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An investigation of the electrocardiogram (ECG) signals and arrhythmia characterization by wavelet energy is proposed.This study
employs a wavelet based feature extraction method for congestive heart failure (CHF) obtained from the percentage energy (PE)
of terminal wavelet packet transform (WPT) subsignals. In addition, the average framing percentage energy (AFE) technique is
proposed, termed WAFE. A new classification method is introduced by three confirmation functions. The confirmation methods
are based on three concepts: percentage root mean square difference error (PRD), logarithmic difference signal ratio (LDSR), and
correlation coefficient (CC).The proposedmethod showed to be a potential effective discriminator in recognizing such clinical syn-
drome. ECG signals taken fromMIT-BIH arrhythmia dataset and other databases are utilized to analyze different arrhythmias and
normal ECGs. Several known methods were studied for comparison. The best recognition rate selection obtained was for WAFE.
The recognition performance was accomplished as 92.60% accurate.TheReceiver Operating Characteristic curve as a common tool
for evaluating the diagnostic accuracy was illustrated, which indicated that the tests are reliable. The performance of the presented
system was investigated in additive white Gaussian noise (AWGN) environment, where the recognition rate was 81.48% for 5 dB.

1. Introduction

The electrical activity signal of the heart’s work, termed
electrocardiogram (ECG), is recording of the electrical signal
generated by the heart muscle during the cardiac cycle.
The ECG signal is used diagnostically by cardiologists for
pursuing the heart syndromes. The main challenge in heart
disease diagnosis by means of ECG is that the normal ECG
for each person might be totally different; sometimes, one
disease has dissimilar signs on different patients ECG signals.
Furthermore, two dissimilar syndromes could have, some-
how, the same effects on ECG signals form. These dilemmas
make the heart disease detection very hard. Therefore, the
using of pattern classifier techniques can improve the ECG
arrhythmia diagnoses [1–4].

Congestive heart failure is a serious clinical syndrome
that comes from the advanced process of heart remodeling,
in which mechanical and biochemical forces modify the
shape, size, and functionality of the ventricle’s ability to
pump sufficient oxygenated blood. Compensatory process of
regulated heart rate (HR), vasoconstriction, and hypertrophy

eventually fail, leading to the distinguishing syndrome of
heart failure: decreased cardiac output, sodium and water
retention, elevated ventricular or atrial pressure, and circu-
latory and pulmonary congestion diagnoses [5].

Arrhythmia is a common clinical term for any cardiac
rhythm that diverges from a normal ECG known as normal
sinus rhythm. Arrhythmia is not considered in all cases as
an irregular heart behavior [5] like in case of respiratory
sinus arrhythmia, which is a natural periodic variation that
occurs in 𝑅𝑅 intervals, corresponding to normal respira-
tory mechanism [6]. The heart rate, normal, slow, or fast,
impulse formation may originate in pace-making cells in the
sinoatrial (SA) node or ectopically [7, 8]. So, the finding
of abnormal cardiac rhythms and automatic classification of
the normal heart activity became a crucial task for clinical
motives. The literature reports the detection and identi-
fication of life-threatening arrhythmias and, particularly,
congestive heart failure, ventricular and atrial fibrillation, and
ventricular tachycardia. Several detection algorithms have
been suggested, such as the sequential hypothesis testing
[9], the multiway sequential hypothesis testing [10], the
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threshold-crossing intervals, the autocorrelation function,
the VF filter [11], and neural networks based algorithms [12].
Time-frequency (𝑡-𝑓) analysis [13] and wavelet analysis [14]
have also been utilized. Current approaches utilize complex-
ity measure [15] and multifractal investigation joined with a
fuzzy Kohonen neural network [16, 17]. In the literature, sev-
eral time domain and frequency domain methods had been
employed to measure heart rate variability (HRV) for recog-
nizing normal and CHF signals at different segment lengths
[18]. The wavelet transform is one of the attractive tools
used [18], where the standard deviation of the normal cases
shows greater fluctuations than those exhibiting heart failure
arrhythmias. It was probable to totally distinguish between 12
CHF and 12 NSR cases. Some of the time domain measures,
such as the standard deviation of the averages of certain
intervals in all 5min segments and the standard deviation of
the normal𝑅-𝑅 interval, correlated significantly with severity
(EF) of heart failure [19]. Maximum accuracy of 93.2% was
also reached by [19] in separating 52 normal rhythms cases
and 22 CHF patients using linear discrimination analysis.
For arrhythmias, previous worksmostly used time-frequency
analysis techniques, statistical tools, and sequential analysis
methods. Wigner Ville distribution technique and Choi-
Williams distribution were employed for the short-term and
long-term time-frequency analysis. Many works observed
that many arrhythmias have time-varying characteristics
[20, 21]. Güler et al. proposed an ECG beat classifier using
the PhysioBank database and a combined artificial neural
network (ANN) model, with higher accuracy of 97% when
compared to the use of stand-alone neural network model
[22, 23]. ANN is a famous classifier that may be used for ECG
arrhythmia classification [24]. Multilayer perceptron (MLP)
is used to classify ECG signals more accurately compared
to other ANN methods. Still, MLP, especially with back-
propagation training, suffers from slow convergence to local
and global minima [25]. Progress of ANNs performance has
been the subject of interesting research on ECG arrhythmia
classification by using various feature extraction techniques.
Özbay et al. compared the competence of fuzzy clustering
neural network architecture with multilayered perceptron
with a backpropagation training algorithm for classification
of arrhythmias. The study proved the superiority of the
presented system in terms of classification time, which is a
result of decreasing the number of segments by grouping
similar segments in training data with fuzzy c-means clus-
tering [23]. A discrete wavelet transform is used to improve
the quality of MLP with (BP) a training algorithm and also
compared with other feature extraction algorithms and data
reduction methods [26]. Many researchers have combined
the MLP neural network with DWT for better accuracy [27].
Besides, an ECG beat classification system based on DWT
and a probabilistic neural network (PNN) is proposed to
differentiate six ECG beat types [28]. The ECG recordings
were treated by means of CWT and DWT in an effort to
predict the maintenance of sinus rhythm after cardioversion
in patients with detected atrial fibrillation [2, 29]. Several
classical methods of system analysis have been used in a
morphological classification of the P-wave. Both ANN [30]
and system modelling [31] have been shown to be superior

to conventional frequency domain and signal-averaged ECG
methods (achieving an accuracy of about 85%). Researchers
have found good reasons for examining the effectiveness of
a wavelet-linear discriminant analysis P-wave classification
system [32]. While the utilization of wavelets classification of
biomedical signals, including some components of the ECG,
is well known [33, 34], wavelet analysis specifically of the
P-wave has not received much studying. Secondly, neural
networks functionally different from linear discriminant
analysis (i.e., those with a hidden layer) require large samples
because of the huge number of parameters to be extracted.
Often, this is not practical.Third, linear discriminant analysis
is relatively assumption-free, unlike model-based approaches
[32]. We investigated some ECG signal processing prob-
lems in previous studies. For example, ECG arrhythmias,
particularly tachycardia and bradycardia, were studied by
DWT and the standard deviation was calculated over a
particular DWT subsignal to classify the arrhythmias by
means of the calculated parameters [35]. For enhancement,
the particular wavelet functions were utilized to filtrate the
ECG in high-pass band subsignals, as well as low-pass band
subsignals [36]. Another work also investigated the quality
of the reconstructed ECG signal of the data compression
algorithms by calculating a collection of objective measures
over DWT subsignals [37]. In addition, an investigation of
the threshold that is suitable for ECG signal denoising was
conducted. A wavelet transform threshold that is suitable for
denoising of this type of biomedical and nonstationary signal
was proposed, and the results were compared with Alfaouri
and Daqrouq’s threshold [38]. The mentioned publications
commonly used the tool of DWT, although in each study
different approaches were also suggested. Discrete wavelet
transform has attracted a great deal of attention in the
last two decades and has proved beneficial for immense
nonstationary signal dilemmas. However,WPT has gradually
caught researchers’ attraction. The reason is the capability of
the signal processing over the two types of WT coefficients:
high-pass subsignal coefficients and low-pass subsignal coef-
ficients. The presented work investigates the classification
of CHF signals by WPT. The energy of certain subsignals
is used for feature extraction. For the classification, three
confirmation methods are suggested. In this paper, the CHF
recognition system is studied in the context of recognition
rate. This work studies several methods for improving the
proposed work. Our purpose is to improve the performance
of theWPE technique’s utility in several types of arrhythmias.
For this reason, many published techniques are investigated.
The structure of this paper is as follows: firstly, the wavelet
packet transform feature extraction method is presented,
followed by a classification technique. Next, results and
discussion will be presented, followed by the conclusion.

2. Method

2.1. Theoretical Overview of Wavelet Packet. The wavelet
packet decomposition is a representation that offers a much
better signal analysis. Wavelet packet atoms are indexed
by three crucial parameters: position, scale as in wavelet
transform decomposition, and frequency. Subsequently,
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the wavelet transform is presented as the inner product of a
signal 𝑥(𝑡) with the mother wavelet 𝜓(𝑡):
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where 𝑎 and 𝑏 are the scale and shift parameters. The mother
wavelet is dilated or translated by 𝑎 and 𝑏. Fundamentally,
the WPT is very similar to DWT but the WPT decomposes
both details and approximations instead of only performing
the decomposition process on approximations. The pair of
low-pass and high-pass filters in WPT are used to achieve
the sequences to obtain different frequency subband features
of the original signal. The two wavelet bases obtained from a
previous node are defined as
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where ℎ[𝑛] and𝑔[𝑛]denote the low-pass and high-pass filters,
respectively. In (2), 𝜓 is the wavelet function and 𝑗 and 𝑝 are
the number of WPT levels and nodes of the previous node,
respectively [39].

Wavelet transform is a very attractivemethod for arrhyth-
mias analysis, particularly when we are dealing with arrhyth-
mia that exhibits a change in the frequency, which, gen-
erally speaking, is very common. The fact that the signal
can be decomposed into different wavelet subsignals of
different band passes of frequency makes wavelet transform
immensely useful in separating the arrhythmias frequencies
in a given object. Therefore, the detection of the arrhythmia
in related subsignals can be achieved easily.

2.2. Wavelet Packet Using for Feature Extraction Method. The
wavelet packet is used to extract additional features for a
higher classification rate [40]. In this study, WPT is applied
for ECG feature extracting. Generally speaking, these data
are not suitable for classification due to the huge length
of the resulting data. Thus, we have to find out additional
representation of the ECG features. A method to calculate
the entropy value of the wavelet norm in digital modulation
recognition was proposed [41]. In [42], a combination of
the genetic algorithm and wavelet packet transform used
for pathological evaluation was presented. The original ECG
was decomposed in a set of discrete packet wavelets that
transformed coefficients with different temporal and spectral
features [43], showing that it is possible to obtain atrial activ-
ity with a finite set of these blocks and the inverse transform.
In [44], the application of wavelet packet transform for atrial
fibrillation was suggested.The nonterminating and the short-
time terminating AF were successfully differentiated via the
difference of log-energy entropies of two types of AF. In this
paper, we use the percentages of energy obtained from the

terminal nodes of the WP tree for CHF arrhythmias feature
vector construction (from an ECG) to be used for diagnosing
[1]. The proposed feature extraction method is summarized
as follows:

(i) Preprocessing and normalization: prior to the stage
of feature extraction, the ECG data are preprocessed
and normalized to remove prospective fluctuations of
baseline, interferences, noises, and so forth [1].

(ii) WP tree decomposing: the ECG signal is decomposed
into WP at level five. Then, we propose the average
framing energy denoted by AFE to extract features
from the 𝑍 frames of each WT ECG subsignal:
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where 𝑍 is the number of considered frames for the
𝑞th WT subsignal 𝑢

𝑞
(𝑡). The percentages of energy

corresponding to the terminal nodes of the WP tree
(𝐸) for the 𝑍 frames of 𝑢

𝑞
(𝑡) are utilized to extract a

wavelet subsignal feature vector as follows:

afe
𝑞
=

1

𝑍

𝑍

∑

𝑧=1

𝑒 (𝑢
𝑞𝑧

(𝑡)) , (4)

where 𝑒(𝑢
𝑞𝑧
(𝑡)) is the percentage of energy of 𝑢
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(𝑡).

The feature vector of the whole given ECG signal is

AFE = {afe
1
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2
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To calculate the percentages of energy, the following equation
is used:
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where 𝑆 is the signal and 𝐶 is the wavelet decomposition
vector [1].

(iii) The extracted features of wavelet average framing
percentage energy will be added for classification.

The subjective evaluation of the proposed feature extraction
method for the NSR and CHF classification for diagnosing
tasks is shown in Figure 1, where Figure 1(a) shows three cases
of normal atrial rhythm (NSR) signals and three cases of CHF
signals. Figure 1(b) illustrates the same cases but by the feature
extraction vectors of percentages of energy corresponding
to the terminal nodes of the WP. It can be seen that the
features have similar morphology for a similar arrhythmia
case. Figure 1(c) shows spectrogram using a Short-Time
Fourier Transform (STFT) of the two types. We can notice
the distinctions. For more details, we can see a block diagram
of the feature extraction method stages as follows:

Preprocessing contains filtration from high-pass
noise and baseline wandering. Normalization is also
conducted to guarantee the same level of amplitudes.
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Figure 1: The WAFE and spectrogram for two ECG signal cases: NSR and CHF. (a) illustrates three cases of normal atrial rhythm (NSR)
signals and three cases of CHF signals. (b) illustrates the same cases, this time by feature extraction vectors of the proposed method. It can
be seen that the features have similar shapes for each distinct arrhythmia case. (c) Spectrogram of the two types.

Signal decomposes into WPT tree at level five of 𝑄
number of subsignals.
The percentages of energy corresponding to the ter-
minal nodes of𝑍 frames of each wavelet subsignal are
calculated and then averaged over these frames.
The feature vector of the whole given ECG signal is
composed of each WPT subsignal average.

3. Classification by Confirmation Functions

Depending on the application, the universal area of arrhyth-
mia recognition may be divided into two particular tasks:
arrhythmia detection (identification) and arrhythmia con-
firmation (verification). In arrhythmia detection, the goal is
to decide which one of a group of known arrhythmias best
matches the input ECG sample.

Statistical analysis is used to examine the random data
by calculating different statistical parameters. For this reason,
two types of statistical moments may be used: (i) moment
about zero such as mean square value, root mean square
value, mean value, and correlation and (ii) moment about

mean value, such as variance, covariance, and standard
deviation. In the following experiment, statistics have been
calculated for the proposed feature vectors of two cases of
CHF and two cases of PEB, including standard deviation,
median, max., and variance. The results are tabulated in
Table 1. The results show that the statistical parameters of
CHF1 and CHF2 are very close, which is similar for PEB1 and
PEB2.The results are almost the same for all testing cases used
in our paper.

In arrhythmia confirmation, the task is to decide from an
ECG samplewhether a patient’s case diagnosis is the right one
or not. In this work, we will take the CHF confirmation track.
The basis for presenting our CHF recognition system is the
WAFEmethod, which is used as a feature extraction method.
More specifically, the feature vectors extracted froma person’s
ECG are modeled by WAFE to be given for classification
(confirmation task). For a feature vector denoted by 𝑥, the
model for the ECG of CHF is defined as the average vector
calculated for fifteen different ECG signal segments (10 sec
time duration) of a CHF case of Einthoven’s standard leads.
This average vector is used to present the CHFmodel termed
in this paper as a hypothesized ECG arrhythmia to be
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Table 1: Statistical analysis of the proposed feature.

Statistical parameter CHF1 CHF2 PEB1 PEB2
Std. 0.0496 0.0497 0.0498 0.0498
Median 0.0002 0.0002 0.0001 0.0001
Max. 0.0993 0.0995 0.0998 0.0997
Var. 2.4564 2.4761 2.4845 2.4826

compared to background (opposite) ECG arrhythmia that
presents one of the other ECGarrhythmias. BackgroundECG
arrhythmia is defined as the average vector calculated for
fifteen ECG signals of other types, such as NSR, premature
ectopic beat (PEB), and AF of many patients. This idea
came from the single-speaker detection task [45]. It can
be defined as a basic hypothesis test between 𝐻

0
(𝑌 is

from the hypothesized arrhythmia) and 𝐻
1
(𝑌 is not from

the hypothesized arrhythmia). The optimum test to choose
between these two hypotheses is the following ratio test:

𝐶 (𝑌,𝐻
0
)

𝐶 (𝑌,𝐻
1
)
=
{

{

{

≥ 𝜃 ⋅ ⋅ ⋅Accept

< 𝜃 ⋅ ⋅ ⋅Reject,
(7)

where 𝐶(𝑌,𝐻
𝑖
), 𝑖 = 0, 1, is the confirmation function for the

hypothesis𝐻
𝑖
evaluated for the tested ECG segment 𝑌.

In this paper, we propose three confirmation functions.
The motivations behind using these confirmation methods
are as follows: (1) they are very simple; (2) they could be built
by very simple mathematics; (3) they do not need sophis-
ticated computer programs; (4) the proposed confirmation
methods are very speedy and do not require a training stage.
The three methods are summarized as follows.

(i) Percentage RootMean SquareDifference Score (PRDS).This
is the most prominently used distortion measure for quality
evaluation of reconstructed signals in ECG compression
analysis. This confirmation function is based on the distance
concept given by

PRDS (𝑌,Model
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where WAFE
𝑌
is the feature vector taken for tested ECG

segment 𝑌 by WAFE method. WAFEM
𝑥,𝑏

is CHF model (𝑥)
or background model (𝑏) and 𝑁 is the feature vector length.
The decision threshold for CHF confirmation is determined
by

PRDS (𝑌,Model
𝑥
)

PRDS (𝑌,Model
𝑏
)
=
{

{

{

< 1 ⋅ ⋅ ⋅Confirm

≥ 1 ⋅ ⋅ ⋅Nonconfirm.

(9)

PRDS is one of themost significantmeasures for determining
the deformation happening in ECG signal after compression
or filtration [36]. It calculates the difference error as a
percentage score. This can be employed in determining the

exact change (deformation) in the feature vector caused by
different arrhythmias. For achieving real and better results
by means of PRDS in CHF confirmation task by (9), several
tricks should be taken into consideration:

(i) All ECG signals used in the experiment should be fil-
trated from high noise and from baseline wandering.

(ii) All ECG signals used in the experiment should have
the same sampling frequency and amplitude level.

(iii) All ECG samples used in the experiment should be
taken from one ECG lead type (it would be better to
have the same lead, e.g., I, II, or V1 lead).

(iv) The PRDS calculated between CHF signals and the
CHF model must be at least five times less than that
calculated between other arrhythmias and the CHF
model. This is the most essential condition that jus-
tifies the using of (9) in confirmation. Figure 2 illus-
trates a sequence of ten PRDSs calculated between ten
CHF signals and CHF model and ten other PRDSs
calculated between other arrhythmias (NSR and PEB)
and CHF model. We can notice that the PRDSs of
CHF signals are about 8 times less.

(ii) Logarithmic Difference Tested Signal to Signal Model Ratio
(LDSR). Consider the following:
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The decision threshold for CHF confirmation is determined
by

LDSR (𝑌,Model
𝑥,𝑏

) =
{

{

{

≤ zero ⋅ ⋅ ⋅Confirm

> zero ⋅ ⋅ ⋅Nonconfirm.

(11)

LDSR calculates the power of the difference error as a ratio
score. This can be employed in determining the difference
between the testing features and signal model to the differ-
ence of the testing features and background model ratio in
logarithmic scale. As we know, if the ratio is less than one, the
logarithmic scale will be negative, leading to the classification
of the testing features as CHF features. When the ratio is
more than one, the logarithmic scale will be positive, and the
testing features will be classified as a different type, like the
oppositemodel. To achieve real and better results bymeans of
LDSR in CHF confirmation task by (11), the first three tricks
mentioned in the previous PRDS section should be taken into
consideration.

(iii) Correlation Coefficient Ratio (CCR). This function is
denoted by correlation coefficient (CC) calculated between
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WAFE
𝑌
and WAFE

𝑥,𝑏
and the decision threshold is obtained

by the following equation:

CCR (𝑌,Model
𝑥,𝑏

) =
CC
𝑌,𝑥

CC
𝑌,𝑏

=
{

{

{

≤ 1 ⋅ ⋅ ⋅Nonconfirm

> 1 ⋅ ⋅ ⋅ confirm.

(12)

For more details, we can see a block diagram of classification
method stages as follows:

CHF model denoted by 𝑥 is built by averaging of
15 feature extraction vectors calculated from CHF
signals. The background model denoted by 𝑏 is
built from averaging of 15 feature extraction vectors
calculated from NSR or PEB signals.
Feature vector of the testing signal denoted by 𝑌 is
calculated.
Calculate the three confirmation methods, PRDS,
LDSR, and CCR, between testing feature vector and
the two models, CHF model and background model.
Accept decision taking by the three thresholds: Th1 =
(PRDS

𝑥
/PRDS

𝑏
) ≤ one, confirm; Th2 = LDSR ≤

zero, confirm; Th3 = (CC
𝑥
/CC
𝑏
) > one, confirm;

otherwise, it is not CHF.

In this study, we used the wavelet ECG feature vectors,
with three confirmation methods to be categorized. The
motivations behind this choice are summarized as follows. (1)
For wavelet, the essential properties of the arrhythmias, such
as CHF or AF, are based on frequency and amplitude changes
[1].Therefore, the high irregularity in the heart rate is a major
indicator of these arrhythmias so that the use of wavelet
transformwould help enormously in feature catching because
of the possibility of the signal decomposing over several
subbands of frequency. (2) For the confirmation methods,
the feature vector is relatively not long enough that it would
not affect the algorithm computational complexity. On the

other hand, the possibility of working in an unsupervised
and simple manner makes the algorithm perform online.
This is easier for implementation and gives the ability to
provide confidence in a decision based directly on the simple
threshold [1]. Although this process does not affect the system
performance, it will offer speedy processing and perform in a
time efficient manner.

Figure 3 illustrates the algorithm flow chart for the
classification of the CHF and NSR, where a background
model was built from NSR.

4. Results

One of the enormously popular ECG databases is the MIT-
BIH Arrhythmia Database [46, 47] that contains 48 half-
hour excerpts from two-channel ambulatory ECG recordings
made at the BIH Arrhythmia Laboratory between 1975 and
1979. The congestive heart failure (CHF) type was obtained
from the BIDMC congestive heart failure database [47],
where 150 signals were taken for algorithm testing. The
duration of the recordings is 10 hours, and they have two ECG
signals of 250Hz sampling frequency, with 12 bit resolution
over a range of 10mV. The original analog recordings were
made at Boston’s Beth Israel Hospital using ambulatory ECG
recorders with a customary recording bandwidth of about
0.1 Hz to 40Hz. For atrial fibrillation (AF) arrhythmias, we
utilized the MIT-BIH atrial fibrillation database [46]. This
database contains 25 long-term ECG recordings of patients
with atrial fibrillation. Our investigation of confirmation
system performance for AF arrhythmias was conducted via
several experiments using 170 signals, each 10 seconds long
and of about 12 beats (this standard is common for each ECG
signal used in this study).The signals were taken from several
records such as 04936 and 04015. The number of individual
signals that were used for the algorithm investigation is 170,
and they were AF-type signals. Normal sinus rhythm signals
taken from the MIT-BIH normal sinus rhythm database
were also used for algorithm testing. This database includes
18 long-term ECG recordings of subjects referred to the
Arrhythmia Laboratory at the same hospital. Signals included
in this database have had no significant arrhythmias; they
include five men, aged 26 to 45, and 13 women, aged 20 to
50. 142 signals (type NSR) of 10 seconds were used.

The signals have the same recording specifications as
in the MIT-BIH atrial fibrillation database. In addition, 150
premature ectopic beat (PEB) signals taken from the MIT-
BIH normal sinus rhythm database (excluded because of
the presence of occasional ectopic beats) were used for
algorithm examination. CHF can be seen in all 12 leads. For
classification purposes, any lead can be chosen, but the choice
must be common for all selected signals. However, the same
leads are selected for all the ECG signals used in algorithm
testing. Mainly, Einthoven leads (I, II, and III) were used in
the experiments to evaluate the classification process [1]. The
recognition performance is accomplished as an average of
three measures: sensitivity, specificity, and positive predictiv-
ity [23]. The Receiver Operating Characteristic (ROC) curve
figure is also used for testing the method [48, 49].
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Figure 3: The classification algorithm flow chart.

In the method, we propose a study of the CHF recog-
nition by WAFE in normal and noisy environments. In
other words, the presented study may be considered as an
investigation aiming to build a system that recognizes the
CHF arrhythmias even with the noisy signals. The system
is applied to a huge number of testing signals. The CHF
confirmation track will be taken. We solve the problem using
the general recognition method (feature extraction and then
classification). This approach is based on a combination of
percentage energy and WT to accomplish feature extraction
of the arrhythmias obtained from normalized and interfer-
ences removed signals.The obtained feature extraction vector
is utilized for classification by means of the proposed three
confirmation methods. The decision of any tested sample is
obtained depending on the confirmation, or not, of the three
methods together. If the three methods confirm, the decision
is “accepted,” but if one or more of these methods are not
confirmed, the result will be rejected. The motivation behind
using these confirmation methods is because they are very
simple; they can be built using very simple mathematics and
do not need sophisticated computer programs.The proposed
confirmation methods are speedy and do not require a
training stage.

Fifteen ECGpatterns of CHF arrhythmiawere utilized for
CHFmodel building aswell.Thebackgroundmodels are built
for each individual arrhythmia (NSR,AF, andPEB) to be used
in the confirmationmethods. 462 different arrhythmias, ECG
segments (NSR, AF, and PEB), and 150 CHF ECG segments
were used for algorithm investigation. The recognition per-
formance was accomplished as 92.60% (when CHF and NSR
were recognized, it means that the background model was
built from 15 NSR signals) as an average of three measures
(Table 2): (1) sensitivity (%) = (TP/(TP + FN)) × 100%,
(2) specificity = (TN/(TN + FP)) × 100%, and (3) positive
predictivity = (TP/(TP+FP)) × 100% (see Table 2), where TN
is a true negative results number when the system identifies
the testing signal as the background (opposite case: NSR,
AF, or PEB). For example, NSR is a background, and TP is
a true positive result when the system confirms the tested

Table 2: Results of recognition rate for the proposed method.

Method is WAFE TN/TP FN/FP Recognition rate
CHF with NSR 130/140 12/10 92.60%
CHF with PEB 123/130 27/20 85.16%
CHF with AF 145/131 25/19 86.57.01%

signal as CHF, in case the tested signal really belongs to
CHF. Table 2 tabulates the recognition rate for the proposed
method. The choice of the wavelet mother function type
is extremely important and is dependent on the intended
application. In our study we have investigated many wavelet
functions and their corresponding recognition rate. Based
on our investigation, we have chosen to use the wavelet
function type Daubechies five (also known as db5) on the
basis that it yields the best recognition rate. Therefore, it will
be considered for the rest of our investigation.

The Receiver Operating Characteristic (ROC) curve
investigation is a common tool for evaluating the diagnostic
or discrimination accuracy of abnormal cases from normal
cases (or another type of abnormality).Whenwe consider the
results of a particular test in two cases, we will seldom find
identical discrimination between the two groups. Generally
speaking, the distribution of the test results will overlap.
Therefore, some abnormal cases are correctly classified as
positive (TP fraction) while others are classified as negative
(FN fraction); similarly, some normal cases are correctly
classified as negative (TN fraction) while some are classified
as positive (FP fraction). Accordingly, parameters can be
employed to determine the true and false positive rates:
true positive rate (TPR) = TP/(TP + FN); false positive
rate (FPR) = fallout = FP/(FP + TN) = FAR; false rejection
rate (FRR) = FN/(TP + FN) = 1TPR; false acceptance rate
(FAR) = FP/(FP + TN) = FPR.The ROC curve plots the TPR
(sensitivity) against the FPR for a set of cut-off points. The
curve illustrates a sensitivity/specificity pair with regard to a
certain decision threshold. An experiment with excellent dis-
crimination has a ROC curve that goes through the upper left
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Figure 4: ROC curves for CHF and NSR recognition and CHF and
AF recognition. The areas under the curve (AUC) were 0.9257 and
0.8549, respectively.

corner.Therefore, the closer the curve to the upper left corner,
the higher the accuracy of the test. Figure 4 demonstrates
three ROC curves: for CHF and NSR recognition and CHF
and AF recognition. The ROC curve of the three tests passes
through the upper left corner, which indicates that the tests
are reliable.The areas under the curve (AUC)were 0.9257 and
0.8549, respectively.

5. Discussion

When we compare to other published works based on
wavelet transforms with the proposed method WAFE, such
as average PSD of DWT (WPAP) [23], Shannon entropy with
wavelet packet (WPSE) [50], log-energy entropy with wavelet
packet (WPLE) [44], and sure entropy with wavelet packet
(WPSUE) [51], we achieve a higher success rate (92.60%),
where WPLE has reached only 83.14% recognition rate. The
results are tabulated in Table 3. The Gaussian noise is a
random variable stream with a Gaussian distribution. For
instance, the electromyographic signal (EMG) that can be
found naturally in the measuring environment is one of the
most common interferences, which is a Gaussian random
variable. Therefore, a white Gaussian noise environment is
investigated in Table 4.

In the following experiments, the feature extraction
method with the confirmation methods was analyzed to
expose the usefulness of the proposed system in noisy
environments. The following experiment investigates the
proposed method in terms of recognition rate in additive
white Gaussian noise, denoted by AWGN, with 5 and 0 dB
SNR.This can be concluded from interpretation of the results
in Table 4, where the results ofWAFE in a noisy environment
are tabulated. It was found that the recognition rates (in
case of 5 dB SNR) of WAFE have a very good rate (81.48%).
The reason behind that is the wavelet transform’s ability to
analyze the signal by different frequency subbands, and then
the features are taken from places where the noise might be
filtered by the wavelet transform.

Many studies that tackled CHF discrimination appeared
lastly in the literature and were used for comparison, such

Table 3: Results of recognition rates for comparison.

Method TN/TP FN/FP Recognition rate
WPAP 111/108 31/42 74.08%
WPSE 67/72 75/78 47.73%
WPLE 135/120 17/30 83.14%
WPSUE 100/102 42/48 68.80%

Table 4: Results of recognition rates in a noisy environment.

Method TN/TP FN/FP Recognition rate
WPLE 0 dB 51/70 91/80 43.03%
WAFE 0 dB 62/82 80/68 50.89%
WPLE 5 dB 80/112 62/38 68.94%
WAFE 5 dB 110/125 32/25 81.48%

as bispectral analysis and genetic algorithm [52]. The results
of sensitivity and specificity rates of 93.10% and 98.14%,
respectively, were claimed. Asyali’s method [53] extracts
nine features that were fed to the Bayesian classifier for
distinguishing CHF from NSR. The results of sensitivity and
specificity rates of 81.82% and 98.08%, respectively, were
claimed. Another method was proposed by Işler and Kun-
talp [54], where statistical time domain, frequency domain,
and wavelet entropy features were fed to a KNN classifier.
The results of sensitivity and specificity rates of 84.75%
and 83.33%, respectively, were achieved. These three studies
used NSR records and CHF records from PhysioNet and
used the leave-one-out cross-validation system to evaluate
the performance. Based on our CHF database taken from
BIDMC congestive heart failure database and NSR database
taken from the MIT-BIH and our different way of training
and testing, the results of sensitivity 92.10% and specificity
92.86%were achieved. Relatively speaking, ourmethod could
be highly competitive. However, the comparison will bemore
accurate if all methods are tested over the same conditions,
such as database and training/testing systems. In Table 5, a
comparison with published works was conducted.The results
show that our proposed method is superior in terms of
recognition rate.

6. Conclusions

In the presented research paper, a CHF arrhythmia system
based on WAFE was studied in normal and noisy environ-
ments. The proposed method is an important step toward
achieving an automatic and accurate diagnosis system in the
absence of cardiologists. Our method is simple and avoided
the use of compute intensive algorithms such as genetic algo-
rithms (GA) or artificial neural networks (ANNs). Hence, it
does not require very sophisticated hardware.

The benefit of WAFE is its capability of reducing the
huge ECG data and improving the computing speed. At
the beginning of the feature extraction, WT is applied
with percentage energy by analyzing the spectral parameters
over a multiresolution space. The feature vector is then
extracted from the signal obtained from wavelet coefficients.
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Table 5: A comparison of recognition rate of the proposed method
with published works.

Method Recognition rate
WAFE 92.60%
Asyali [55] 89.82%
CMIFS [56] 90.16
mRMR [57] 92.55
Işler’s method (without GA) [54] 84.34

An average framing process was applied. For classification,
three proposed confirmation methods were applied. The
benefits of thesemethods are that they are simple, speedy, and
accurate. The recognition performance of this method was
demonstrated on the real ECG signals of different types taken
from popular databases. Four different ECG arrhythmias
were used for system testing in the experiments. Three ROC
curves, for CHF and NSR recognition, CHF and PEB recog-
nition, and CHF and AF recognition, were demonstrated.
The ROC curve of the three tests passes through the upper
left corner, which indicates that the tests are reliable. As
a comparison with other published methods, experimental
results showed that both WAFE and WPLE are suitable for
CHF feature extractionmethod even in a noisy environment,
at 5 dB SNR level. However, in the case of WAFE, better
performance was produced than in WPLE in terms of the
recognition rate of the three confirmation methods. The
reason behind this is the ability of the wavelet transformation
method to analyze the signal using different frequency
subbands. Features can then be extracted from places where
the noise might be filtered using wavelet transform. The
results of statistical analysis showed that both CHF and PEB
cases have very close parameters. The results are almost the
same for all test cases used in our paper. A comparison
with published works showed that our proposed method is
superior in terms of recognition rate. It was concluded that
the proposed approach is potentially useful for the automatic
classification of CHF.
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