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Topologically protected modes in non-equilibrium
stochastic systems

Arvind Murugan'? & Suriyanarayanan Vaikuntanathan'3

Non-equilibrium driving of biophysical processes is believed to enable their robust functioning
despite the presence of thermal fluctuations and other sources of disorder. Such robust
functions include sensory adaptation, enhanced enzymatic specificity and maintenance of
coherent oscillations. Elucidating the relation between energy consumption and organization
remains an important and open question in non-equilibrium statistical mechanics. Here we
report that steady states of systems with non-equilibrium fluxes can support topologically
protected boundary modes that resemble similar modes in electronic and mechanical
systems. Akin to their electronic and mechanical counterparts, topological-protected
boundary steady states in non-equilibrium systems are robust and are largely insensitive to
local perturbations. We argue that our work provides a framework for how biophysical
systems can use non-equilibrium driving to achieve robust function.
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nderstanding the tradeoffs between energy consumption

and organization in far-from-equilibrium soft matter

systems remains a challenging problem in statistical
mechanics?. Mechanisms used by biological systems to
process information and achieve ordered states are far from
equilibrium and require energy dissipation®. Kinetic proofreading
mechanisms used by the cell to ensure high fidelity copying of
genetic material use futile energy consuming cycles to decrease
the error rates in DNA replication®. Non-equilibrium forces have
also been implicated in the functioning of biochemical networks
responsible for adaptation®, ultra-sensitivity®’ and timing of
events in cell cycle®.

While the behaviour and characteristics of equilibrium
systems—where no energy is dissipated—are well known, general
principles governing the steady state or fluctuations in it in
far-from-equilibrium conditions are just being discovered®. Here
we show that the steady states of non-equilibrium stochastic
systems can be localized and have a character similar to
topologically protected boundary modes in mechanical and
electronic  systems'®!3,  Similar to topological boundary
modes in electronic and mechanical systems, we find that
non-equilibrium systems that support topologically protected
steady states have properties that are robust and generally
insensitive to local perturbations. This surprising connection
between classical non-equilibrium stochastic systems and
topologically non-trivial mechanical and electronic systems
constitutes our main result. Our results provide a framework
for understanding how non-equilibrium forces can be tuned so
that the steady state density is preferentially driven to and
robustly localized in a desired region of phase space.

Results

Topological protection in Markov state networks. We derive
and illustrate our results using idealized non-equilibrium
Markov state models of kinetic proofreading networks'?,
sensory adaptation networks® and other biophysical processes.
Topologically non-trivial electronic systems and meta-materials
are composed of bulk regions formed by periodic replication of a
certain unit cell. These bulk regions terminate at an ‘interface’.
Non-equilibrium biochemical reactions can be modelled as a
Markov state process whose rate constants break detailed balance.
Borrowing set-up and terminology from topologically non-trivial
electronic systems, we will also imagine biochemical reaction
networks that are composed of bulk-like regions. In these regions,
mesoscopic chemical states represented in the Markov state
process and the links denoting transitions between them are
periodically replicated. Bulk-like regions terminate at interfaces
where translational symmetry is lost. We show that when a
biochemical network can be decomposed into two ordered bulks
that meet at a possibly disordered interface, the ordered bulks can
be each associated with a topologically invariant winding number.
If the winding numbers are mismatched, we are guaranteed that
the steady state distribution is localized at the interface between
the bulks, even in the presence of strong disorder in reaction
rates. In these biophysical examples, topologically protected
localized steady states allow the system to robustly perform their
desired information processing function!>.

To be precise, we derive our central results in the context of the
Markov state model in Fig. la. The Markov state model is
composed of two translationally invariant bulk-like regions with
an interface connecting them. The rates of transitions in the bulk
regions do not depend on the position along the horizontal axis
(Fig. 1). The rates in the interfacial region interpolate between the
two bulks. The spatial connectivity and structure of this Markov
state network resembles that of networks routinely used to study
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adaptation®, kinetic proofreading!® and cell-signal sensing!®.

As we argue later, these and other Markov state representations of
biophysical processes can often be decomposed into bulk-like
subgraphs stitched together by interfaces. The subgraphs
themselves are formed by finite periodic replication of a
particular module or motif. The construction of the idealized
network in Fig. la was motivated by these features.

The dynamics of the system in Fig. 1a can be modelled using a
master equation,

9p

where the vector p contains the probability of occupancy of
various nodes in the network and W is a state-to-state transition
matrix!”, We are interested in conditions under which the steady
state probability specified by equation (1) is localized at the
interface between the two bulk regions. Surprisingly, we will find
that localization of the steady state probability at the interface of
the spatially heterogenous network in Fig. 1a can be predicted by
assigning particular topological numbers to the bulk networks.
The details of the interface are not relevant to the existence of
these localized modes. The steady state behaviour is simply
determined by the topological numbers.

To establish our central results, we find it convenient to
consider the statistics of probability current along the horizontal
axis in the network in Fig. 1. For that, we construct the closely
related tilted current matrix W(1)!8 with elements

W(A); ;= Wije't =) (2)

where i, denotes the location of the node i along the horizontal
axis. The largest eigenvalue of W(A), e(4), is the cumulant
generating function for currents along the horizontal axis, J in the
network!®1°, In particular, d‘;(/f‘> l,.o = — (J), giving the net
average macroscopic current. To ensure the possibility of a non-
zero current along the horizontal axis, we assume periodic
boundary conditions and link up the left and right bulk networks
through a second interface for our theoretical analysis.
Translational symmetry in the bulk regions makes it
convenient to study their properties in terms of
Fourier transforms. Specifically, we will imagine constructing
translationally symmetric tilted current matrices, denoted by
Wyr(4), that describe the left (L) and right (R) bulk regions.
A topological characterization of the bulk region can be obtained
by first computing the determinant, D(k, 4), of the Fourier
transformed version of the translationally symmetric matrices
Wir(4). Here 0<k<2m denotes the wave vector, and the
determinant D(k, 4)=|D(k, A)lexp(i0(k, 1)) is a complex
number with phase 6(k, 1). The determinant is periodic in k,
D(k+2n, ) =D(k, ), by construction. A topological number
can be assigned to the bulk network by determining the winding
number w of the phase 0(k, 12,
e O(k+2m,A) —0(k, 2) 3)
2n
The winding number is one when 0(k, 1) = 0(k + 27, ) + 27 and
zero when 0(k, 1) =0(k+2m, 1). We will show that the steady
state probability distribution is localized when the bulk winding
numbers are mismatched in an interval of /1 around zero,
dw=wy — wg#0 for /in A~ <0< (Fig. 1). This remarkable
topological constraint for the localization of the steady state
probability at the interface constitutes our main theoretical result.

A topological count for the number of localized eigenmodes.
To establish the localized nature of the steady state of the master
equation (1), we will consider the eigenvectors of the tilted matrix
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Figure 1| Topological protection in a model non-equilibrium Markov state network. (a) A Markov state network with two translationally invariant
periodic bulk regions connected together by an interfacial region. Analogous to edge modes in topological insulators and meta-materials, we show that the
steady state probability distribution of these Markov state networks is determined by topological winding numbers, defined in equation (3), assigned to the
bulk domains. (b,d) The steady state distribution is localized at the boundaries of the bulk domains when the winding numbers of the two bulk phases are
mismatched, ow#0. We call such states topologically protected states. (¢) The steady state is not protected when ow = 0.

W(4). We will first show that the number of eigenvectors of W(4)
with an eigenvalue of zero, henceforth referred to as zero modes,
localized at the boundary between the left and right bulk
networks is related to topological invariants computed in the bulk
regions. We will then use this result to identify conditions under
which W(A) has localized zero modes for values of A around
A=0,2" <0<it.

Such zero modes of W(A) imply that the steady state of the
master equation supports a zero current along the horizontal axis
(J=0)!8, The master equation transition matrix W for the
network in Fig. 1 is composed of two translationally invariant
bulks. As we demonstrate in the Supplementary Note 4, the
condition of zero current in the bulk regions of a topologically
non-trivial network necessarily implies that the steady state
probability of the master equation is exponentially localized.

To understand the topological nature of zero modes of W(4)
at the boundary between distinct phases, we consider its local
index!?,

ind W(1) = dim ker pW(2) — dim ker pW'(2)  (4)

where the matrix diagonal matrix p has non-zero elements p;; =1
for nodes i in the interface boundary region'® (Fig. 1), and dim
kerpW(Z) denotes the dimensionality of the local kernel of W(4).
dim kerp W(4) is non-zero if the matrix W(4) has atleast one zero
eigenmode contained in the interfacial region defined by p.
While the kernel of W(4) directly corresponds to zero modes of
interest, the zero modes of WT(J1) also have physical significance.
Specifically, the elements of these zero modes, f;, are equal to

fi = lim (exp(~ 21)), (5)

where (...); is the average of trajectories, over a long time T,
evolving according to equation (1) conditioned on them
beginning at i (ref. 18). In other contexts, it has been
demonstrated that the eigenvectors of the adjoint of the master
equation rate matrix W' posses information related to the
statistics of the first passage times and other such dynamical
features!”.

As shown in the Supplementary Note 2, the index of W(4) can
be expressed in terms of topological properties. Specifically, for a

system with two bulk regions (as in Fig. 1), we find that ind W is
given by the difference of two numbers w;, and wr computed in
the left and right bulk phases of the network, respectively,

indW = ow = wp —wyr (6)

where,

1 2n
WiR = %/0 dkdy In [det[ Wy r (4, k)] | (7)

and Wyr(4, k) is the Fourier transform of the tilted
translationally symmetric bulk transition matrix (Supplementary
Note 2). The determinant det[Wyr(4, k)] maps the Fourier
transformed matrix to the complex plane, det[Wyr(4, k)] =
|det[ Wy r(4, k)]|exp(i0(4, k)). The numbers wy /g in equation (7)
hence simply compute the winding number of the phase 0(/, k)
(defined in equation (3)) as k is varied from 0 to 27. In the SI,
we present both an explicit proof for our central results using a
network with a topology similar to that considered in Fig. 1
(Supplementary Note 2), and a proof based on ref. 10
(Supplementary Note 1).

The above equations predict the existence of boundary zero
modes based on the spectrum of W(4) in the bulk alone; when
ow#0, W(4) must have a zero mode. In Supplementary Notes 3
and 4, we show that if, in fact, ow #0 for an interval of A around
/=0, A~ <0< T, then the highest eigenvalue of W(A), e(1) is
constrained to be zero and the steady state probability
distribution of the master equation is localized at the interface.
Thus the edge modes of W(A) can be simply predicted by
computing the winding numbers in the bulk of the networks.

To be concrete, we now numerically demonstrate these
behaviours. In Fig. 2, we highlight the steady state probability
distribution (ellipses) and the steady state distribution of its
conjugate defined in equation (5) for parameters that ensure a
winding number mismatch of dw=1. In accordance with the
theoretical predictions, the steady state probability distribution is
localized at the interface between the two networks, while its
conjugate defined by equation (5) is localized away from this
interfacial region.
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Figure 2 | Numerical results from the ladder network for winding number mismatch within 4~ <1</ 1. Node weights (orange) are proportional to the
magnitude of the elements of the largest eigenvector of W(/) and vertical link weights (blue) are proportional to the corresponding elements of the largest

eigenvector of WT(A).
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Figure 3 | Lowest eigenvalue by magnitude of the operator W()WT(J).
The dotted lines are the theoretical estimate for the region A~ <i<i™t
within which WC)OWT(L), and hence W(A), has a zero eigenmode. The
agreement between numerical and theoretical results improves as a
function of system size.

In Fig. 3, we identify values of A for which W(4) has a zero
eigenvalue for networks of various sizes. The numerical bounds
2.~ and AT for which e(1) is constrained to zero agrees with the
theoretical predictions obtained from the winding number
analysis. The agreement is even more remarkable given that the
numerical results were obtained from networks with quenched
disordered. The topological connection allows us to predict the
fluctuations of large complex non-equilibrium networks by
performing a simple calculation in the bulk regions. The existence
of the points A* and 4~ has further physical significance. Since
the parameter A is coupled to the rates of transition along the
horizontal axis, A+ are related to the effective localization lengths
for the probability distributions #/® (Supplementary Note 5),

Re1/(27). (8)

The presence of topologically protected edge modes in other
contexts is signalled by a gap between the zero energy state and
the rest of the energy spectrum of the Hamiltonian operator!®!1,
We observe a similar connection in numerical simulatlons
with finite-sized dynamical matrices W(4) (Supplementary
Discussion 1). Since the non-zero eigenvalues of the master
equation rate matrix set relaxation timescales, the band gap in the
topologically non-trivial regime implies that perturbations away
from the localized steady state are suppressed in a finite time ©
related inversely to the band gap. This feature provides another
basis for robustness.

Localization and robustness in biophysical networks.
Chemosensory adaptation, kinetic proofreading and many other
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Figure 4 | An idealized biophysical model of chemosensory adaptation.
The rates of transition between the active (a=1) and inactive (a = 0) states
are sigmoid functions of the methylation levels (m). The minimal
biophysical model can be viewed a combination of two bulks with an
interface between them.

information ]i>rocess1ng mechanisms in biology operate far from
equilibrium® 6, Topologically protected modes in such networks
can enable robust functioning in the presence disorder in the
kinetic rates of the network. We first consider a commonly used
idealized biophysical model?® for chemotaxis adaptation in
Escherichia coli. The dynamics of chemotaxis adaptation in
E. coli can be described by specifying the activity a, and
methylatlon level m of the concentration sensing complex of
protems . Transitions between the various mesoscopic states of
the protein complex are governed by the Markov state model
described in Fig. 4

As discussed in the methods section, the transition rates along
the activity axis generically are sigmoid functions of the
methylation level m. The crossover region of these sigmoid
functions is set by the chemoattractant concentration sensed by
the protein complex. Further, in this class of idealized models, the
rates of transition along the methylation axis are independent of
methylation level and chemoattractant concentration!®. This
generic sigmoidal profile for the rates of transitions along the
activity axis, and the methylation level independent kinetics
along the methylation axis establishes the similarity between the
chemotaxis adaptation network in Fig. 4 and the network we
constructed in Fig. la. The minimal biophysical model for
adaptation can hence be viewed as a combination of two periodic
bulk networks with an interface between them. The location of
the interface is set by the chemoattractant concentration.

In Fig. 5 we provide numerical results obtained
from simulations with N=48 methylation levels???> (In
Supplementary Fig. 6, we present numerical results from
simulations with networks containing 10<N<48. The
theoretical predictions impose constraints on fluctuations in all
these networks). Quenched disorder was introduced in the rates
of the kinetic network. The parameter S is a logarithmic function
of the chemoattractant concentration. We find that the
probability density is localized along the methylation axis,
p(m) ~ exp(— |m—mg|/n), where p(m) denotes the probability
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Figure 5 | Steady state behaviour of the adaptive network. The parameter
S is related to the logarithm of the chemoattractant concentration. The
steady state probability density is localized along the horizontal methylation
axis whenever dw =1 and consequently the average methylation level
(orange) tracks the chemoattractant concentration. In this regime, the
activity of the network (black) is maintained at a set point over the same
wide range of S.

of observing a methylation level m, m, is determined by the
ligand concentration and # is a localization length, whenever
ow=1. A similar form for p(m) was derived in ref. 20 for a
specific model of chemotaxis adaptation. Our framework
generalizes these results. The average methylation level tracks
the chemoattractant concentration in the regime where the
winding number mismatch dw =1 is maintained.

A robust adaptive network is defined as one that maintains a
set activity of a=a, for a wide range of chemoattractant
concentrations (and other perturbations). In Supplementary
Fig 6, we show that chemoattractant-independent activity is
ensured as long as the topological constraint ow=1 is satisfied
and the probability density is localized along the methylation axis
as specified above. Further, the response of the system is
insensitive to disorder in the kinetic rates in this topologically
protected regime.

When the winding number mismatch is dw= — 1, fluctuations
in methylation levels are governed by the distribution,
p(m) ~ky exp(m/n,) + ky exp((M —m)/n,), where k; and k,
are functions of the parameters of the network and #,, are
localization lengths. The mean activity is not ligand independent
(Fig. 5) in this regime. A topological transition separates the
regime exhibiting robust adaptation from the regime in which
adaptation is not achieved.

Topologically protected localized modes can promote robust-
ness of kinetic proofreading, a non-equilibrium mechanism that
enhances enzymatic specificity?. An enzyme E might be faced
with a substrate R that is meant to be processed into a product
but is hindered by the presence of a chemically similar
undesirable substrate W. Previous literature has investigated
many differing models and assumptions on the kinetics of R
and W and driving forces that lead to differing localization and
hence proofreading®!'4?324, An intuitive way to understand
proofreading is through localization (Fig. 6); despite substrates R
and W having very similar kinetics when binding with an enzyme
E, reactions with desired substrate R should be localized near
products, while reactions with W should be localized near
reactants'®%>. In contrast, our results on topological protection
provide a simple necessary and sufficient condition for efficient
proofreading. We view the proofreading network as one bulk
phase with one set of kinetics when the enzyme processes R and
another set of kinetics when it processes W. The products and
reactants end of the network correspond to the boundary between

0 Intermediate states ¢ "0 Disorder in kinetic

rates

Figure 6 | Markov state representation of kinetic proofreading
mechanisms. These networks can be viewed as a combination of a periodic
bulk phase, which terminates at the right (R, top)/wrong (W, bottom)
products on one end and the reactants (E) on the other end. Efficient and
robust proofreading can be achieved by tuning the winding numbers of the
bulk networks so that the probability distribution is localized at the products
end for R and the reactants end for W.

the bulk phase and the vacuum. The kinetics of R need to be such
that the winding number is w =1, localizing it at the products
end, while the kinetics of W need to have winding number
w= —1, localizing it at the reactants end. Unlike the case of
adaptation, the localization here is between one bulk phase and
the vacuum and not between two bulk phases. Finally, adding
multiple bulk phases in proofreading networks can allow for
multiple discriminatory regimes in one network, including ‘anti-
proofreading’” regimes?®.

Discussion

Our results demonstrate that non-equilibrium systems can
support topologically protected localized modes that resemble
boundary modes found in topological insulators'’. These
protected modes can provide a general and compact framework
to understand the robust functioning of microscopic
non-equilibrium  systems. Specifically, they elucidate how
non-equilibrium fluxes can be used to create robust steady
states with densities localized in preferred regions of phase space.
While we have illustrated our results using idealized Markov state
representation of certain biochemical processes, we anticipate
that our results will find broad applicability in other areas such as
dissipative self assembly and self organization in active matter
systems. These are promising directions for future research.

Methods

Biophysical model for chemotaxis adaptation. We consider a commonly used
idealized biophysical model? for chemotaxis adaptation in E. coli. The dynamics of
chemotaxis adaptation in E. coli can be described by specifying the activity a, and
methylation level m of the concentration sensing complex of proteins'®. In the
most typical modelling approach, the rates for transitions between states of
different activity a are derived from a chemoattractant concentration dependent-
free energy landscape?!:22%7,

fla,m) = —(a—1/2)[mE — SM] (9)

where m denotes the methylation level, the parameter S is related to the logarithm
of the chemoattractant concentration, E set the energy scale of interaction between
the activity a and methylation level m, and M is the total number of methylation
levels. The rates of transition between active and inactive states, denoted by v, and
vy, respectively, couple to the concentration of the chemoattractant according to
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the free energy functional above, In accordance with most biophysical models,
we assume that the rates of transition between active and inactive states is given by

7! 7!
== = a 10
1+expAyf’ " 1+exp(—Adf) (10)

Yo

where 7, is a constant that sets the timescales for transitions along the activity axis
and A, f=f(0, m) — (1, m) is the free energy difference between states of different
activity.

Adaptation is an active non-equilibrium process’; accordingly, methylation
and de-methylation rates along the horizontal axis are determined by a
non-equilibrium driving force G in addition to the free energy landscape;

ra(m)
In L(m)

The rates of transition along the methylation axis are set by a convention similar to
that in equation (10) with a timescale 7,,. In this class of biophysical modes, the
rates of transition along the methylation axis are independent of methylation level
and ligand concentration!®.

The transition rates along the activity axis specified by equation (10) and free
energy surfaces like equation (9) generically are sigmoid functions of the
methylation level m. The parameter S specified by the ligand concentration sets the
location of the crossover region. This generic sigmoidal profile for the rates of
transitions along the activity axis, and the methylation level independent kinetics
along the methylation axis establishes the similarity between the chemotaxis
adaptation network and the network we constructed in Fig. 1a. Specifically, the two
vertical levels denote the active and inactive states of the chemotaxis network and
the horizontal levels denote the methylation level of the complex. The minimal
biophysical model for adaptation can hence be viewed as a combination of two bulk
networks with an interface between them. The location of the interface is set by the
ligand concentration through the ligand concentration dependent parameter S.

5,

fla,m)—f(a,m+1)—(a—1/2)G (11)

Linear algebra calculations and numerical simulations. The numerical
eigenvalue calculations were performed on Mathematica using the ARNOLDI
method for sparse matrices. The numerical simulations were performed on
Mathematica using standard kinetic MonteCarlo algorithms.

Data availability. The data used in this paper will be hosted on
https://github.com/svaikunt/topological-modes.
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