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Introduction

Most patients develop a single cancer in their lifetime.
However, in individuals with cancer-predisposition
syndromes,1-4 both metachronous and synchronous
tumors can be observed. This poses a therapeutic
challenge because of the lack of agents simultaneously
efficacious for both tumors, and the intolerable toxicity
of using multiple regimens at once.5 Therefore, syn-
chronous cancers have poor outcome and are fre-
quently lethal.

Biallelic germline variants in the DNA mismatch-repair
(MMR) genes (MLH1/MSH2/MSH6/PMS2) leading to
inability to repair mutations during DNA replication are
the highlight of the cancer-predisposing constitutional
MMR-deficiency syndrome (CMMRD). Individuals with
CMMRD develop early, aggressive, hypermutant can-
cers, with . 40 different tumor types described.6-9 As
high tumor mutation burden (TMB) can predict re-
sponse to immunotherapy,10 CMMRD cancers are at-
tractive candidates for immune checkpoint inhibition
(ICI),11 regardless of tissue of origin or cancer type.
Here, we report that in CMMRD, the prevalence and
impact of metachronous/synchronous cancers are ex-
tremely high. Since all synchronous cancers are
hypermutant, immunotherapy can result in objective
responses and improved survival.

Methods

Clinical data (cancer incidence and time) were
collected from 106 patients with CMMRD registered
in the International Replication Repair Deficiency
Consortium6-9,12 between 2008 and 2019. Meta-
chronous (arising sequentially and after completion
of treatment for the first primary tumor) and syn-
chronous tumors (distinct cancers that either coexist
at the time of the original diagnosis or develop during
the treatment of the original cancer and/or
, 6 months from the primary diagnosis) were
identified, and whole-exome sequencing (WES) was
preformed from their paired tumor and germline
samples to determine TMB, COSMIC mutational
signatures,13 neoantigen burden, and micro-
satellite (MS)-indels14 using established tools (Data

Supplement). Immunohistochemistry for pro-
grammed death ligand-1 and CD8 were performed
for patients receiving ICI.

Ethics. The study was reviewed and approved by the
SickKids REB (Number: 1000048813). Written and
informed consent and/or assent were obtained from
each patient to report their clinical course and publish
the images.

Results

All patients had developed at least one malignancy by
their third decade. Demographic details and cancer
types are elaborated in Figures 1A-1D. Thirty-three
patients (31%) had died rapidly of their initial cancer
(median survival: 12 months), whereas 21 (20%) were
still alive following treatment of their first cancer (median
survival: 26 months; Figs 1A and 1B). As the median
time interval for a metachronous second cancer de-
velopment was 39 months, the latter patients remain at
risk of developing a second cancer. Furthermore, over
the time period of 11 years, two independent cancers
had already been diagnosed in half of the patients
(n = 52; 49%), with synchronous tumors being ob-
served in one quarter (n = 26; 24.5%; Figs 1C and 1D).

Regardless of the tissue of origin, all cancers harbored
high TMB (median: 155 mutations/Mb; range:
5-651.68), significantly higher than primary cancers
arising in children and young adults outside the context
of CMMRD (Fig 1E).9 Furthermore, their genomic MS-
indel burden was significantly higher than that in MMR-
proficient cancers (Fig 1G). Half exhibited ultra-
hypermutation (. 100 mutations/Mb; Fig 1F), which
results from secondary somatic polymerase-proofreading
deficiency because of mutations in POLE or POLD19,
and is considered predictive for ICI response.11 Impor-
tantly, available WES data for 38 paired synchronous
cancers demonstrated TMB uniformly . 5 mutations/
Mb (range: 5.2-651.68; Fig 1F), which is the threshold
for the ongoing immunotherapy trial for children with
hypermutant cancers (NCT02992964). We therefore
proceeded to treat two patients with synchronous, pro-
gressive, and metastatic malignancies using ICI.
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Patient 1. The first patient was diagnosed with a fronto-
temporal glioblastoma (GBM) and treated with subtotal re-
section and radiotherapy (59.4 Gy in 33 fractions) with
concomitant temozolomide. Evaluation of a pathologic
fracture at the distal ulna diagnosed 6 months later (Fig 2B)
revealed this to be related to a metastatic lesion from an
adenocarcinoma in the distal rectum, the latter being di-
agnosed in the subsequent weeks. The mass in the rectum
was not resected as the family opted for palliative care. WES
of both tumors revealed ultrahypermutation (Fig 2B),
prompting treatment using pembrolizumab (2 mg/kg, once
every 3 weeks). To control the worsening pain, radiotherapy
(20 Gy in five fractions) was administered to the distal ulna.
Dramatic responses were noted, with complete disappear-
ance of the metastatic ulnar lesion with extensive bony

remodeling. Colonoscopy performed a year later confirmed
resolution of the rectalmass (Fig 2B). The local site remained
stable for . 20 months while in the interim, a new thoracic
spinal (T8/9) lesion was treated with concomitant radio-
therapy (25 Gy, 10 fractions; boost: 5 Gy, two fractions)
alongside ICI, with 67% reduction in size on imaging. Un-
fortunately, pembrolizumab was recurrently interrupted over
the next 6 months because of autoimmune pneumonitis and
pancreatitis. Disseminated progression of GBM detected
24 months from diagnosis, and the family opted for palliative
care. Overall, the patient had prolonged survival of over 30
months from his diagnosis of GBM, and 24 months from the
diagnosis of a metastatic adenocarcinoma, both the primary
and metastatic sites for which showed no evidence of dis-
ease for 21 months from treatment initiation.
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FIG 1. Prevalence and mutational burden of synchronous and metachronous cancers in patients with CMMRD. (A-D) Tumor burden in 106 patients with
CMMRD. (A) Patients with a single lethal tumor (n = 33; 31%; X = deceased) and (B) patients with a single tumor to date (n = 21; 20%). (C) Patients with
metachronous tumors (n = 26; 24.5%) and (D) synchronous tumors (n = 26; 24.5%). (E) TMB for individual CMMRD patients with synchronous and
metachronous tumors (n = 38 tumors from 17 patients). (F) TMB of all synchronous and metachronous MMR-deficient cancers compared with MMR-
proficient pediatric cancers. (G) MS-indel burden in exomes of all synchronous and metachronous MMR-deficient cancers compared with MMR-proficient
pediatric cancers (all genomic data were derived from WES of tumors). CMMRD, constitutional mismatch repair deficiency syndrome; DX1, first cancer
diagnosis; DX2, second cancer diagnosis; MMR, DNA mismatch repair; MMRD, mismatch repair deficiency; MS-indels, microsatellite indels; NA, not
available; TMB, tumor mutation burden; WES, whole-exome sequencing.
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Patient 2. The second patient, previously treated for neu-
roblastoma and colonic polyposis, presented with hematuria
and severe unilateral hydronephrosis, leading to a diagnosis
of an invasive ureteric papillary transitional cell carcinoma
(TCC), stage pT3N1M0 (Fig 2A). While on chemotherapy, a
frontal lobe anaplastic astrocytoma was diagnosed and
treated with subtotal resection and local radiotherapy
(59.4 Gy in 33 fractions) without any chemotherapy. Hepatic
metastatic recurrence of TCC was noted (Fig 2C). Following
confirmation of high TMB in both cancers, treatment with
nivolumab (3 mg/kg, once every 2 weeks) was initiated.
Reimaging after 12 weeks demonstrated a 40% reduction in
the liver lesion (Fig 2C), and a decrease in the nodular
enhancement in the intracranial surgical cavity (Fig 2C).

While the frontal lesion remained stable, a new temporal
lesion detected at 20 months was treated with surgical re-
section and addition of the CTLA-4 inhibitor, ipilimumab (Fig
2C). This combination had to be interrupted for autoimmune
transaminitis followed by multifocal intracranial progression.
Overall, the patient survived for 38months after the diagnosis
of the TCC and 35 months from malignant glioma diagnosis.

Discussion

This report demonstrates the efficacy of immunotherapy as
a rational approach for patients with CMMRD and syn-
chronous cancers. The excessive prevalence of both
metachronous and synchronous cancers in CMMRD has
not been previously reported in any human cancer
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FIG 2. Response to immune checkpoint blockade and outcome of CMMRD patients with synchronous cancers. Clinical and germline alterations in the two
patients. Timeline and tumor response for (A) patient 1 and (B) patient 2. Tumor genomic biomarkers and microenvironment findings are outlined. Arrows
denote tumor at diagnosis and response to immune checkpoint blockade at the specified time points (all genomic data were derived from WES of tumors).
Colored circles denote diagnoses for separate cancers and/or recurrences, with red suggesting central nervous system, and teal suggesting extracranial site
of the cancer. The dashed line represents toxicity-related interruptions in treatment. CMMRD, constitutional mismatch repair deficiency syndrome; CE,
contrast-enhanced; FLAIR, fluid-attenuated inversion recovery images; GBM, glioblastoma; ICI, immune checkpoint inhibition; MS-indels, microsatellite
indels; MVAC, methotrexate, vinblastine, doxorubicin, and cisplatin; PD-L1, programmed death ligand-1; TCC, transitional cell carcinoma; TMB, tumor
mutation burden; WES, whole-exome sequencing.
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syndrome. This is a major cause of the high mortality in
these children, who rarely reach adulthood. As more than
half of the survivors will experience other cancers, some
even during therapy for their first cancer, the introduction
of immunotherapy as the primary therapy may be ex-
tremely valuable for both limiting toxicity as well as cancer
control.

Genomic analysis of pediatric cancers is still not routinely
performed. In the context of synchronous tumors, therapies
targeting pan-cancer genetic drivers can offer an attractive
alternative to current tissue-specific chemoradiation ap-
proaches. However, specific mutations rarely fit synchro-
nous cancers, and these patients are usually excluded from
such clinical trials.15 The use of immune-based approach
may be more broadly effective in the context of faulty DNA-
damage repair leading to genomic instability and hyper-
mutation, such as in CMMRD.11

Traditional chemoradiation results in a median survival of 8-9
months in metastatic colorectal cancer,16 9-13 months in
metastatic TCC,17 and , 6 months in CMMRD gliomas.11

Treatment of cancers in CMMRD is inherently challenging,18

because of resistance to alkylating agents like temozolomide
and mercaptopurines6 used in the treatment of GBM, colon,
and urothelial cancers. However, as these cancers are in-
herently hypermutant7 and exhibit high MS-indels,14 ICI is
more commonly used for these individuals at relapse. Indeed,
in both of our patients, across diverse cancer types including
malignant gliomas, metastatic adenocarcinoma, and TCCs,
objective responses were noted in a tissue-agnostic manner,
resulting in significant survival benefit. 30months. Notably,
even within these hypermutant synchronous cancers, those
with relatively higher TMB demonstrated higher neoantigen
load, immune infiltration, and robust objective responses to
ICI (Fig 2).

As both patients eventually succumbed to their CNS tumors
while the extracranial cancers were well controlled, organ-
specific immune surveillance still needs to be addressed.
That the CNS is an ‘immune-privileged’ site was supported by
both gliomas exhibiting lower CD8+T-lymphocyte infiltration
and programmed death ligand-1 expression than the syn-
chronous ICI-responsive extracranial cancers (Figs 2B and
2C). Combinatorial immune-based therapies have shown
higher efficacy in several tumor types including GBM19,20 and
in patients with CMMRD.21 However, the tolerability of ICI can
be limited by immune toxicities and treatment interruptions,
allowing immune-escape, as was observed in both of our
patients, although overall, this is relatively uncommon in
children and in CMMRD. Finally, loss of immune surveillance
can develop over time because of the ongoing changes in the
mutational landscape of these genomically unstable
cancers.9 The waxing and waning of responses that we
observed in both patients likely reflect the loss of certain
neoantigens, and the subsequent sensitization/education
toward novel antigens.9 Importantly, when compared with
responses to traditional chemotherapy or targeted inhibitors,
where clonal evolution leads to permanent resistance to
treatment, this dynamic and adaptive response to ICI is
unique and needs to be better harnessed by physicians.
Despite the limitations of an observational registry study,
these intriguing results from our global consortium of a rare
yet increasingly recognized disease should pave the path for
future collaborative prospective trials for these patients.

In conclusion, this is the first report of an immune-based,
tissue-agnostic approach for the treatment of synchronous
hypermutant cancers, which can improve survival while
reducing morbidity and toxicity from less-effective con-
ventional therapies, particularly in the setting of cancer
predisposition syndromes such as CMMRD.
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