2013, Vijay, N., et al. performed an 
in silico assessment of RNA-Seq experiments. That study examined the impact of various aspects of sequencing 
reads on transcriptome assembly and differentially expressed genes (DEG) analysis7, but the effect of redundant 
contigs and multiple-mapping reads on quantification was not well discussed. Another study conducted by Wang, 
S. and M. Gribskov evaluated the quality of assembled contigs and their effects on DEG analysis24. However, their 
study mainly focused on the evaluation of entire workflow from assembly, quantification, to DEG analysis, which 
makes it obscure to unravel how the erroneous contigs affect the authenticity of downstream analysis. In addi-
tion, some studies investigated the reliability of quantification algorithms by utilizing the information regarding 
splicing junctions. For example, in 2019, Soneson, C., et al. devised a junction coverage compatibility (JCC) 
score, which compares the observed and predicted counts of junction spanning reads to quantify the reliability 
of transcript quantification25. Afterwards, Cong Ma, et al.26 used the deviation of the observed read counts from 
the expectation of quantification model on the whole transcripts to identify anomalies and adjust the estimation 
of abundance accordingly. It should be noticed that the implementation of these ideas requires proper annotation 
of the genome, such as the splicing junctions and coordinates of untranslated regions (UTR) for the transcripts. 
In this regard, it remains challenging to analyze the quantification reliability of the assembled contigs generated 
from de novo assembly without proper annotation of the genome.

In this study, we used both in silico simulated and experimental RNA-Seq data from three species (yeast, dog, 
and mouse). The reads were assembled using three state-of-the-art assemblers, namely rnaSPAdes, Trinity and 
Trans-ABySS. After that, the assembled contigs were evaluated based on TransRate19 scores, which were previ-
ously proposed to assess the quality of de novo transcriptome assemblies using the alignments of sequencing reads 
to the assembled sequences. After de novo assembly, the reference transcripts were assigned to assembled contigs 
according to the BLASTn27 alignments. Each transcript-contig alignment was then categorized based on accuracy, 
recovery and sequence ambiguity. Subsequently, we thoroughly examined the impact of erroneous contigs on the 
quantifiers Kallisto, RSEM and Salmon. By exploring the interplay between each stage in RNA-Seq analysis work-
flow, this study provides valuable insights into conducting RNA-Seq analysis and we anticipate these discoveries 
would be useful in the future development of assembly or quantification algorithms.

Materials and Methods
Datasets.  Three experimental and three simulated RNA-Seq datasets were used in this study. Both experi-
mental and simulated data included three species: yeast (Saccharomyces cerevisiae), dog (Canis lupus familiaris) 
and mouse (Mus musculus). The experimental datasets were collected from the Sequence Read Archive (SRA). 
The yeast dataset (SRR453566) was from the study of Nookaew et al.28, comprising 5.5 million non-stranded 
paired-end reads cultivated under the batch condition. The dog dataset (SRR882109) was produced by Liu, et al.29, 
comprising 20.8 million non-stranded paired-end reads sampled from normal mammary gland tissues of domes-
tic dogs. Finally, the mouse dataset (SRR203276) was collected from the study of Grabherr, et al.14, containing 
43.4 million stranded paired-end reads extracted from dendritic cells. For the simulated datasets, Flux Simulator 
(ver. 1.2.1)30 was adopted to synthesize RNA reads for yeast, dog and mouse, respectively, based on the genomic 
sequences and annotations from the Ensembl database31. To facilitate the analysis, only the transcripts annotated 
as messenger RNA (mRNA) and with over 500 nucleotides in length were extracted. The parameters used for the 
simulation are shown in Supplementary File 1: Table S1. In total, 81.7 million non-stranded paired-end reads were 
generated for the simulated dataset. The quality of both experimental and simulated datasets was examined using 
FastQC (ver. 0.11.5)32 and the low-quality subsequences of the reads were trimmed using Trimmomatic (ver. 
0.36)33 with parameters SLIDINGWINDOW:4:20 MINLEN:30 (this setting increased the threshold of sequencing 
quality and retained more RNA reads when compared to the default parameters). The resultant RNA reads that 
were unable to maintain the paired relation were discarded. The detailed information of the processed RNA reads 
is provided in Supplementary File 1: Table S2 (The mean and standard deviation of the insert sizes were estimated 
based on the alignments produced by Burrows-Wheeler Aligner34).

For some projects that were originally designed to first assemble a qualified reference transcriptome, the 
sequencing depth is usually higher than that adopted in transcriptome quantification projects. To ensure the 
conclusions drawn in this study are consistent across different sequencing depths, we created additional datasets 
with a higher sequencing depth. For yeast, we adopted two additional datasets SRR453567 and SRR453568, which 
are the biological replicates of the yeast data we used (SRR453566), to create a new dataset with a high-sequencing 
depth, denoted as the experimental (H) yeast dataset. As for the experimental (H) dog dataset, we adopted 
another dataset SRR882105, which has a higher sequencing depth in the same research of the experimental dog 
dataset (SRR882109). Similarly, we used another parameter profiles (Supplementary File 1: Table S1) to generate 
synthetic RNA-Seq datasets with a higher sequencing depth, denoted as simulated (H) datasets, which consist of 
185.7 million non-stranded paired-end reads. The detailed information of the simulated (H) and experimental 
(H) datasets is provided in Supplementary File 1: Table S2.

Expression metrics.  In order to evaluate the performance of transcript quantification, the ground truth of 
expression abundance for each transcript must be first determined. For simulated datasets, the number of the 
generated RNA reads for each transcript was recorded during the simulation process. Since transcriptome assem-
blers sometimes generate duplicated, incomplete or over-extended contigs, the metrics we use for quantifying 
expression must consider the normalization with respect to both sequence length and the number of total nucleo-
tides. In this regard, the number of generated RNA reads was transformed into a simplified version of Transcripts 
per Million (TPM)35 using the Eq. (1):

https://doi.org/10.1038/s41598-019-44499-3


3Scientific Reports | (2019) 9:8304 | https://doi.org/10.1038/s41598-019-44499-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

=
∑

×
=

f l
f l

Ground Truth TPM
/

/
10 ,

(1)
i

i i

k
n

k k1

6

where n is the total number of transcripts, fi is the number of RNA reads generated from transcript i and li is 
the effective length36 of transcript i. In contrast, because the ground truth abundance for each RNA molecule is 
unknown for experimental datasets, we calculated the average TPM inferred by Kallisto (ver. 0.43.0), RSEM (ver. 
1.2.31) (default parameters) and Salmon (ver. 0.8.2) for the reference transcript as the ground truth expression 
when evaluating the abundance of an assembled contig. Although the estimated expression might not perfectly 
reflect the real number of RNA molecules in a biological sample, it still provides valuable information when com-
paring the performance of quantification before and after de novo transcriptome assembly.

de novo transcriptome assembly and quantification.  The processed RNA-Seq reads were assembled 
into contigs using the following three programs: (1) rnaSPAdes (ver. 3.11.1), (2) Trans-ABySS (ver. 1.5.5) along 
with ABySS (ver. 1.5.2)37 and (3) Trinity (ver. 2.4.0) with default parameters. To minimize the effect of fragmented 
contigs, only the contigs with over 500 nucleotides in length were kept for the quantification analysis. The assem-
blies were evaluated based on the length of contigs, the number of recovered transcripts, the number of erroneous 
contigs and the evaluation scores provided by TransRate. The TransRate scores that we used in this study are the 
score of bases covered, score of good mapping, score of not segmented and overall score. The score of bases covered 
represents the proportion of nucleotide bases in a contig that are covered by reads. The score of good mapping 
represents the proportion of read pairs of which both reads are aligned in the correct orientation on a single 
contig. The score of not segmented represents the proportion of contigs that might be a chimera of multiple 
transcripts. Subsequently, the expression abundance for each contig was estimated using one alignment-based 
and two alignment-free quantifiers, namely (1) Bowtie2 (ver. 2.3.0)38 (–dpad 0–gbar 99999999–mp 1,1–np 1–
score-min L,0,-0,1 -k 200–sensitive–no-mixed–no-discordant) followed by RSEM (ver. 1.2.31) (default parameters); 
(2) Kallisto (ver. 0.43.0) (indexing with -k 31 and quantifying with default parameters); and (3) Salmon (ver. 0.8.2) 
(indexing with -k 31 and quantifying with default parameters).

Transcript assignment.  For the purpose of comparing the estimated abundance of contigs with the ground 
truth expression from the corresponding transcripts, we assigned the reference transcripts (cDNA) to assembled 
contigs based on BLASTn (2.5.0+)27 alignments. Here, only the high scoring pairs (HSPs) with identity over 70% 
and E-value smaller than 1E−5 were considered. We integrated the remained HSPs onto the coordinates of both 
transcript and contig to obtain the global alignment. Similar to a previous study7, we calculated the recovery and 
accuracy for each global alignment, which refer to the proportion of matched nucleotides on the transcript and 
the proportion of correctly matched nucleotides on the contig respectively (Supplementary File 2: Fig. S1). 
Furthermore, we defined the overall alignment score as ×recovery accuracy . A transcript is assigned to a con-
tig if either accuracy or recovery of the global alignment between them is above 90%. In this manner, we were able 
to identify all the corresponding transcripts for each contig. Note that it is possible that a contig can be associated 
with multiple transcripts, and a transcript can assign to multiple contigs as well. We considered multiple assign-
ments here in order to understand the impact of redundant sequences on the quantification. Once the transcripts 
have been assigned to the contigs, we used Eq. (2) to calculate the relative error of expression, in order to evaluate 
the quality of transcript quantification for each transcript-contig pair:
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where the TPMi
est is the expression estimated by quantifiers for contigi, and the .TPMj

g t is the ground truth expres-
sion for transcriptj given (contigi, transcriptj) is a valid global alignment (either accuracy or recovery of the global 
alignment between them is above 90%).

Sequence ambiguity.  To determine the origin of the RNA-Seq reads that can be mapped to multiple tran-
scripts is an important issue for the development of quantification algorithms. In this regard, it is of interest to 
understand the impact of sequence ambiguity on transcript quantification. We performed pairwise sequence 
alignment on both transcripts and contigs using BLASTn, respectively. Here, only the HSPs with identity over 
70% and E-value smaller than 1E−5 were considered as potential ambiguity. In addition, to better explicate the 
relation between sequences that share similar subsequences, we build a connected component graph, where two 
sequences were grouped into the same connected component if the proportion of identical nucleotides between 
them is over 90% of the either sequence (Fig. 1). The size of a connected component is defined as the number of 
sequence members inside. We call the sequences in a connected component which containing only one sequence 
as unique sequence. Furthermore, we used the read proportion of estimated abundance (RPEA) of a contig in a 
connected component to investigate the behavior of quantifier while ambiguous sequences are presented. Given 
n contigs … …c c c c, , i n1 2  in the same connected component C, the RPEA score for contig i is defined as follow:
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If the highest RPEA in the connected component is close to 1, it suggests that the quantifier allocates all 
the reads in the connected component to one specific contig. In contrast, if the highest RPEA in the connected 
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component is close to 1/n, then it suggests that the quantifier tends to allocate the reads evenly in the connected 
component.

Contig categories.  The assembled contigs are categorized into five particular categories in this study: (1) 
full-length, (2) incompleteness, (3) over-extension, (4) family-collapse and (5) duplication (Fig. 2). The contigs iden-
tified as incompleteness, over-extension, family-collapse and duplication are called erroneous contigs throughout 
this study. The analysis of the first three categories were not affected by the factor of sequence ambiguity, allowing 
us to investigate the impact of assembly completeness on quantification independently. Given the length of contig 
lc and the length of the corresponding transcript lt, the assembly completeness of a contig was examined through 
the difference in length:

=
−
+

× .
l l
l l

Difference in Length 100%
(4)c t

c t

c t
( , )

In contrast, family-collapse and duplication focused on the contigs that completely recovered the transcripts 
(recovery ≥ 90) but considered the influence of sequence ambiguity. To be more specific, family-collapse represents 
contigs which are assigned with multiple transcripts and duplication stands for the multiple contigs assigned by a 
single transcript. By examining these contigs, the problems caused by the assemblers that fail to distinguish sim-
ilar transcripts from each other or generate a large number of redundant contigs were investigated. The detailed 
definitions for contig categories are provided in Supplementary File 1: Table S3.

Figure 1.  Construction of Ambiguity Network. The diagram illustrates how pairwise alignments in a contig 
set are employed to construct ambiguity networks. The ambiguity network is first initialized by given the contig 
sequences, creating a single cluster for each sequence. By analyzing the global alignments between contigs (the 
blue dot lines), the cluster in the network expands by joining two contig clusters at a time if the alignment length 
between the sequence is over 90% of the length for either sequence. In this study, the ambiguity network can be 
constructed for both contig and transcript sets. For the purpose of simplicity, we only illustrated the scenario for 
contigs in this figure.
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Release package.  We proposed an open-source Python based package QuantEval that builds connected 
components for the assembled contigs based on sequence similarity and evaluates the quantification results for 
each connected component. The package can be downloaded from https://github.com/dn070017/QuantEval.

Results
de novo transcriptome assembly.  Based on pairwise BLASTn, yeast has the simplest transcriptome, with 
94.11% of the transcripts sharing no similar subsequences with others. We call these sequences unique transcripts 
in the transcriptome. On the other hand, 66.29% of the dog transcripts are unique, while only 28.45% of the 
mouse transcripts are unique (Supplementary File 1: Table S4). First, we performed transcriptome assembly on 
the RNA reads of the three species. We adopted three assemblers, rnaSPAdes, Trans-ABySS and Trinity, to con-
struct contigs for both experimental and simulated RNA-Seq reads. Next, we built connected components for the 
assembled contigs. The statistics of sequence length and sequence ambiguity for the assembled contigs are shown 
in Supplementary File 1: Table S5, while the numbers of contigs that were categorized in each contig category 
are shown in Supplementary File 1: Table S6. The proportion of recovered transcripts (recovery ≥ 90) and accu-
rate contigs (accuracy ≥ 90) is shown in Supplementary File 2: Fig. S2. Here, we conducted InterPro gene family 
enrichment analysis on the two groups of transcripts for both simulated and experimental datasets: “recovered 
(recovery ≥ 90%)” and “not recovered (recovery < 90%)”, using DAVID functional analysis tool (Fisher’s Exact 
test)39. The results can be found in Supplementary Materials 3 (18 data sheets). The enriched gene families that are 
recovered are not exactly the same across different datasets. There is no enriched gene family in the recovered yeast 
dataset. The Trinity and Trans-ABySS assemblies for the dog dataset reported “IPR012677:Nucleotide-binding, 
alpha-beta plait” and “IPR000504:RNA recognition motif domain” for high recovery transcripts. However, the 
rnaSPAdes reported multiple gene families related to WD40 repeat for the dog dataset. For the mouse data-
set, three assemblers reported similar gene families enriched in the gene set with high recovery. For instance, 
IPR000504:RNA recognition motif domain, IPR000719:Protein kinase, catalytic domain, IPR001650:Helicase, 
C-terminal, IPR001680:WD40 repeat, IPR001683:Phox homologous domain, IPR001841:Zinc finger, RING-type 
and etc. This suggested that the assemblers performed similarly when reconstructing transcripts in these gene 
families. Finally, the TransRate scores for each assembly are shown in Supplementary File 2: Fig. S3.

In general, rnaSPAdes constructed the least amount of contigs with the highest overall TransRate score for 
most of the datasets. As shown in Supplementary File 1: Table S5, rnaSPAdes also delivered the lowest aver-
age size of the connected components across species, suggesting that the contigs generated by rnaSPAdes are 
less redundant when compared to those from the other two assemblers. Trinity outperformed other assemblers 
in terms of N50 and the proportion of the recovered transcripts in all the simulated datasets. Despite the fact 
that Trinity generated longer contigs, the overall TransRate scores and the proportions of accurate contigs from 
Trinity assembly are marginally lower than the assembly constructed by rnaSPAdes. Trans-ABySS constructed 
the contigs with comparatively high accuracy, with 66.37% of the contigs aligned with at least one transcript that 
show accuracy higher than 0.90. Nonetheless, Trans-ABySS constructed smaller numbers of unique and long con-
tigs relatively. In other words, Trans-ABySS generated shorter contigs with more redundancy. We also found that 
Trans-ABySS generated more redundant sequences and the TransRate scores dropped significantly in the datasets 
with high sequencing depth. The summary of the assemblies also demonstrates that the proportion of recovered 
transcripts are significantly higher in the datasets of yeast than that of dog or mouse. With a lower number of 
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solid line if they are in the same ambiguity cluster. On the other hand, a blue dot arrow represents the transcript 
assignment for the contigs. The analysis of contigs labeled as full-length, incompleteness and over-extended 
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unique transcript sequences, it appears to become more difficult for the assemblers to properly reconstruct the 
transcriptome. For the estimated abundance of assembled contigs, the estimation made by quantifiers RSEM, 
Kallisto and Salmon shows considerably high consistency (Supplementary File 2: Fig. S4), with both Pearson’s 
and Spearman’s correlation coefficients higher than 0.95 between any of the two quantifiers. The coefficient of 
variations of the estimated expression inferenced from these quantifiers for simulated and experimental datasets 
are shown in Supplementary File 1: Table S7, which also show high consistency across different quantifiers.

Impact of assembly completeness.  In this study, the influence of de novo transcriptome assembly on 
expression quantification is mainly discussed with respect to two major issues: assembly completeness and 
sequence ambiguity. We would like to primarily look into the impact of assembly completeness on quantification 
in this section. In order to reduce the possible effect of sequence ambiguity generated by the assemblers, only 
the unique contigs (contigs in a connected component containing only itself) that are assigned with a single 
transcript were examined here. The unique contigs were further categorized into full-length, incompleteness and 
over-extension (see Methods for detailed definitions). The reliability of quantification was examined based on the 
relative error for contigs with different extent of assembly completeness (Fig. 3, Fig. S5).

In summary, full-length contigs show the lowest relative error of quantification, with the medians of error 
smaller than ±10%. The scatter plots and correlation coefficients also suggest that the estimated abundance of 
full-length contigs is highly reliable, with Pearson’s and Spearman’s correlation coefficients between the estimated 
and ground truth abundance both larger than 0.97 in all the datasets (Figs 4, 5 and S6). The incomplete contigs 
yield slight over-estimation on the expression abundance. Overall, the quantification errors gradually increased as 
the assembly completeness decreased. This phenomenon can be observed more obviously on the dog and mouse 
datasets. When compared with the full-length contigs, the correlation coefficients are comparatively lower, rang-
ing from 0.70 to 0.94 (Fig. 5). Lastly, for the category of over-extended contigs, the quantifiers underestimated 
the expression abundance and the correlation coefficients slightly dropped (Fig. 4). Nevertheless, the number of 
over-extended contigs is much fewer than those of other categories (Supplementary File 1: Table S6), which indi-
cates that the assemblers did not overly extend the assembled contigs in most of the cases. In other words, only a 
limited number of contigs in the quantification will be affected in the practical RNA-Seq analysis. Although the 
TPM metrics has already been normalized for sequence length and total nucleotides, researchers might still need 
to be aware of the length bias caused by incomplete or over-extended contigs while using TPM as the metrics to 
estimate the expression of contigs. The results can be observed from normal datasets and datasets with higher 
sequencing depth.

Impact of sequence ambiguity.  In this section, the impact of sequence ambiguity on quantification was 
thoroughly discussed. Similarly, to reduce the compound effect from assembly completeness, only the accurately 
assembled contigs (accuracy ≥ 90) were examined here. In the first part of this sub-section, we looked through 
the reliability of quantification when the assemblers report only one contig for many similar transcripts, denoted 
as family-collapse. In the second part, we examined the impact of contigs with similar sequence content which are 
assigned with the same transcript, denoted as duplication (see Methods for detailed definition). By using these 
contigs, we examined the behavior of the quantification algorithms while sequence ambiguity is present in the 
assembly.

For the contigs categorized as family-collapse, it is much more difficult to analyze the accuracy of quantifica-
tion because multiple transcripts being assigned to a contig. Based on our observation, there are in average 2 to 
3.16 transcripts being assigned to a family-collapse contig across the six datasets. Since there is only one contig 
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Figure 3.  Quantification Errors for Unique Sequences. The box plots illustrate the relative quantification errors 
for unique contigs on the simulated datasets. The estimation of contig abundance is made by Kallisto based on 
Trinity assembly. The contigs are grouped by the extent of assembly completeness, and the numbers on the 
X-axis represent the lower bound of differences in length. For instance, the contigs located on −10 means that 
the percentage of difference in length is in the range of −[ 10, 0). The data is color-coded based on the contig 
categories. The box plots suggest that the estimation made on full-length contigs yield the smallest relative 
errors, while the incomplete contigs show over-estimation and over-extended contigs show under-estimation 
on quantification.
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that was assigned by multiple transcripts, we would like to find out of which transcript expression delivers the 
estimated abundance of the contig actually reflects. To our surprise, the estimated abundance is closer to the 
transcript with the highest expression rather than the one with highest alignment score. However, this might be 
due to the fact that the assemblers failed to differentiate the family-collapse transcripts; therefore, the quantifiers 
tend to allocate all the reads to the corresponding contig and estimate the contig abundance close to the sum of 
all family-collapse transcripts (Fig. 6, Supplementary File 2: Fig. S7). This conclusion can be drawn from both 
datasets with normal sequencing depth and datasets with higher sequencing depth.

In contrast with family-collapse, duplication represents the redundant contigs which are clustered into the 
same connected component and are assigned with a single transcript. Here, we use the maximum estimated abun-
dance in the connected component to investigate the behavior of quantifiers (see Methods for detailed definition). 
We observed that quantification algorithms tend to allocate most of the RNA reads to a single contig within the 
connected component in most of the cases (15 among 18 of the datasets with normal sequencing depth and 11 
among 15 of the (H) datasets show that over 50% of the connected component has one contig with the proportion 
of estimated abundance over 75%) (Supplementary File 2: Fig. S8). Furthermore, we would like to understand 
which estimated abundance of the contig in the connected component can accurately reflect the expression of 
corresponding transcript. Here, we used three approach to select the estimated abundance of the contig in the 
connected component: (1) the contigs with the highest alignment score, (2) the contigs with the highest RPEA 
and (3) the total expression of connected component of the contigs. Consequently, we found that the estimated 
abundance of contigs that were allocated with the most amount of RNA reads in the connected component show 
significantly low quantification error with the transcript expression. In the cases when the quantifiers distribute 
the RNA reads evenly to the duplicated contigs, the ground truth expression for the transcripts cannot be accu-
rately represented by the estimated abundance of contigs (Fig. 7). To address this problem, it is advisable to use 
the total expression of the connected component for duplicated contigs to measure the expression of correspond-
ing transcripts.

Discussions
Based on the observations discussed in the previous section, we first found that the incomplete and over-extended 
contigs has unreliable estimation of transcript abundance. This observation is similar to the research conducted 
by Runxuan Zhang et al.40, which suggested that variations in the length of 5′ and/or 3′ UTR considered in tran-
script quantification often affect accuracy of abundance estimation. In addition, we discovered that once the 
assemblers failed to distinguish the RNA reads generated from similar transcripts and reported a single merged 
contig, the estimated abundance of family-collapse contig often reflect the total expression of the collapsed tran-
scripts, and thus is usually close to the transcript generating the most amount of RNA reads. In contrast, to esti-
mate the expression of the transcript associated with duplicated contigs, researchers are suggested to use the total 
abundance of the contigs in a connected component in order to get accurate estimation. Nevertheless, in most 
of the practical RNA-Seq analysis, the information of the transcriptome sequence is not available for non-model 
organisms and the researchers have to rely on de novo prediction of the functional annotation to compensate the 
lack of information. Moreover, this approach is often biased by the annotation content in the database. Therefore, 
it is challenging to detect whether family-collapse contigs or duplicated contigs emerge when performing contig 

0

5

10

15

0 5 10 15

log2(Ground Truth TPM + 1)

lo
g2

(E
st

im
at

ed
 T

P
M

 +
 1

)

Pearsons'r: 0.994, Spearman's r: 0.995

Full length

0

5

10

15

0 5 10 15

log2(Ground Truth TPM + 1)

lo
g2

(E
st

im
at

ed
 T

P
M

 +
 1

)

Pearsons'r: 0.881, Spearman's r: 0.823

Incompleteness

0

5

10

15

0 5 10 15

log2(Ground Truth TPM + 1)

lo
g2

(E
st

im
at

ed
 T

P
M

 +
 1

)

Pearsons'r: 0.947, Spearman's r: 0.93

Over extension

100 50 0 50 100

Relative Error (%)

0

5

10

15

0 5 10 15

log2(Ground Truth TPM + 1)

lo
g2

(E
st

im
at

ed
 T

P
M

 +
 1

)

Pearsons'r: 0.994, Spearman's r: 0.995

Full length

0

5

10

15

0 5 10 15

log2(Ground Truth TPM + 1)

lo
g2

(E
st

im
at

ed
 T

P
M

 +
 1

)

Pearsons'r: 0.881, Spearman's r: 0.823

Incompleteness

0

5

10

15

0 5 10 15

log2(Ground Truth TPM + 1)

lo
g2

(E
st

im
at

ed
 T

P
M

 +
 1

)

Pearsons'r: 0.947, Spearman's r: 0.93

Over extension

100 50 0 50 100

Relative Error (%)

Figure 4.  Scatter plots of Estimated Abundance and Ground Truth Expression for Unique Sequences. The 
scatter plots illustrate the estimated and ground truth abundance for contigs categorized as full-length, 
incompleteness and over-extension of the simulated dog datasets. The estimation of contig abundance is made 
by Kallisto based on Trinity assembly. The metrics are recorded in +log TPM( 1)2 . The data points are color-
coded based on the relative quantification errors, with blue represents under-estimation and orange for over-
estimation. In general, the estimation on expression for full-length contigs is highly reliable. There are some 
incomplete contigs with over-estimated abundance. Moreover, the correlation coefficients for the estimation of 
incomplete contigs are also relatively lower than that of full-length contigs. As for over-extended contigs, a 
marginal under-estimation in quantification can be observed.

https://doi.org/10.1038/s41598-019-44499-3


8Scientific Reports | (2019) 9:8304 | https://doi.org/10.1038/s41598-019-44499-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

annotation (transcript assignment) after assembly. Since it is difficult to identify the correct annotation of these 
erroneous contigs, we suggest that the researchers should use the sum of estimated abundance of contigs in the 
same connected component to estimate the gene-level expression instead of looking into sequence level expres-
sion (Fig. 8). Despite the fact that this strategy abandons quantifying individual transcripts, many advantages 
emerge such as higher accuracy on the quantification, reliable read inference, robust statistical performance and 
clear interpretation of the data41. More importantly, this strategy does not have to deal with the problem resulting 
from multiple transcript assignment in contig annotation. Most of the observations on the effect of de novo tran-
scriptome assembly on quantification in this study are consistent across datasets with different sequencing depths 
(Supplementary Materials 2: Fig. S9). In addition, the analysis conducted in this study is based on non-polypoid 
species (yeast, dog and mouse). For research conducted on polypoid species, one should be aware that the 
increased complexity of genome might affect the performance of both assembly and quantification algorithms.

We argue that the difficulties discussed in this research emerge mainly because the goals for each step of the 
analysis is not specifically designed for de novo RNA-Seq analysis. The researchers should be aware that these 
programs could be biased by the problems that these programs were designed to solve. For instance, most of the 
assemblers are optimized to reconstruct the whole transcriptome, which sometimes leads to many false predic-
tions on SNPs or isoforms. These artificial or incorrect contigs thereafter deteriorate the accuracy of quantifiers 
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Figure 5.  Correlation Coefficients between Estimated Abundance and Ground Truth Expression for Unique 
Sequences. The figures illustrate the Pearson’s and Spearman’s correlation coefficients between estimated 
abundance and ground truth expression. In general, the estimation based on full-length contigs have 
considerably high correlation with the ground truth expression of corresponding transcripts. In contrast, the 
incomplete and over-extended contigs show relatively lower correlation coefficients. There are significantly 
low correlation coefficients in the rnaSPAdes assembly based on simulated yeast data; however, due to a small 
number of data (n = 11), it should be careful to draw such conclusion based on this dataset.
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because most of the quantification algorithms infer the expression based on the overlapping relation between 
RNA-Seq reads and the given sequences (transcripts or contigs). Furthermore, the annotation step is performed 
based on sequence alignment without considering the abundance of expression. This observation demonstrates 
that the selection of the programs has a strong impact on the de novo RNA-Seq analysis, especially for the selec-
tion of transcriptome assemblers. For instance, to minimize the effect of assembly completeness on quantification, 
assemblers that construct the sequences with appropriate length are preferable. On the other hand, the assemblers 
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Figure 6.  Scatter plots of Estimated Abundance and Ground Truth Expression for Family-Collapse Sequences. 
The scatter plots illustrate the estimated and ground truth abundance for contigs categorized as family-collapse 
of the simulated dog dataset. The estimation of contig abundance is made by Kallisto based on Trinity assembly. 
The metrics are recorded in +log TPM( 1)2 . The data points are color-coded based on the relative quantification 
errors, with blue represents under-estimation and orange for over-estimation. Since there are more than one 
transcript correspond to one contig, we categorized the expression of corresponding transcript into (1) 
transcript with the maximum alignment score with respect to the contig, (2) transcript with the highest 
expression in the family, and (3) total expression of connected component. In general, the estimated abundance 
of the contig actually reflect to the total expression of the connected component of corresponding transcripts.
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Figure 7.  Box Plots for the Relative Errors of Duplicated Contigs. The box plots illustrate the relative 
quantification errors for duplicated contigs of the experimental mouse dataset. The contigs are grouped by the 
maximum RPEA in the connected component, and the numbers on the X-axis represent the lower bound of the 
proportion. For instance, the contigs located on 0.45 means that the maximum RPEA of the connected 
component is in the range of . .[0 45, 0 50). Since there are more than one contigs that are assigned by the same 
transcript, we would like to find out which contigs’ estimated abundance can accurately reflect the expression of 
the transcript. Here, we categorized the quantification errors into three categories: (1) transcript is assigned to 
the contig with the highest alignment score, (2) transcript is assigned to the contig that are allocated with the 
most RNA reads and (3) transcript expression adopts the total expression of the connected component of the 
associated contigs. The box plots suggest that contig with the highest alignment score or the highest estimation 
made within the connected component have considerably lower quantification errors if most of the reads are 
assigned to one specific contig (higher maximum RPEA). However, when the quantifiers allocate the RNA reads 
evenly to the contigs within the connected component, it is advisable to use the total expression of the 
connected component instead in order to get the accurate estimation for the expression of transcripts.

https://doi.org/10.1038/s41598-019-44499-3


1 0Scientific Reports | (2019) 9:8304 | https://doi.org/10.1038/s41598-019-44499-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

that report fewer false predictions for SNPs or isoforms might reduce the problem of duplicated contigs in contig 
annotation resulting from sequence ambiguity. The performance for the quantifiers we analyzed throughout this 
study demonstrates high consistency in terms of accuracy of quantification. Therefore, we recommended to use 
quantifiers such as Kallisto and Salmon for significantly lower computational time16,18. The selection of programs 
for contig annotation is relatively irrelevant because the bottleneck mainly lies in the insufficient transcript infor-
mation. Since there are no reference transcripts available in the practical de novo RNA-Seq analysis, most of the 
research utilizes the protein sequences from closely related species because of comparatively higher conservation 
in protein sequences. However, to align the contigs with proteins of other species might reduce the precision and 
accuracy of sequence alignment, which makes it more difficult to find the correct annotation for the assembled 
contigs.

There are many other factors that might as well influence the quantification quality in the practical de novo 
RNA-Seq analysis. For instance, read length, fragment size, strand specificity, sequence specific bias and posi-
tional bias. The read length or the fragment size directly determine the maximum length of the nucleotides that 
overlap with the reference sequences for each read pair. Therefore, the number of RNA-Seq reads that can be 
aligned to multiple origins of the transcripts reduces when longer reads are adopted, which mitigates the problem 
of sequence ambiguity on the inference of the origin of the reads35,36. The strand specificity provides the informa-
tion for the strand of the RNA-Seq reads, which is expected to improve the precision of sequence alignment and 
quantification42. Last but not least, the sequence-specific and positional bias derived from library construction 
might lead to RNA-Seq reads that over- or under-represent the number of transcripts in the molecules. Therefore, 
it is important to model the fragment bias in the process of quantification in the practical RNA-Seq analysis43.

Lastly, we would like to highlight a sequencing technology that might provide another new perspective and 
mitigate the problems in RNA-Seq analysis: long-read RNA-Seq using the third-generation sequencing technol-
ogy. Long-read RNA sequencing generates a single read for each mRNA molecule in real-time, which results in 
considerably longer RNA-Seq data that allows the full-length reconstruction for transcripts without the need 
of assembly9. Although the demanding cost for sequencing in higher coverage makes it hard to be considered 
for quantification at this moment, this technology still provides an extraordinary breakthrough for identifying 
the transcriptome in non-model organisms44. If the research expenditure is sufficient, we recommend using the 
long-read RNA-Seq reads for the identification of the novel transcriptome.

Conclusion
While most of the related studies focused on optimizing the quantification or assembly algorithms independently, 
few studies have discussed how the erroneous contigs generated by the assemblers affect the downstream analysis 
of RNA-Seq. In this study, we examined the impact of assembly completeness and sequence ambiguity. We com-
paratively evaluated the performance of rnaSPAdes, Trans-ABySS and Trinity for de novo transcriptome assembly 
under three transcriptomes with different complexities. All of the selected assemblers showed a lower propor-
tion of the fully-reconstructed transcripts as the number of unique sequences in the transcriptome decreases. In 

Figure 8.  Scatter plots of Estimated Abundance and Ground Truth Expression for Component level 
quantification. The scatter plots illustrate the estimated and ground truth abundance for all the contigs of the 
simulated dog dataset. The estimation of contig abundance is made by Kallisto based on Trinity assembly. The 
metrics are recorded in +log TPM( 1)2 . The data points are color-coded based on the relative quantification 
errors, with blue represents under-estimation and orange for over-estimation. Here, we compared the 
performance of component level quantification and sequence level quantification for all the valid assignment of 
transcripts for each contig. In general, the estimated abundance for the component level quantification yields a 
more accurate estimation.
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general, rnaSPAdes constructed the least number of contigs with the highest TransRate score, Trinity produced 
longer contigs, and Trans-ABySS generated the contigs with higher accuracy. As for quantification, we meas-
ured the reliability of RSEM, Kallisto and Salmon. The estimation made by three algorithms shows marginal 
differences. For each erroneous contig, the incomplete or over-extended contigs lead to unreliable estimation of 
the abundance of contigs. Moreover, we have found that if the redundant contigs are presented in the assembly, 
the quantifiers tended to allocate the RNA-Seq reads to one of the duplicated contig. However, in rare cases, the 
quantifiers distributed the reads evenly to the contigs that share similar sequence content. On the contrary, the 
quantifiers tended to over-estimate the contigs that were assigned with multiple transcripts since the assemblers 
failed to distinguish the difference of these transcripts and reported only a single contig. To circumvent these 
issues, it is advisable to estimate the abundance on component-level rather than for individual transcript. By 
exploring how these factors deteriorate the reliability of de novo RNA-Seq analysis, we provided valuable insights 
for the interplay between transcriptome assembly, quantification and sequence annotation. We anticipated these 
discoveries will be useful in the future development of assembly or quantification programs.

Data Availability
The experimental datasets analyzed during the current study are available in the NCBI Short Read Archive re-
pository, SRR453566 (https://www.ncbi.nlm.nih.gov/sra/SRR453566), SRR882109 (https://www.ncbi.nlm.nih.
gov/sra/SRR882109), SRR203276 (https://www.ncbi.nlm.nih.gov/sra/SRR203276). The simulated datasets can 
be obtained through executing the scripts “read_simulation.sh” in each simulation data folder in https://github.
com/dn070017/QuantEval.
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