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Abstract: Most conventional wind turbine fault diagnosis techniques only use a single type of
signal as fault feature and their performance could be limited to such signal characteristics. In
this paper, multiple types of signals including vibration, temperature, and stator current are used
simultaneously for wind turbine misalignment diagnosis. The model is constructed by integrated
methods based on Dempster–Shafer (D–S) evidence theory. First, the time domain, frequency
domain, and time–frequency domain features of the collected vibration, temperature, and stator
current signal are respectively taken as the inputs of the least square support vector machine (LSSVM).
Then, the LSSVM outputs the posterior probabilities of the normal, parallel misalignment, angular
misalignment, and integrated misalignment of the transmission systems. The posterior probabilities
are used as the basic probabilities of the evidence fusion, and the fault diagnosis is completed
according to the D–S synthesis and decision rules. Considering the correlation between the inputs,
the vibration and current feature vectors’ dimensionalities are reduced by t-distributed stochastic
neighbor embedding (t-SNE), and the improved artificial bee colony algorithm is used to optimize
the parameters of the LSSVM. The results of the simulation and experimental platform demonstrate
the accuracy of the proposed model and its superiority compared with other models.

Keywords: wind turbines; misalignment; fault diagnosis; information fusion; improved artificial bee
colony algorithm; LSSVM; D–S evidence theory

1. Introduction

In order to address global warming issues, many countries have reduced carbon
emissions year by year as one of their targets for economic and social development. As
one typical source of clean energy, wind power has significant advantages in terms of
environmental and ecological impact compared with hydropower and nuclear power [1]. In
recent years, wind power has been rapidly developed in many countries, and the installed
capacity has been increasing year by year [2].

The working environment of wind turbines is often complex, so the failure rate of
the components of wind turbines is relatively high [3]. If the key components of the wind
turbine system fail, it will cause damage and even stop the whole turbine, resulting in
huge economic losses. Therefore, in recent years, a large number of research work has
been focused on fault diagnosis of wind turbines. The failures typically include blade
failures, transmission system failures, generator failures, and tower failures. Among
them, misalignment of the transmission system is one of the common failures [4]. Many
reasons, such as bearing eccentricity, installation error, and coupling misalignment, can
cause misalignment of the wind turbine transmission system that connects the gearbox and
generator for a typical doubly-fed wind turbine [5]. The misalignment of the transmission
system can inevitably lead to vibration of the unit, which will reduce the reliability of the
power generation system. In addition, the misalignment failure can cause damage to gears
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and bearings [6]. Therefore, it is necessary to monitor and diagnose the misalignment of
the transmission system in doubly-fed wind turbines.

Although there is much work on the misalignment fault diagnosis for a conventional
rotating system, there is little work for wind turbine misalignment diagnosis. In particular,
a wind turbine presents additional and unique challenges as it operates under variable
rotational conditions [7,8]. At present, the main research on detecting the misalignment
of wind turbines includes the following work. Zhao et al. applied variational mode
decomposition (VMD) to decompose the fault vibration signal to isolate features and
diagnose the misalignment faults in a direct drive wind turbine [9]. Abdalla et al. diagnosed
misalignment of planetary gearbox based on vibration measurements using spectrum
analysis and modulation signal bispectrum (MSB) analysis [10]. Huang et al. applied the
Hilbert–Huang transform (HHT) method for fault diagnosis of wind turbine rotors and
discussed three typical faults by the HHT, including rotor mass imbalance, aerodynamic
asymmetries, and yaw misalignment [11]. An and Kong proposed a modified empirical
mode decomposition (EMD) method to extract characteristics from vibration signals and
applied a back-propagation neural network to data from various sensors to diagnose
faults of offshore wind turbines included stator imbalanced, rotor unbalanced, and bearing
misalignment [12]. Villa et al. developed a statistical diagnosis algorithm based on the
significance level of the modeled fault to detected unbalance fault and misalignment fault
of wind turbine, and tested the algorithm on vibration from a test-bed [13]. He et al.
analyzed the vibration characteristics of the transmission chain of a wind turbine based
on double-elastic support with natural axial misalignment between the output shaft of
gearbox and the shaft of generator causing vibration signals of normal gearbox blend with
serious high-order gear mesh frequency and smooth modulation [14]. However, these
methods mainly applied rely on single information, and their performance could be limited
owing to the limited source of information.

Because the diagnosis based on single information often cannot reflect the overall
condition, the information fusion methodology for multiple source information is needed
for the diagnostic system. Information fusion is a synchronous and comprehensive pro-
cessing of the information obtained from multiple sensors. It can ensure the integrity of
the information from a different perspective and overcome the shortcomings of traditional
single information to form a more objective and closer understanding of the system [15],
which can greatly improve the accuracy of diagnosis.

Information fusion can be divided into three levels: data level, feature level, and
decision level [16,17].

• Data level fusion. The direct fusion of signals collected by the same type of sensors
retains the most information among the three levels.

• Feature level fusion. In this process, the signals from multiple sensors need to be
preprocessed. Features are extracted to form the fusion vector and its attributes are
used to judge the state of targets to be diagnosed.

• Decision level fusion. After initial state judgment of the target to be diagnosed, the
final state is obtained based on the fusion of some decision rules. Decision level fusion
is the highest among the three levels. Its real-time performance and fault tolerance
are very good, but the information loss is very large, so more complex algorithms are
needed.

At present, there are many research methods and achievements in decision level
fusion, including Bayesian theory [18], Dempster–Shafer (D–S) evidence theory [19], fuzzy
set theory [20,21], rough set theory [22], and so on. The classification principle of Bayesian
theory is to calculate the posterior probability of an object (the probability that the object
belongs to a certain class) using the prior probability and Bayes formula, and select the class
with the largest posterior probability as the one to which the object belongs. In D–S evidence
theory, trust function and likelihood function are obtained by calculating the orthogonal
sum of basic probability distribution functions of different evidences. After fusing multiple
evidences, the final decision is made according to decision rules. Among them, basic
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probability distribution function is the probability distribution of all possible faults in
each state, trust function is the lower bound of fault event probability, and likelihood
function is the upper bound. Fuzzy set theory (FS) was founded by Zadeh. Membership
T(x) was used to describe fuzzy information. At this time, non-membership F(x) did not
appear. Then, intuitionistic fuzzy sets (IFSs) and interval intuitionistic fuzzy sets (IVIFSs)
appeared successively. The fuzzy information processing technology developed from fuzzy
set theory can provide a simple and effective means to explore uncertainty and simulate
human recognition mechanism. Rough set theory, initially developed by Pawlak (1982), is
a mathematical tool that deals with vague, uncertain, and incomplete information. Rough
set theory has been successfully applied in many fields such as machine learning, pattern
recognition, control systems, data mining, and image classification.

The advantages and limitations of the above four methods are listed in Table 1.

Table 1. Comparison of information fusion algorithms. D–S, Dempster–Shafer.

Approach Advantages Disadvantages

Bayes’ theorem Takes probability as the input data,
has sufficient theoretical knowledge

Difficult to define prior probability
function, lacks the ability to allocate

the total uncertainty
D–S evidence

theory
The premise is easier to meet, no
need to know prior probability

Cannot solve the serious conflict or
complete conflict of evidences

Fuzzy set theory
Based on local theory of

classification, has strong adaptive
ability

Determines the uncertainty
according to the subjective

judgement

Rough set theory
Deals with redundant information

and inconsistent information
effectively

Discretization of symptom
attributes is needed

In this paper, based on the good theoretical basis and application effect of D–S evidence
theory [23–27], it is used to complete decision fusion, which provides a sufficient fault
diagnosis solution for wind turbine misalignment fault.

The aim of this paper is to use multiple sources of information to distinguish the
misalignment-free (normal condition) and three different types of transmission misalign-
ment. The main contributions are summarized as follows.

Multiple sources of information and integrated approach are used for wind turbine
transmission misalignment detection. More specifically, the vibration, temperature, and
stator current signal are taken as the original source, and their time domain features,
frequency domain features, and time-frequency domain features are extracted as fault
characteristics. t-distributed stochastic neighbor embedding (t-SNE) is used to reduce the
vibration and current characteristics dimensionality, and then three posterior probability
least squares support vector machine with parameters optimized by improved artificial bee
colony algorithm are constructed. The probability outputs of the three LSSVM are taken
as the basic probabilities of evidence fusion. The probability distribution after fusion is
calculated according to the Dempster fusion rule. Compared with the non-fusion models,
it is demonstrated that the model based on D–S evidence fusion has higher diagnostic
accuracy for wind turbine misalignment faults.

The remainder of the paper is organized in the following way. In Section 2, the formu-
las of D–S evidence theory, posterior probability least squares support vector machines,
and the improved artificial bee colony are presented in detail. Section 3 describes the
specific steps for D–S fault diagnosis. Section 4 presents the fault diagnosis case study
based on the simulation model. Section 5 presents the fault diagnosis case study based on
the experimental platform. Section 6 concludes the current work.
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2. Theoretical Background
2.1. D–S Evidence Theory

The D–S evidence theory is a method of uncertainty reasoning, proposed by Dempster
in 1967 and later improved and developed by Shafer [28]. The D–S evidence method can
produce a probability interval to an uncertain event by fusing multiple evidences with
known probability distribution. As an indeterminate reasoning method, D–S evidence
theory uses weaker conditions than Bayesian, and has the ability to quantify unknown and
uncertainty [29]. The evidence theory contains three important functions: basic probability
assignment function, belief function, and plausibility function. The basic probability
assignment function is the probability distribution of all possible faults in each state, the
belief function is the lower bound of the probability of the fault event, and the plausibility
function is the upper bound of the probability of the fault event. The belief function and
the plausibility function can be obtained by calculating the sum of the basic probability
assignment function, and the final decision is made after combining multiple evidences
from different sources.

The D–S evidence theory consists of the following parts [30].

• Frame of discernment:

A variety of possible mutually exclusive hypothesis Xi(i = 1, 2, · · · , s) of a question
constitute a finite and non-empty set, which is called the frame of discernment, denoted as
Ω = {X1, X2, · · · , Xs}.
• Basic probability assignment (BPA) function:

BPA function is also known as the mass function. Suppose H is a subset of Ω, if
function m(H) satisfying

(a) m(φ) = 0
(b) ∑ m(H) = 1
(c) m(H) > 0

then, function m(H) is called the basic probability assignment of H on Ω.

• Belief function:

In the frame of discernment, the belief function represents the sum of the basic
probability assignment functions of all subsets of H. The expression of the belief function
is as follows:

bel(H) = ∑
Y/Y⊆H

m(Y) (1)

• Plausibility function:

In the frame of discernment, the plausibility function represents the degrees of belief
for not denying H, which is the sum of the basic probability assignments of all the subsets
intersecting H. The expression of the plausibility function is as follows:

pl(H) = ∑
S/S∩H 6=∅

m(S) (2)

• Dempster’s rule of combination:

Dempster’s rule of combination is used to combine the BPA functions of multiple
evidences. Although this rule is controversial at present, the authors of [31] have showed
that it behaves perfectly when evidences do not conflict reciprocally. Only if we integrate
conflicting evidences do we need to improve it. In this paper, there is no serious and
complete conflict among the outputs from vibration signal, temperature signal, and stator
current signal as evidences in this study. Therefore, Dempster’s rule is still used here.
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Suppose there are n independent evidences (sensors or expert opinions), H1, H2, · · · , Hn
(are subsets of Ω), the BPA of them are m1, m2, · · · , mn. Then, Dempster’s rule for the BPA
functions on Ω is as follows:

m = m1 ⊕m2 ⊕ · · · ⊕mn (3)

Specifically, it can be expressed as follows:

m(H) =
∑H1∩···∩Hn m1(H1)m2(H2) · · ·mn(Hn)

1− K
, H 6= ∅ (4)

where the expression of K is as follows:

K = ∑
H1∩···∩Hn=∅

m1(H1)m2(H2) · · ·mn(Hn) (5)

where K is the degree of conflict between evidences. When K = 1, the evidences are
completely conflicted and cannot be synthesized by this formula; when K tends to 1, the
evidences are highly conflicted, and synthesizing by this formula may lead to results
contrary to fact [32].

• Decision rules:

The decision rule is to draw a diagnosis based on the uncertain interval [bel(H), pl(H)]
of the evidence. In the interval of [0, 1], the uncertainty of a proposition is shown in Figure 1.
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In Figure 1, [0, bel(H)] belongs to the support interval, [0, pl(H)] is the accept interval,
[pl(H), 1] is the rejection interval, and [bel(H), pl(H)] is the uncertain interval.

When making a decision, choose a value in the uncertain interval as the final trustwor-
thiness of the proposition. If this value has the highest trustworthiness among the possible
hypothesis, this assumption is the final decision result.

2.2. Posterior Probability Least Squares Support Vector Machine

In the study, the fault samples collected are limited, while support vector machine
(SVM) and LSSVM can obtain high diagnosis accuracy based on small sample data. More-
over, the speed of LSSVM is faster than that of SVM, so LSSVM is selected to be the initial
classifier to judge the state. As the input parameters of the D–S evidence fusion are basic
probability assignments in all classification spaces, the hard output (whether or not) of the
traditional classifier has to be converted to a soft one (probability) [33]; that is, the output
of the classifier must be changed to the posterior probability output. For the two-class
problem, the posterior probability can be calculated using the sigmoid function to map the
output f (x) (+1,−1) of the LSSVM to the [0, 1] interval. Assuming that the probability is
consistent with the sigmoid distribution, the posterior probability can be calculated [34]:

p(y = 1/ f ) =
1

1 + exp(A f + B)
(6)
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p(y = −1/ f ) = 1− p(y = 1/ f ) (7)

where f is the classification result of the standard LSSVM, p(y = 1/ f ) is the proba-
bility when the classification is correct under the condition that the output value is
f , p(y = −1/ f ) is the probability when the classification is wrong under the condition that
the output value is f , and A and B are parameters. So, the key to calculating the posterior
probability is to obtain parameters A and B. The posterior probability least squares support
vector machine model is usually established by first establishing a standard LSSVM model,
and then obtaining A and B on the training set ( fi, ti), where ti is the target probability
output of the standard LSSVM:

ti =

{
N++1
N++2 , fi = +1

1
N−+2 , fi = −1

(8)

where N+ is the number of positive samples; N− is the number of negative samples; and the
problem of obtaining parameters A and B is to solve the minimum likelihood optimization
problem of the following, i.e.,

min

{
−

n

∑
i=1

[ti log(pi) + (1− ti)log(1− pi)]

}
(9)

where
pi =

1
1 + exp(A fi + B)

(10)

The Hessian matrix for solving (9) is as follows:

H(z) =

 ∑
i

fi
2 pi(1− pi) ∑

i
fi pi(1− pi)

∑
i

fi pi(1− pi) ∑
i

pi(1− pi)

 (11)

In order to get the minimum value of (9), the Hessian matrix must be positively
determined. So, A and B are finally obtained by solving all the eigenvalues of the matrix
that are greater than zero. The posterior probability can be obtained.

It is proved that the posterior probability least squares support vector machine with
sigmoid function works well in practical applications [35], but this method can only be
used for the two-class problem. The main methods for extending LSSVM from two-class to
multi-class are the “one-versus-one” and “one-versus-all” methods. The Platt algorithm
calculates the probability formula for each classifier as follows, where pm is the probability
that sample x belongs to the i-th class [35]:

pm = (y = m/x) =
1

1 + exp(Am f (x) + Bm)
(12)

2.3. The Improved Artificial Bee Colony

There are three kinds of kernel functions commonly used in LSSVM: linear ker-
nel function, polynomial kernel function, and radial basis function (RBF) (K(xi, xi) =
exp
(
− ‖ xi − xi ‖2 /σ2), where σ is the kernel width). Many studies and experiments [36]

show that, compared with other kernel functions, RBF can map the original space into
an infinite dimensional space and find the hyperplane better. It is a better choice as the
kernel function. Therefore, it is necessary to select the regularization parameter γ (neces-
sary for LSSVM, determining the trade-off between the training error minimization and
smoothness) and the kernel squared bandwidth σ2.

Choosing a better parameter value can greatly improve the performance of the LSSVM
classifier and the accuracy of diagnosis. At present, the commonly used methods include
trial and error, cross validation, grid search, and intelligent optimization algorithm [37].



Entropy 2021, 23, 243 7 of 19

Among them, the trial and error method not only consumes time and energy, but also the
choice of parameters is greatly affected by subjective factors; the cross validation method
divides the data set into training, validation, and testing, and different proportions will lead
to different optimal models and optimal parameters; and the grid search method optimizes
the model according to the set step size in the upper and lower limits of parameters,
and then determines the optimal parameters, so the search speed is too slow and the
precision is not high. Therefore, the advantages of the intelligent optimization algorithm
are highlighted. It realizes the optimal distribution of food by simulating the behavior of
animals in the population (interact information and cooperation among individuals). A
swarm intelligence optimization algorithm is easy to implement and has high efficiency, so
it is applied to the parameter optimization process of LSSVM.

Swarm intelligence optimization algorithms include genetic algorithm, particle swarm
optimization, artificial fish swarm algorithm, artificial bee colony algorithm, and so on.
Among them, artificial bee colony algorithm (ABC) is an optimization algorithm proposed
in recent years, which not only has good optimization ability, but also controls less pa-
rameters in the process. Furthermore, it is simple, flexible, and easier to implement. The
research [38] shows that the optimization performance of ABC is better than that of ge-
netic algorithm and particle swarm algorithm, and the classification diagnosis accuracy of
LSSVM optimized by ABC is higher than that of LSSVM optimized by genetic algorithm
and particle swarm algorithm.

However, ABC has some shortcomings, such as slow convergence speed in the later
stage of operation and the fact that it is easy to fall into local optimum. Therefore, in
this paper, on the one hand, chaotic initialization is introduced in the artificial bee colony
algorithm, which is used to initialize the population position to improve the diversity of
the population and the ergodicity of the population search process. On the other hand, in
the collecting bees stage of the artificial bee colony algorithm, the bees are divided into
two parts: one part collects the optimal information of the region according to the original
algorithm, and the other does Lévy flight around the global optimal solution to improve
their global search capabilities. At the same time, in the observing bees stage, a search
strategy based on the current local optimal solution (called pbest) is adopted to improve
the local search ability of the algorithm.

(1) The logistic chaotic map is proposed to initialize the population. The equation for
the logistic chaotic map is as follows:

yt+1 = µyt(1− yt) t = 0, 1, · · · , l (13)

In the formula, yt ∈ (0, 1), t is the number of iterations of the chaotic sequence, µ is
the control parameter of the chaotic sequence, and the value range is [3.75, 4] [39].

(2) Lévy flight was introduced in the evolution strategy to improve the performance
of the algorithm and achieve good results [39]. The calculation method is based on

L(α) =

Γ(1 + α)sin
(

πα
2
)

Γ
(

1+α
2

)
α2(

α−1
2 )

1/α

(14)

where α is the characteristic index, which usually satisfies 0 < α < 2. Γ(·) is the Gamma
function defined as

Γ(z) =
∫ ∞

0
tz−1e−tdt.

Its update equation is as follows:

vij = xij + α
(

xij − xbest
)

L(α) (15)

where α is the step length, which usually meets the standard normal distribution, and L(·)
is the random search path for Lévy flight.
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(3) In the observing bees stage, for any current solution in each generation, the top p%
solutions are randomly selected among all current solutions, and the best one (called pbest)
can be used to balance global search capabilities and local development capabilities. The
neighborhood search formula is as follows:

vij = xij + ϕij

(
xij − xkj

)
+∅ij(xbest

randp,j − xij) (16)

where k ∈ {1, 2, · · · , SN}, SN is the number of solutions for the bee colony, j ∈ {1, 2, · · ·D},
D is the dimension of the optimization problem, k 6= i, ϕij ∈ [−1, 1], and ∅ij ∈ [0, 1.5].

3. Specific Steps for Misalignment Diagnosis

D–S evidence theory is used to carry out the fault diagnosis of wind turbines. The
specific steps are as follows.

(1) Identify the frame of discernment of the fault diagnosis system
The frame of discernment is the common faults of the wind turbines misalignment in

the study. At the same time, the normal working state of the unit is added. So, the frame of
discernment is expressed as follows: {normal, parallel misalignment, angular misalignment
and integrated misalignment}.

(2) Determination of evidence
The posterior probability least squares support vector machines are trained by the

vibration signal, the temperature signal, and the stator current signal feature vectors
separately. The hard outputs of the traditional LSSVM are mapped to the [0, 1] interval
using the sigmoid function. The soft outputs of the transformation are used as evidences
for D–S evidence theory.

(3) Determination of basic probability assignment function, belief function, and plau-
sibility function

The three least squares support vector machines give the probability vectors of all
the classifications on the entire identification framework respectively, and the probabil-
ity vectors to be directly used as the basic probability assignments, belief function, and
plausibility function can be obtained by calculation.

(4) Evidence synthesis and diagnosis
According to Dempster’s law, the probability vectors directly participate in the evi-

dence fusion process. After the final probability vector is given, the final diagnosis result
based on the probability vector after fusion can be obtained.

Figure 2 summarizes process of D–S evidence-based misalignment diagnosis.
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4. The Simulation Case Studies of Misalignment Fault Diagnosis

The simulation wind turbine system is established by ADAMS 2013, MATLAB R2014a,
and Ansys 17.0. The three-dimensional (3D) model of the 1.5 MW wind turbine is estab-
lished using SolidWorks, and then it is imported into ADAMS 2013, where the Marker
point is moved according to the type and degree of misalignment; that is, parallel misalign-
ment is simulated by making the center of mass deviate from the center of rotation for a
certain distance; angle misalignment is simulated by rotating the marker a certain angle
around the y-axis, and placing the rotation axis of the coupling relative to the ground on
the z-axis of the Marker point; and integrated misalignment is simulated by adding the
parallel misalignment and angle misalignment in the local coordinate system (maker) of
the left half coupling at the same time. The correctness of the models has been verified in
the literature [40]. The vibration signals were extracted under the input speeds of 81.3◦/s,
using step function as the input of ADAMS, the simulation time is 1.5 s, and simulation
steps are 6000 steps. The wind turbine models and its control system are established by
SIMULINK/MATLAB, where the stator current was sampled at the same speed at which
the vibration signal was sampled, and the sample frequency is 200 kHz. The correctness of
the models has been verified in the literature [41]. After that, the high-speed gear shaft and
the main shaft of the generator are introduced into HyperMesh to divide the grid. Then,
the model is imported into Ansys Workbench to get the corresponding temperature signals
(details in the literature [42]). In this paper, 100 samples are taken for each of the four types
of diagnostic states (normal, parallel misalignment, angular misalignment, and integrated
misalignment), of which 60 are for training and 40 are for testing. So, there are 240 (60 × 4)
samples in the training set and there are 160 (40 × 4) samples in the testing set.
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4.1. Data Processing

After the vibration signal, temperature signal, and stator current signal under four
working conditions are collected, in order to make better use of them and get good diagnosis
results, the feature indexes in the time, frequency, and time–frequency domain are extracted.
Table 2 shows a 21-dimension mixed feature library of the vibration signal.

Table 2. Mixed feature library of vibration signals. IEMD, image extended empirical mode decompo-
sition.

Feature Library Feature Index

Mixed-domain
feature
library

Time domain

Root mean square, square root amplitude, variance,
standard deviation, kurtosis, waveform index, peak

index, pulse index, margin index, kurtosis
index

Frequency domain Center of gravity frequency, mean square frequency,
frequency variance

Time–frequency
domain

The first eight energy entropy of the IMF (intrinsic
mode function)

component of IEMD decomposition

Suppose signal x (x0, x1, x2, · · · , xN−1) is a discrete time series with a finite length,
the calculation formulas of time domain characteristic indexes are shown in Table 3, where
x is the mean value of the signal, x′ is the average amplitude, and xp is the peak value of
the signal.

Table 3. Time domain characteristic index.

Time Domain Index Calculation Formula

Dimensional indicators

Root mean square

Square root amplitude

Variance

Standard deviation

Kurtosis

xrms = ( 1
N

N−1
∑

i=0
xi

2)
1/2

xr = ( 1
N

N−1
∑

i=0
|xi|

1
2 )

2

δ = 1
N

N−1
∑

i=0
(xi − x)2

xstd = ( 1
N

N
∑

i=1
(xi − x)2)

1/2

β = 1
N

N
∑

i=1
xi

4

Dimensionless index

Waveform index

Peak index

Pulse index

Margin index

Kurtosis index

K = xrms/x′ (x′ = 1
N

N−1
∑

i=0
|xi|)

C = xp/xrms

I = xp/x′

L = xp/xr

Kr =
1
N ∑N

i=1 xi
4

xrms4

In signal analysis, power spectrum analysis is usually used to extract the frequency
domain index. Center of gravity frequency, mean square frequency, root mean square
frequency, and frequency variance are commonly used. The sampling frequency is set as
fs, and the calculation formula of each index is shown in Table 4, where S(ω) is the power

spectrum of discrete time series, S(ω) = X(ω)·X(ω), X(ω) =
N−1
∑

i=0
x(i)e−jπω, ω is the

angular frequency.



Entropy 2021, 23, 243 11 of 19

Table 4. Frequency domain characteristic index.

Frequency Domain Index Calculation Formula

Center of gravity frequency

Mean square frequency

Root mean square frequency

Frequency variance

FC = 1
2π fs
·
∫ π

0 ωS(ω)dω∫ π

0 S(ω)dω

MSF = 1
4π2 fs2 ·

∫ π

0 ω2S(ω)dω∫ π

0 S(ω)dω

RMSF = ( 1
4π2 fs2 ·

∫ π

0 ω2S(ω)dω∫ π

0 S(ω)dω
)

1
2

VF = 1
4π2 fs2 ·

∫ π

0 (ω−2π fs FC)S(ω)dω∫ π

0 S(ω)dω

Time–frequency analysis is a fault diagnosis method that combines the law and reason
of frequency changing with time. In this paper, image extended empirical mode decom-
position (IEMD) is used to process the vibration signal, and dual tree complex wavelet
transform (DTCWT) is used to process the stator current signal (see the literature [43]
for details).

The gearbox tooth temperature T1 and the generator rotor shaft temperature T2 are
selected as the characteristic values of the temperature signal. Construct a two-dimensional
vector of the temperature signal: X = [T1, T2].

Table 5 is a mixed feature library with a total of 29 dimensions in the time domain,
frequency domain, and time–frequency domain of the stator current signal (see the litera-
ture [41] for details).

Table 5. Mixed feature library of stator current signals.

Feature Library Feature Index

Mixed-domain
feature
library

Time domain

Root mean square, square root amplitude,
variance, standard deviation, kurtosis,

waveform index, peak index, pulse index,
margin index, kurtosis

index

Frequency domain
Center of gravity frequency, mean square

frequency, root mean square frequency,
frequency variance

Time–frequency domain
Sample entropy 1–5, energy entropy H1,

H2, H3, H4, H5, spectral kurtosis a1, a2, a3,
a4, a5

In order to eliminate the influence of different input dataset dimensions and large
numerical differences, the original dataset is normalized, i.e.,

y =
ymax − ymin
xmax − xmin

∗ (x− xmin) + ymin (17)

where x is the value to be normalized, ymin is the lower bound of the normalized interval,
and ymax is the upper bound of the normalized interval. In this paper, ymin = 0, ymax = 1,
and the vector is normalized by column.

Because of the high dimensionality of the constructed vectors of the vibration signal
and the stator current signal, not only does the amount of calculation increase, but also
some difficulties are brought to fault diagnosis [44]. In order to make better use of vari-
ous information and obtain good diagnostic results, the feature vectors are subjected to
dimensionality reduction using t-SNE.

t-SNE based on conditional probability retains the similarity between high-dimensional
and low dimensional space data and adopts symmetric objective function, and t distribu-



Entropy 2021, 23, 243 12 of 19

tion in low-dimensional space replaces Gaussian distribution, which solves the problem of
crowding and clear visualization in low-dimensional space [45]. Its implementation steps
are as follows:

(1) Define a high-dimensional data set: x = {x1, x2, · · · , xn}.
(2) Compute the complexity parameter of the value equation c:

c = ∑
i

∑
j

pijlog
pij

qij
(18)

perp(pi) = 2H(pi) (19)

H(pi) = −∑
j

pj/ilog
pj/i
2 (20)

where pi is the conditional probability of data points (other than xi) with respect to xi, pj/i
is the conditional probability of high-dimensional data, pij is the joint probability density in
the high-dimensional space, and qij is the joint probability density in the low-dimensional
mapping space.

(3) Define the optimization parameters: the number of iterations T, the learning rate
η, and the momentum factor at the tth (t ≤ T) iteration α(t) (0 < α(t) < 1). The value
equation c is learned by the gradient descent method, and the low-dimensional mapping
of the high-dimensional data is finally obtained:

δc
δyi

= 4 ∑
j

(
pij − qij

)(
yi − yj

)
(1+ ‖ yi − yj ‖2)

−1
(21)

where yi and yj are the mapping of the high-dimensional data xi and xj in the low-
dimensional space.

In order to speed up the optimization process and prevent trapping into local minima,
a relatively large momentum condition is imposed on the descent process. The current
gradient value is summed to the previous gradient value for each iteration and then decays
exponentially to determine the coordinates of the low-dimensional data. The momentum
formula is as follows:

y(t) = y(t−1) + η
δc
δy

+ α(t)
(

y(t−1) − y(t−2)
)

(22)

where y is the data in the low-dimensional space.

4.2. The Fault Diagnosis Results

In this paper, “one-versus-all” is used to extend LSSVM from two classifications to
multiple classifications. That is, each time, one fault is selected as one type, and the rest of
the states are selected as another type. In order to produce the posterior probabilities of the
four classifications in the vibration feature space, four two-class LSSVM are constructed,
and each LSSVM calculates a set of A and B, and then the corresponding posterior proba-
bility is calculated according to (5) and (6). In the same way, the probability vectors of the
temperature and stator current signal classifiers for the four states can be obtained as the
BPA of D–S evidence fusion.

The five-dimensional feature vectors of the vibration signal after t-SNE dimensionality
reduction are used as the inputs, and the four working conditions of the transmission
system are used as outputs to train the LSSVM, which is optimized by the improved
artificial bee colony algorithm. The parameters of the four two-classification LSSVM in the
vibration feature space are shown in Table 6. Four samples are selected, such as samples 5,
44, 82, and 130, and the corresponding BPA1 calculated is shown in Table 7.
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Table 6. Parameters in four vibration least square support vector machine (LSSVM).

LSSVM Γ σ2 A B

(normal, the rest) 84.2784 31.1601 −10.8211 −4.2378
(parallel misalignment, the rest) 85.8947 30 −7.4866 −1.9740
(angular misalignment, the rest) 36.0326 39.9616 −6.1128 −1.5637

(integrated misalignment, the rest) 99.4093 96.6015 −6.9786 −2.4798

Table 7. Basic probability assignment 1 (BPA1) of vibration LSSVM.

Sample
Number Normal Parallel

Misalignment
Angular

Misalignment
Integrated

Misalignment

5 0.8433 0.0314 0.0538 0.0715
44 0.0080 0.9246 0.0295 0.0379
82 0.0025 0.0070 0.8873 0.1032

130 0.0208 0.0147 0.0495 0.9150

The two-dimensional feature vectors of the temperature signal are used as the inputs,
and the four operating states of the transmission system are used as the outputs to train the
optimized LSSVM. The parameters of the four binary LSSVM in the temperature feature
space are shown in Table 8. The BPA2 calculated from the same four samples is shown
in Table 9.

Table 8. Parameters in four temperature LSSVM.

LSSVM Γ σ2 A B

(normal, the rest) 97.4952 89.7017 −3.0178 −0.4262
(parallel misalignment, the rest) 98.3829 30 −2.8893 0.1963
(angular misalignment, the rest) 46.3907 88.9951 −3.9974 −0.3622

(integrated misalignment, the rest) 93.6931 96.3611 −2.4749 0.3805

Table 9. BPA2 of temperature LSSVM.

Sample
Number Normal Parallel

Misalignment
Angular

Misalignment
Integrated

Misalignment

5 0.7418 0.0387 0.0228 0.1967
44 0.1314 0.7670 0.0243 0.0773
82 0.3644 0.0357 0.5549 0.0450

130 0.4365 0.0394 0.0220 0.5021

The four-dimensional vectors after the dimensionality reduction of the stator current
signal are used as inputs, and the four operating states of the transmission system are as
outputs to train the optimized LSSVM. The parameters of the four two-class LSSVM in the
stator current feature space are shown in Table 10, and the BPA3 calculated by the same
four samples is shown in Table 11.

Table 10. Parameters in four current LSSVM.

LSSVM Γ σ2 A B

(normal, the rest) 35.2345 53.0811 −4.858 −0.6011
(parallel misalignment, the rest) 87.5286 30 −3.2022 −0.1165
(angular misalignment, the rest) 100 30 −3.2755 −0.2514

(integrated misalignment, the rest) 77.1503 33.2639 −3.2803 −0.2146



Entropy 2021, 23, 243 14 of 19

Table 11. BPA3 of current LSSVM.

Sample
Number Normal Parallel

Misalignment
Angular

Misalignment
Integrated

Misalignment

5 0.8635 0.0440 0.0468 0.0457
44 0.0164 0.6193 0.3159 0.0484
82 0.0170 0.1236 0.8093 0.0501

130 0.0127 0.1093 0.0521 0.8259

Then, the probability assignments are calculated after the fusion of the three BPAs.
The category with the highest degree of belief is selected as belonging to the class of the
fusion model. Table 12 shows the basic and the fusion probability of the three LSSVM
outputs for the selected test samples. Table 13 shows the fusion and classification results
of the four test samples. Figure 3 shows the test samples’ diagnosis results, in which “0”
indicates normal operation, “1” indicates parallel misalignment, “2” indicates angular
misalignment, and “3” indicates integrated misalignment.

Table 12. Probability assignment of three LSSVMs and fusion.

BPA 1 BPA 2 BPA3 D–S Evidence Fusion

[0.8433, 0.0314, 0.0538, 0.0715] [0.7418, 0.0387, 0.0228, 0.1967] [0.8635, 0.0440, 0.0468, 0.0457] [0.9986, 0.0001, 0.0001, 0.0012]
[0.0080, 0.9246, 0.0295, 0.0379] [0.1314, 0.7670, 0.0243, 0.0773] [0.0164, 0.6193, 0.3159, 0.0484] [0.0001, 0.9991, 0.0005, 0.0003]
[0.0025, 0.0070, 0.8873, 0.1032] [0.3644, 0.0357, 0.5549, 0.0450] [0.0170, 0.1236, 0.8093, 0.0501] [0.0001, 0.0001, 0.9993, 0.0005]
[0.0208, 0.0147, 0.0495, 0.9150] [0.4365, 0.0394, 0.0220, 0.5021] [0.0127, 0.1093, 0.0521, 0.8259] [0.0003, 0.0002, 0.0001, 0.9994]

Table 13. Fusion and classification results of four test samples.

D–S Evidence Fusion Category Is the Classification Correct?

[0.9986, 0.0001, 0.0001, 0.0012] Normal Yes
[0.0001, 0.9991, 0.0005, 0.0003] Parallel misalignment Yes
[0.0001, 0.0001, 0.9993, 0.0005] Angular misalignment Yes
[0.0003, 0.0002, 0.0001, 0.9994] Integrated misalignment Yes
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In order to better evaluate the performance of the fault diagnosis method, three
indexes are adopted: the training set classification accuracy, the testing set classification
accuracy, and the fault false alarm rate. The fault false alarm rate means that the fault
does not actually occur, but the fault detection alarm is given by the detection system. The
false alarm rate equals the number of false alarm samples divided by the total number
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of actual fault-free samples. Table 14 compares the results of the sample sets diagnosed
by the indexes of a single signal (vibration, temperature, or current signal) with the D–S
evidence fusion.

Table 14. Comparison of diagnostic results.

Signal Selection Training Set Classification
Accuracy

Testing Set Classification
Accuracy False Alarm Rate

Vibration signal 100% (240/240) 85.625% (137/160) 5% (2/40)
Temperature signal 90.8333% (218/240) 81.25% (130/160) 35% (14/40)

Current signal 99.5833% (239/240) 84.375% (135/160) 10% (4/40)
D–S evidence fusion 100% (240/240) 98.125% (157/160) 0% (0/40)

From Table 14, it can be seen that the accuracy of D–S fusion is higher than that
of any single signal, and the failure false alarm rate is equal to zero, lower than oth-
ers, which proves the advantage of information fusion in the diagnosis of wind turbine
misalignment fault.

5. Experimental Verification of Platform

In this paper, the 1.5 kW misalignment experimental platform is used for experimental
verification. The platform is shown in Figure 4a. It includes a generator, coupling, gearbox,
driving motor, and so on. The speed of the driving motor is changed by a planetary gear
reducer with a transmission ratio of 1:50 to simulate the wind blowing blade speed, then it
is accelerated by a planetary gear with a transmission ratio of 40:1 and a spur gear with
a transmission ratio of 1.5:1 to drive the generator. The generator can be adjusted by the
support to create parallel or angular misalignment.
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The vibration signal of the gearbox is obtained using the DFT5100 dynamic data
collector from the acceleration sensor (ICP type) on the experimental platform (Figure 4b).
The current signal is transmitted to the USB signal acquisition and recording platform
through the signal acquisition card USB 4AD Plus (Figure 4c). In this paper, the rotation
speed of the motor is set to 600 rpm; the sampling time is 10 s; and the sampling frequency of
vibration and current is 1 kHz and 2 kHz, respectively. In the experiments, the temperature
signal is easily affected by the operation time of the unit and the ambient temperature,
and it cannot reflect the actual operating temperature of the wind turbine. Therefore,
when fusing different signals by D–S evidence theory, we set the temperature signal to
0, regardless of its influence. Four groups for each working condition, with a total of 16
groups, are sampled on the platform. Some characteristic indexes of vibration and current
signal are shown in Tables 15 and 16. The actual classification and diagnosis results of
fusion signals and individual signals are shown in Figure 5. Table 17 is the calculation of
two examples.

Table 15. Part of the characteristic index of the vibration signal.

Fault Type Root Mean
Square Value

Center of Gravity
Frequency

IMF1 Energy
Entropy

IMF2 Energy
Entropy

Normal

0.0286 −118.3859 0.3671 0.0991
0.0270 −184.0340 0.3461 0.1265
0.0288 −308.9050 0.3678 0.1624
0.0626 −993.2476 0.3524 0.3675

Parallel
misalignment

0.0248 −272.4819 0.3678 0.1229
0.0258 −196.5053 0.3677 0.1201
0.0253 −286.5526 0.3668 0.1769
0.0607 −1082.4788 0.3678 0.3455

Angular
misalignment

0.0266 −166.9377 0.3488 0.1005
0.0296 −145.9158 0.3658 0.1083
0.0280 −232.8465 0.3620 0.1347
0.0569 −1052.415 0.3583 0.3677

Integrated
misalignment

0.0284 −261.2838 0.3544 0.1615
0.0342 −334.0774 0.3621 0.2021
0.0311 −388.9565 0.3675 0.2138
0.0670 −1138.6520 0.3603 0.3670

Table 16. Partial characteristic index of current signal.

Fault Type Root Mean
Square Value

Center of Gravity
Frequency

Energy
Entropy1

Sample
Entropy1

Normal
2.4944 −0.0571 0.0001 0.6859
2.4952 −0.0741 0.0003 0.8285
3.5641 −0.1023 0.0008 0.9624

Parallel
misalignment

2.4948 −0.1238 0.0001 0.6099
2.5293 −0.2608 0.0004 0.7046
2.7607 −0.4788 0.0015 0.9455

Angular
misalignment

2.4990 −0.1062 0.0002 1.0642
2.6908 −0.2794 0.0008 1.1659
3.0569 −0.4415 0.0016 1.3677

Integrated
misalignment

2.5051 −0.0524 0.0003 1.2666
2.8986 −0.3861 0.0009 1.6857
3.2670 −0.6520 0.0023 1.7670
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Table 17. Basic probability assignment of two kinds signals and probability after fusion.

Probability
Value Normal Parallel

Misalignment
Angular

Misalignment
Integrated

Misalignment

Vibration signal 0.5161
0.1770

0.1663
0.1927

0.1510
0.4194

0.1666
0.2109

Current signal 0.8209
0.7705

0.0737
0.0566

0.0181
0.1063

0.0873
0.0666

Fusion signal 0.9348 0.0281 0.0050 0.0321
0.6623 0.0530 0.2164 0.0683

It can be seen from Figure 5 that the classification accuracy of the testing set is 75%,
while that of the single vibration signal is 62.5% and that of the single current signal is
62.5%, which indicates that the accuracy of the diagnosis is improved by using the D–S
decision fusion method with multi-source signals as the diagnosis information. In addition,
the reason the classification accuracy of the experimental results is much lower than that
of the simulation results is that there is no temperature signal in the D–S evidence theory
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fusion. It can be seen from Table 17 that the first sample is correctly identified using either
the single signal or fusion signal, while the second sample is mistakenly diagnosed as angle
misalignment using only the vibration signal, but is correctly identified by D–S fusion.

6. Conclusions

This paper proposes an integrated fault diagnosis method for wind turbine trans-
mission system misalignment based on information decision fusion. The method uses
multiple sources of signal including vibration signal, temperature signal, and stator cur-
rent signal as the original source, and extracts different features from their time domain,
frequency domain, and time–frequency domain. t-SNE is used to eliminate the correlation
of characteristic values of the vibration signal and the stator current signal. Three posterior
probability least squares support vector machines optimized using improved artificial bee
colony algorithm are constructed respectively. The output probabilities of least squares sup-
port vector machines are used as the basic probability distribution of evidence fusion, and
the fault diagnosis is completed by D–S synthesis and decision rules. Finally, the simulation
experiments and platform verification show that the D–S evidence fusion model has higher
diagnostic accuracy than the non-fusion model for the wind turbine misalignment fault.
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