
Citation: Chang, C.-L.; Chen, S.-T.;

Lin, P.-Y.; Chang, C.-Y. Application of

Deep Reinforcement Learning to

NS-SHAFT Game Signal Control.

Sensors 2022, 22, 5265. https://

doi.org/10.3390/s22145265

Academic Editor: Filippo Attivissimo

Received: 25 May 2022

Accepted: 5 July 2022

Published: 14 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Application of Deep Reinforcement Learning to NS-SHAFT
Game Signal Control
Ching-Lung Chang 1,2 , Shuo-Tsung Chen 3,4,*, Po-Yu Lin 1 and Chuan-Yu Chang 1,2

1 Department of Computer Science and Information Engineering, National Yunlin University of Science
and Technology, Douliu 640301, Taiwan; chang@yuntech.edu.tw (C.-L.C.); shough33@gmail.com (P.-Y.L.);
chuanyu@yuntech.edu.tw (C.-Y.C.)

2 Intelligence Recognition Industry Service Research Center (IR-IS Research Center), National Yunlin University
of Science and Technology, Douliu 640301, Taiwan

3 Department of Applied Mathematics, Tunghai University, Taichung 40704, Taiwan
4 Department of Industrial and Business Management, Chang Gung University, Taoyuan 333, Taiwan
* Correspondence: shough34@yahoo.com.tw

Abstract: Reinforcement learning (RL) with both exploration and exploit abilities is applied to games
to demonstrate that it can surpass human performance. This paper mainly applies Deep Q-Network
(DQN), which combines reinforcement learning and deep learning to the real-time action response
of NS-SHAFT game with Cheat Engine as the API of game information autonomously. Based on a
personal computer, we build an experimental learning environment that automatically captures the
NS-SHAFT’s frame, which is provided to DQN to decide the action of moving left, moving right, or
stay in same location, survey different parameters: such as the sample frequency, different reward
function, and batch size, etc. The experiment found that the relevant parameter settings have a
certain degree of influence on the DQN learning effect. Moreover, we use Cheat Engine as the API of
NS-SHAFT game information to locate the relevant values in the NS-SHAFT game, and then read the
relevant values to achieve the operation of the overall experimental platform and the calculation of
Reward. Accordingly, we successfully establish an instant learning environment and instant game
training for the NS-SHAFT game.

Keywords: reinforcement learning (RL); game; real-time; Deep Q-Network (DQN); deep learning;
NS-SHAFT

1. Introduction

Machine learning is the main technology for the development of contemporary ar-
tificial intelligence [1–10]. With the improvement of hardware equipment, people are
reinvesting in machine learning research. The most striking thing is that the AlphaGo [11]
developed by the DeepMind team combines the two major technologies of machine learn-
ing, deep Learning [12] and reinforcement Learning [13], to defeat the Go world champion
in March 2016.

In 2013, the DeepMind team was the first to propose a combination of reinforcement
learning (RL) and deep learning (DL), called Deep Q-Network (DQN) [14], which was
successfully practiced on Atari games and compared with other methods. By comparison,
six of the seven games have scored more than other methods, and several have exceeded
the level of professional players. Different from the previous method of manually extracting
features, they proposed a model that combines reinforcement learning and deep learning.
The gameplay strategy can be learned only through the original game screen as input, and
it can be learned in other games without adjusting any neural network architecture and
parameters, demonstrating its versatility. However, they used the same network to estimate
the target value and the predicted value so that there was a great correlation between the
two, which led to the problem of unstable training.

Sensors 2022, 22, 5265. https://doi.org/10.3390/s22145265 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145265
https://doi.org/10.3390/s22145265
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0094-4250
https://orcid.org/0000-0001-9476-8130
https://doi.org/10.3390/s22145265
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145265?type=check_update&version=1

Sensors 2022, 22, 5265 2 of 25

Based on the 2013 method, DeepMind added an improved method TargetNetwork [15]
in 2015 which aims to solve the shortcomings of the unstable Q value of prediction. This
method expands the experimental games from 7 to 49, and in many games, it not only
surpasses the past methods, but also surpasses professional players. At the same time, it is
also found that DQN can achieve very good learning effects in some pure scoring games,
such as Breakout, and for games that require specific steps to continue to break through,
such as Montezuma’s revenge, it performs very badly. In other words, for different types
of games, DQN has very different effects.

After DeepMind solved the problem of unstable Q value, it found that Q-Learning
itself has the shortcoming of overestimating. The problem is that Q-Learning adopts a
greedy method when selecting actions, so that when selecting or estimating the value
of an action, if the value of the sub-optimal action is overestimated during the training
process, and thus exceeds the value of the optimal action, it will cause the entire learning
process to never find the optimal action. Based on the Double Q-Learning proposed
by Hasselt [16] in the Q-Learning experiment in 2010, DeepMind proposed a method
of improving overestimation in 2015 called Double DQN (DDQN) [17] to separate the
selection and estimation actions. Since the DQN with Target Network has two networks
at the same time, there is no need to make major adjustments to the overall architecture.
Dong et al. [18] designed a simple reinforcement learning (RL) agent that implements an
optimistic version of Q-learning and establish through regret analysis that this agent can
operate with some level of competence in any environment. They considered a general
agent-environment interface and provide a novel agent design and analysis based on the
concepts from the literature on provably efficient RL.

Based on the rapid development of current hardware equipment and software tech-
nology, this paper mainly combines reinforcement learning and deep learning technology,
called Deep Q-Network (DQN), to process real-time action response of NS-SHAFT game
with analysis of the game information by Cheat Engine. The detail is as follows. First of all,
we build a real-time learning environment in a personal computer to automatically capture
the screen of NS-SHAFT and then provide DQN to decide the action of moving left, moving
right, or stay in same location, survey different parameters: such as the sample frequency,
different reward function, and batch size etc. Next, we discuss the impact of different
parameters in the DQN environment, such as sample frequency, reward function, batch
size, and other parameters on learning effectiveness. Moreover, because NS-SHAFT does
not provide any way to directly obtain game internal information and does not provide any
game information API, we use open source software, Cheat Engine, to analyze game infor-
mation to obtain relevant numerical memory addresses and required game information of
Reward Function to achieve real-time training for NS-SHAFT game. Experimental results
not only show that the relevant parameter settings have a certain degree of influence on
the learning effect of DQN, but also successfully establish an instant learning environment
and instant game training for the NS-SHAFT game.

The reset of this paper is organized as follows. Section 2 reviews preliminaries and
background. In Section 3, we introduce the proposed method and system. Section 4 shows
the simulation results. Finally, Section 5 concludes this work.

2. Preliminaries and Background

In this section, we review some preliminaries and background for later use.

2.1. Introduction to NS-SHAFT

NS-SHAFT is a PC game [17]. As shown in Figure 1, the player moves the character
left and right in the game to increase the current number of floors as much as possible. The
game provides a choice of three difficulty levels. During the game, when the number of
floors becomes larger, the scrolling speed of the game will increase and the proportion of
needle sticks will also increase, making the operation thinking time shorter and shorter.
The game ends when the character falls to the bottom of the game screen. The character

Sensors 2022, 22, 5265 3 of 25

in the game has 12 points of life. When the character touches the fixed needle or the floor,
the character will lose 5 points of life. When the character’s life returns to 0, the game also
ends. However, the character will restore 1 point of life when it’s life is less than 12 points
and land on the normal floor.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 25

The game provides a choice of three difficulty levels. During the game, when the number
of floors becomes larger, the scrolling speed of the game will increase and the proportion
of needle sticks will also increase, making the operation thinking time shorter and shorter.
The game ends when the character falls to the bottom of the game screen. The character
in the game has 12 points of life. When the character touches the fixed needle or the floor,
the character will lose 5 points of life. When the character’s life returns to 0, the game also
ends. However, the character will restore 1 point of life when it’s life is less than 12 points
and land on the normal floor.

Figure 1. NS-SHAFT screen.

2.2. Reinforcement Learning
Reinforcement Learning is a major branch in the field of machine learning, focusing

on how agents can deliver actions to the environment and find out a policy to maximize
their future benefits (or reward) by trial-and-error where the method by which the agent
selects the action from the environment state (S) is called the policy [19–21]. The detail is
as follows. As shown in Figure 2, the Agent will use the known policy or randomly select
the action Action ta according to the current state St. At the time, the state St will transfer
to the new state St+1, and get a reward Rt.

Figure 2. Diagram of reinforcement learning.

Figure 1. NS-SHAFT screen.

2.2. Reinforcement Learning

Reinforcement Learning is a major branch in the field of machine learning, focusing
on how agents can deliver actions to the environment and find out a policy to maximize
their future benefits (or reward) by trial-and-error where the method by which the agent
selects the action from the environment state (S) is called the policy [19–21]. The detail is as
follows. As shown in Figure 2, the Agent will use the known policy or randomly select the
action Action at according to the current state St. At the time, the state St will transfer to
the new state St+1, and get a reward Rt.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 25

The game provides a choice of three difficulty levels. During the game, when the number
of floors becomes larger, the scrolling speed of the game will increase and the proportion
of needle sticks will also increase, making the operation thinking time shorter and shorter.
The game ends when the character falls to the bottom of the game screen. The character
in the game has 12 points of life. When the character touches the fixed needle or the floor,
the character will lose 5 points of life. When the character’s life returns to 0, the game also
ends. However, the character will restore 1 point of life when it’s life is less than 12 points
and land on the normal floor.

Figure 1. NS-SHAFT screen.

2.2. Reinforcement Learning
Reinforcement Learning is a major branch in the field of machine learning, focusing

on how agents can deliver actions to the environment and find out a policy to maximize
their future benefits (or reward) by trial-and-error where the method by which the agent
selects the action from the environment state (S) is called the policy [19–21]. The detail is
as follows. As shown in Figure 2, the Agent will use the known policy or randomly select
the action Action ta according to the current state St. At the time, the state St will transfer
to the new state St+1, and get a reward Rt.

Figure 2. Diagram of reinforcement learning. Figure 2. Diagram of reinforcement learning.

Sensors 2022, 22, 5265 4 of 25

In this learning process, when the correct action is taken, the system will give a positive
reward, if it is a wrong action, it will give a negative reward. With the reward value, the
Agent can learn the best action strategy to get the maximum reward. Generally speaking,
we would like to choose the action that will bring the greatest reward every time. This
strategy is called greedy. In other words, greedy is a way of choosing the best choice at
every step to expect the best result. However, this method has the problem of falling into a
local optimal solution. It is usually solved by using the ε-greedy algorithm which has a
certain probability ε for randomly choosing actions.

In reinforcement learning, if only the reward value can only reflect the immediate
situation in a certain state, it cannot accurately reflect the actual value from a certain state to
the end of the round. In other words, the purpose is to evaluate if a state has the maximum
value after taking an action instead of the current maximum reward value. Accordingly, a
value function V(S) is defined by

Vπ(S) = Eπ(Rt|St = S) = Eπ(
∞

∑
i=0

λirt+i+1|St = S) (1)

where Vπ(S) is the total rewards obtained from state S following policy π; Eπ denotes the
total rewards obtained under the policy π; Rt denotes the reward accumulated in state s at
time t; St denotes the state at time t, t = 1,2,3, . . . ; and λ, 0 ≤ λ ≤ 1, denotes the discount
rate used to avoid excessive states leading to infinite total rewards for each strategy.

Value function is used to evaluate the value of each state, but, in fact, each state has
different actions. We need to evaluate all the actions in the same state separately to obtain
the value of each action in that state. Therefore, the action and state are regarded as a
combination, and the action value function Q(s, a) is derived.

Qπ(S, a) = Eπ(Rt|St = S, at = a) = Eπ(
∞

∑
i=0

λirt+i+1|St = S, at = a) (2)

where Qπ(S, a) is the total rewards obtained from that state S select action a and follow
policy π; Eπ denotes the total rewards obtained under the policy π; Rt denotes the reward
accumulated in state s with selection of action a at time t; St denotes the state at time t,
t = 1,2,3, . . . ; and λ, 0 ≤ λ ≤ 1, denotes the discount rate used to avoid excessive states
leading to infinite total rewards for each strategy.

2.3. Q-Learning

The purpose of Q-Learning is to record the entire learning process [22]. All actions
taken under the state and rewards will be fully recorded to form a Q-Table as shown in
Table 1. From this table, the agent can know which action will get the greatest reward. The
detail is shown in Algorithm 1. At the beginning of the algorithm, the initial value of Q
is arbitrarily set (determined by the developer), and training is performed for each step
in each episode. After the action (a) is given to the state (s), the reward (r) and the new
state (s’) can be obtained, and then the value Q(s, a) is updated corresponding to the state s
and action a in the Q-Table. In the update formula, Q(s, a) is the benefit obtained by taking
action a in the s state, r is the reward value obtained by taking action a in the current state s,
α is the learning rate, and γ is the discount factor (Discount factor). When updating, the
algorithm will care about the current reward (r) and the reward in memory max

a′
{Q(s′, a′)}.

The reward in the memory represents the maximum reward value that the new state s’ can
give. If the agent takes an action in the past s’ to obtain the reward value, this formula can
make it learn the news early. When entering s again, choose the correct action to continue
entering s’ in order to get rewards. Therefore, the larger γ the agent will pay more attention
to the past experience, otherwise the agent will pay attention to the current reward r. The
algorithm is summarized as

Sensors 2022, 22, 5265 5 of 25

Algorithm 1. Q-Learning.

Initialize Q(s, a) arbitrarily
Repeat (for each episode):

Initialize s
Repeat (for each step of episode):

Take action a, observe r, sˆ’
Chose a from s using policy derived from Q (e.g., ε-greedy)
Q(s, a)← Q(s, a) + α[r + γ

Sensors 2022, 22, x FOR PEER REVIEW 5 of 25

correct action to continue entering s’ in order to get rewards. Therefore, the larger γ the

agent will pay more attention to the past experience, otherwise the agent will pay atten-

tion to the current reward r. The algorithm is summarized as

Algorithm 1. Q -Learning.

Initialize Q (s, a) arbitrarily

Repeat (for each episode):

 Initialize s

 Repeat (for each step of episode):

 Chose a from s using policy derived from Q (e.g., ε-greedy)

 Take action a, observe r, s^’

 Q (s, a) ←Q (s, a) + α[r + γ 〖 max〗 _a’Q (s^’, a^’) –Q (s, a)]

 s ← s^’;

 until s is terminal

Table 1. Q-table.

Q-Table
Actions

↑ ↓ ← →

State

0 1 0 3 8

1 −2.1 2 2.2 1

2 4.66 5 4.9 1.23

3 7 1 6 7.6

4 0 2 1.1 0.6

5 4.2 9.12 5.12 3.2

… … … … …

2.4. Deep Q-Network

In order to solve the shortcomings of Q-Learning in storing Q-Tables due to the ex-

cessive number of states and actions, the DeepMind team proposed Deep Q-Network [14]

and verified it on the Arcade Learning Environment (ALE) [23] environment. Deep Q-

Network directly uses the entire game screen as the input of the model, so that the model

learns which features to obtain through a lot of training. For this reason, there is no need

to consider which features the model finally obtains, as long as the model can output the

maximum reward value in various states.

In addition, the pixels of the game screen are too large, and each pixel has 2563 pos-

sibilities, but, in fact, there is a correlation between the pixels, and it is not necessary to

treat each pixel as an input. Convolutional neural network (CNN) [24,25] can solve the

problem at this time. Therefore, Deep Q-Network has a CNN model that can handle the

input of the game screen, which is composed of one or more convolutional layers and

fully connected layers. The model finally outputs the Q value of each action.

Finally, in order to make the model more accurate prediction, a lot of data is used in

the model to iterate. The data can be obtained through the continuous game process. The

algorithm uses the Experience Replay technology [26] to store the game process data in

One is called replay memory. The stored data include state, action, reward, and {state}^’

(The next state entered after an action is taken). In the training process, a certain number

of samples are selected from the replay memory as the model input for algorithm itera-

tion. The overall algorithm is shown below.

Step 1. Initialize a space D with Size N for storing past experience.

Step 2. Randomly initialize the Q of the neural network, and then play M games, each

end of the game represents an episode.

max

Sensors 2022, 22, x FOR PEER REVIEW 5 of 25

correct action to continue entering s’ in order to get rewards. Therefore, the larger γ the

agent will pay more attention to the past experience, otherwise the agent will pay atten-

tion to the current reward r. The algorithm is summarized as

Algorithm 1. Q -Learning.

Initialize Q (s, a) arbitrarily

Repeat (for each episode):

 Initialize s

 Repeat (for each step of episode):

 Chose a from s using policy derived from Q (e.g., ε-greedy)

 Take action a, observe r, s^’

 Q (s, a) ←Q (s, a) + α[r + γ 〖 max〗 _a’Q (s^’, a^’) –Q (s, a)]

 s ← s^’;

 until s is terminal

Table 1. Q-table.

Q-Table
Actions

↑ ↓ ← →

State

0 1 0 3 8

1 −2.1 2 2.2 1

2 4.66 5 4.9 1.23

3 7 1 6 7.6

4 0 2 1.1 0.6

5 4.2 9.12 5.12 3.2

… … … … …

2.4. Deep Q-Network

In order to solve the shortcomings of Q-Learning in storing Q-Tables due to the ex-

cessive number of states and actions, the DeepMind team proposed Deep Q-Network [14]

and verified it on the Arcade Learning Environment (ALE) [23] environment. Deep Q-

Network directly uses the entire game screen as the input of the model, so that the model

learns which features to obtain through a lot of training. For this reason, there is no need

to consider which features the model finally obtains, as long as the model can output the

maximum reward value in various states.

In addition, the pixels of the game screen are too large, and each pixel has 2563 pos-

sibilities, but, in fact, there is a correlation between the pixels, and it is not necessary to

treat each pixel as an input. Convolutional neural network (CNN) [24,25] can solve the

problem at this time. Therefore, Deep Q-Network has a CNN model that can handle the

input of the game screen, which is composed of one or more convolutional layers and

fully connected layers. The model finally outputs the Q value of each action.

Finally, in order to make the model more accurate prediction, a lot of data is used in

the model to iterate. The data can be obtained through the continuous game process. The

algorithm uses the Experience Replay technology [26] to store the game process data in

One is called replay memory. The stored data include state, action, reward, and {state}^’

(The next state entered after an action is taken). In the training process, a certain number

of samples are selected from the replay memory as the model input for algorithm itera-

tion. The overall algorithm is shown below.

Step 1. Initialize a space D with Size N for storing past experience.

Step 2. Randomly initialize the Q of the neural network, and then play M games, each

end of the game represents an episode.

_a’Q(sˆ’, aˆ’) − Q(s, a)]
s← sˆ’;

until s is terminal

Table 1. Q-table.

Q-Table
Actions

↑↑↑ ↓↓↓ ←←← →→→

State

0 1 0 3 8
1 −2.1 2 2.2 1
2 4.66 5 4.9 1.23
3 7 1 6 7.6
4 0 2 1.1 0.6
5 4.2 9.12 5.12 3.2

.

2.4. Deep Q-Network

In order to solve the shortcomings of Q-Learning in storing Q-Tables due to the
excessive number of states and actions, the DeepMind team proposed Deep Q-Network [14]
and verified it on the Arcade Learning Environment (ALE) [23] environment. Deep Q-
Network directly uses the entire game screen as the input of the model, so that the model
learns which features to obtain through a lot of training. For this reason, there is no need
to consider which features the model finally obtains, as long as the model can output the
maximum reward value in various states.

In addition, the pixels of the game screen are too large, and each pixel has 2563 possi-
bilities, but, in fact, there is a correlation between the pixels, and it is not necessary to treat
each pixel as an input. Convolutional neural network (CNN) [24,25] can solve the problem
at this time. Therefore, Deep Q-Network has a CNN model that can handle the input of the
game screen, which is composed of one or more convolutional layers and fully connected
layers. The model finally outputs the Q value of each action.

Finally, in order to make the model more accurate prediction, a lot of data is used in
the model to iterate. The data can be obtained through the continuous game process. The
algorithm uses the Experience Replay technology [26] to store the game process data in
One is called replay memory. The stored data include state, action, reward, and {state}ˆ’
(The next state entered after an action is taken). In the training process, a certain number of
samples are selected from the replay memory as the model input for algorithm iteration.
The overall algorithm is shown below.

Step 1. Initialize a space D with Size N for storing past experience.
Step 2. Randomly initialize the Q of the neural network, and then play M games, each

end of the game represents an episode.
Step 3. At the beginning of each episode, set the game screen as the state (S1), and

preprocess this game screen into ∅1 = ∅(s1).
Step 4. Each step in the game randomly selects the action at with probability ε, and

the 1-ε probability uses the optimal action at predicted by the neural network Q.
Step 5. Following the Step 4, the action at of each ∅t =∅(st) has reward rt and next

state St+1. Perform the same preprocessing on state St+1 to get ∅t+1= ∅(st+1) and ten save
the relevant information of this state transition (∅t, at, rt, ∅t+1) to replay memory.

Sensors 2022, 22, 5265 6 of 25

Step 6. Randomly select a certain number of transitions information from the replay
memory, and calculate the Q value according to the formula.

• When ∅j+1 is over (that is, taking action aj in state ∅j leads to the end of the game),
make the target value to be yj = rj;

• When ∅j+1 is not over yet (that is, an action aj is taken in the state ∅j so that the
game is not over), the target value is yj = rj + γmax

a′

{
Q
(
φj+1, a′; θ

)}
where θ stands for

neural network.

Step 7. Finally, mini-batch gradient descent is used to reduce the loss function to
improve the neural network.

2.5. Deep Q-Network with Target Network

In 2015, DeepMind added a method, Target Network, to improve Deep Q-Network.
It mainly calculates the error between TD target and the current estimated value Q(s, a),
which is defined as follows:

∆w = α
{[

R + γmax
a

Q̂(s′, a, w)
]
− Q̂(s, a, w)

}
(3)

where ∆w represents the weight to be updated for this difference, α is the learning rate,
R + γmax

a
Q̂(s′, a, w) is the TD target, and Q̂(s, a, w) represents the estimated Q value of the

current state.
In fact, we don’t know the real TD target. We see that the TD target is only a reward

for taking the action in this state, plus the highest Q worth discount for the next state. The
problem is that we use the same network (weight) To estimate the TD target and Q value,
so there is a great correlation between the TD target and the network (w) we are changing,
which means that in each step of training, the Q value will move, but the target value (TD
target) will also move. It is like chasing a moving target, which makes the training shock.

Compared with 2013, the 2015 version of DQN only modifies the calculation of the
target value (TD target) and keeps the rest the same to get better results. After that,
some scholars still made improvements to DQN. For example, Schaul et al. [27] proposed
Prioritized experience replay by extracting samples in a non-random manner, or Wang,
Z. et al. [28] modified the neural network in a small amount. In 2018, Horgan et al. [29] used
a distributed method to obtain data to improve stability. The above-mentioned studies all
improved DQN step by step and enhanced its effectiveness.

2.6. Related Work

In 2013, the DeepMind team is the first to propose an algorithm that combines Rein-
forcement learning (RL) and Deep learning (DL) called Deep Q-Network (DQN) [14] and
successfully practiced it on Atari games. The model combining reinforcement learning and
deep learning proposed in this paper is different from the previous method of manually
extracting features, that is, the game strategy can be learned only by using the original game
screen as input, and without adjusting any neural network architecture and parameters.
Learning from other games shows its versatility. They compared the results of the practice
with random, past methods [13,19] and human battle, as shown in Table 2. Six of the seven
games outperformed the random and the past methods [13,19], and several outperformed
professional players. In 2015, DeepMind improved the instability of Q value in DQN by
adding the method TargetNetwork [15] and then enhanced the performance as shown in
the last row of Table 2.

Sensors 2022, 22, 5265 7 of 25

Table 2. The comparison results of applying DQN to Atari game.

B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders

Random 354 1.2 0 −20.4 157 110 179
Sarsa [13] 996 5.2 129 −19 614 665 271

Human battle 7456 31 368 −3 18,900 28,010 3690
HNeat Best [19] 3616 52 106 19 1800 920 1720
HNeat Pixel [19] 1332 4 91 −16 1325 800 1145

DQN [14] 4092 168 470 20 1952 1705 581
DQN best [15] 5184 225 661 21 1740 1740 1075

3. Proposed Method

This section introduces the proposed architecture as shown in Figure 3. The detail of
this architecture is explained in Section 3.1, Section 3.2, Section 3.3.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 25

of the practice with random, past methods [13,19] and human battle, as shown in Table 2.
Six of the seven games outperformed the random and the past methods [13,19], and sev-
eral outperformed professional players. In 2015, DeepMind improved the instability of Q
value in DQN by adding the method TargetNetwork [15] and then enhanced the perfor-
mance as shown in the last row of Table 2.

Table 2. The comparison results of applying DQN to Atari game.

 B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders
Random 354 1.2 0 −20.4 157 110 179
Sarsa [13] 996 5.2 129 −19 614 665 271

Human battle 7456 31 368 −3 18,900 28,010 3690
HNeat Best [19] 3616 52 106 19 1800 920 1720
HNeat Pixel [19] 1332 4 91 −16 1325 800 1145

DQN [14] 4092 168 470 20 1952 1705 581
DQN best [15] 5184 225 661 21 1740 1740 1075

3. Proposed Method
This section introduces the proposed architecture as shown in Figure 3. The detail of

this architecture is explained in Sections 3.1–3.3.

Figure 3. The proposed architecture.

3.1. Image Pre-Processing
In the first step of the proposed architecture, we pre-process original images of NS-

SHAFT. When we get the game screen from the game environment, as shown in Figure 4,
we can cut the part that does not affect the game judgment so that the entire game screen
does not need to be used as input. Therefore, we cut the original game screen size (636 ×
478 × 3) Pixels to (443 × 463 × 3) Pixels. Since the color has no meaning for the game exe-
cution, we converted the RGB image into a grayscale image to reduce the data dimension,
that is, 443 × 463 × 3 Pixels is reduced to 443 × 463 × 1 Pixels. Moreover, we reduce 443 ×
463 × 1 Pixels to 84 × 84 × 1 Pixels by resizing.

Figure 3. The proposed architecture.

3.1. Image Pre-Processing

In the first step of the proposed architecture, we pre-process original images of NS-
SHAFT. When we get the game screen from the game environment, as shown in Figure 4, we
can cut the part that does not affect the game judgment so that the entire game screen does
not need to be used as input. Therefore, we cut the original game screen size (636 × 478 × 3)
Pixels to (443 × 463 × 3) Pixels. Since the color has no meaning for the game execu-
tion, we converted the RGB image into a grayscale image to reduce the data dimension,
that is, 443 × 463 × 3 Pixels is reduced to 443 × 463 × 1 Pixels. Moreover, we reduce
443 × 463 × 1 Pixels to 84 × 84 × 1 Pixels by resizing.

Sensors 2022, 22, 5265 8 of 25Sensors 2022, 22, x FOR PEER REVIEW 8 of 25

Figure 4. The flowchart of image pre-processing.

3.2. Reward Function
Since NS-SHAFT does not provide any way to directly obtain game internal infor-

mation shown in Table 3 and does not provide any game information API, we use open
source software, Cheat Engine [30], to analyze the information to obtain relevant numeri-
cal memory addresses and required game information of Reward Function to achieve real-
time training for NS-SHAFT. As shown in Figure 5, Cheat Engine can modify or view the
memory of the program after de-assembly. Moreover, it also locates the relevant values in
the game and then achieve the operation of the overall experimental platform and the
calculation of Reward. The obtained relevant numerical memory addresses and required
game information of Reward Function are loaded by API of Python. The flowchart is
shown in Figure 6.

Table 3. Game internal information.

Information Item Value Description

The current state of the game

0 The character is alive and game runs normally.
1 The character dies, waiting for the game to start.
2 Character is dead.
3 The game is paused.

Game difficulty 1~3 1: simple 2: normal 3: difficult

Character’s blood inventory 0~12
If the character’s blood inventory is equal to 0, the character dies and

the game ends.
Character’s x-axis 0~352 The movable range of the character on the x axis.

Character’s y-axis 0~352 The movable range of the character on the y axis. If the moving range
of the character exceeds 352, it will die and the game will end.

Current floor 1~9999 Current number of floors
Acupuncture deduction 5 Blood deduction by acupuncture

Figure 4. The flowchart of image pre-processing.

3.2. Reward Function

Since NS-SHAFT does not provide any way to directly obtain game internal infor-
mation shown in Table 3 and does not provide any game information API, we use open
source software, Cheat Engine [30], to analyze the information to obtain relevant numerical
memory addresses and required game information of Reward Function to achieve real-
time training for NS-SHAFT. As shown in Figure 5, Cheat Engine can modify or view the
memory of the program after de-assembly. Moreover, it also locates the relevant values
in the game and then achieve the operation of the overall experimental platform and the
calculation of Reward. The obtained relevant numerical memory addresses and required
game information of Reward Function are loaded by API of Python. The flowchart is
shown in Figure 6.

Table 3. Game internal information.

Information
Item Value Description

The current state
of the game

0 The character is alive and game runs normally.
1 The character dies, waiting for the game to start.
2 Character is dead.
3 The game is paused.

Game difficulty 1~3 1: simple 2: normal 3: difficult

Character’s
blood inventory 0~12 If the character’s blood inventory is equal to 0, the character dies and the

game ends.

Character’s
x-axis 0~352 The movable range of the character on the x axis.

Character’s
y-axis 0~352 The movable range of the character on the y axis. If the moving range of the

character exceeds 352, it will die and the game will end.

Current floor 1~9999 Current number of floors

Acupuncture
deduction 5 Blood deduction by acupuncture

Sensors 2022, 22, 5265 9 of 25Sensors 2022, 22, x FOR PEER REVIEW 9 of 25

Figure 5. Cheat Engine.

Figure 6. The flowchart of obtaining game internal information.

In this paper, we use the current state of the game, character’s blood inventory, char-
acter’s y-axis, and current floor to design the Reward Function as follows. We read the
game information to make judgments after each action. Since the death of the character
will lead to the end of the game, we hope that the character can avoid performing the
action that causes the death. If the action is taken, the agent will be killed. People (Agent)

Figure 5. Cheat Engine.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 25

Figure 5. Cheat Engine.

Figure 6. The flowchart of obtaining game internal information.

In this paper, we use the current state of the game, character’s blood inventory, char-
acter’s y-axis, and current floor to design the Reward Function as follows. We read the
game information to make judgments after each action. Since the death of the character
will lead to the end of the game, we hope that the character can avoid performing the
action that causes the death. If the action is taken, the agent will be killed. People (Agent)

Figure 6. The flowchart of obtaining game internal information.

In this paper, we use the current state of the game, character’s blood inventory,
character’s y-axis, and current floor to design the Reward Function as follows. We read the
game information to make judgments after each action. Since the death of the character will
lead to the end of the game, we hope that the character can avoid performing the action

Sensors 2022, 22, 5265 10 of 25

that causes the death. If the action is taken, the agent will be killed. People (Agent) will
receive negative rewards, and the cause of death has two important factors: the character’s
blood volume and the character’s y-axis. In terms of the character’s blood volume, in order
to prevent the character from encountering a needle, the state and action are calculated
After the state (S’) the difference in blood volume between the two states. If the value is
negative, it means that a needle stick after the action will reduce the blood volume and will
be given a negative reward. In terms of the character y-axis, we expect the character to be
in a suitable interval for the game to proceed smoothly. If it is not in this interval, then Give
a negative reward, otherwise, give a positive reward. The most intuitive evaluation value
in the final game is the current floor number. We recorded the number of floors before and
after the action. If the two are subtracted and the number is positive, it means that the floor
has been raised after the action. We will give positive rewards to encourage agents to learn
the strategy.

3.3. Neural Network Architecture Used by DQN

For processing game screen and predicting action, we respectively adopt the Neural
Network architecture used by DQN. First of all, the preprocessed first four consecutive
frames form a state as the input of the model to reflect the action of the character moving
to the left or to the right. The input is a game screen of size 84 × 84 × 4, the first layer
of convolutional layer is composed of 32 8 × 8 filters with stride of 4, the second layer of
convolutional layer is composed of 64 filters of size 4 × 4 and stride of 2, and the third
convolutional layer is composed of It consists of 64 filters with a size of 3 × 3 and a stride
of 1. The parameter settings are shown in Table 4.

Table 4. Parameter of convolutional layer.

Filters Filter Size Activation Stride

Convolution2D 32 8 × 8 ReLU 4
Convolution2D 64 4 x 4 ReLU 2
Convolution2D 64 3 x 3 ReLU 1

After the convolution processing is completed, it is unfolded and connected to a fully
connected layer with 512 neurons, and the final output is the Q value of the three actions.
The relevant training parameters in DQN are described in Table 5, and the optimizer
(Optimizer) used when training the network is Adam, and the loss function (Loss function)
uses Mean-Square Error (MSE, Mean-Square Error) as the evaluation.

Table 5. Parameter of DQN.

Parameters Description

Mini-batch size Number of randomly selected training samples

Replay memory size The number of records stored in the experience pool, and the
oldest data will be removed when exceeded

Update period How many actions are performed and then a training session
Learning rate Adjust the speed of neural network weights

ε-greedy initial value Initial value of Epsilon
ε-greedy final value Final value of Epsilon

Final exploration frame The number of frames required for Epsilon to fall from the
initial value to the final value

Replay start size the required size of the experience pool when starting training

Target network Update period How many steps does the Target network update to the
weight of the Q network

Frame skip How many frames to predict an action
Sample frequency How many game screens are sampled in 1 s

Sensors 2022, 22, 5265 11 of 25

4. Experimental Results

The experiment in this paper will carry out seven kinds of comparative experiments.
First, we test the performance of DQN and DQN with Target network, and then choose
DQN with Target network as our method to test Sample frequency, Frame skipping, Mini-
batch size, Target network Update period, discount value, and Reward function. We also
show the significance of the trained neural network estimates on the game screen. In all
experiments, the degree of difficulty is fixed to the most difficult level for experimentation.

4.1. Experimental Environment

Hardware:
PC with CPU I7-7700 3.60 GHz, memory 32 GB, and Graphics card NVDIA GTX 1050 Ti.
Software:
PC Windows 10 (64 bits), Python, Pycharm IDE, and Tensorflow + Keras.

4.2. Performance Comparison between DQN and DQN with Target Network

In order to understand whether the method with Target network has any difference in
overall training, we trained DQN and DQN with Target network 26,000 rounds each and
combined with the average floor reached every 100 rounds as an evaluation. The training
trend is shown in Figure 7. We can see that the difference between the two is the growth
rate of training effectiveness. The method with Target network is higher than the original
DQN at about 10,000 training. We also compared the average number of reached floors in
the best 100 rounds. As shown in Table 6, the results show that DQN with Target network
is relatively good. Therefore, we choose DQN with Target network as our method.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 25

The experiment in this paper will carry out seven kinds of comparative experiments.
First, we test the performance of DQN and DQN with Target network, and then choose
DQN with Target network as our method to test Sample frequency, Frame skipping, Mini-
batch size, Target network Update period, discount value, and Reward function. We also
show the significance of the trained neural network estimates on the game screen. In all
experiments, the degree of difficulty is fixed to the most difficult level for experimenta-
tion.

4.1. Experimental Environment
Hardware:
PC with CPU I7-7700 3.60 GHz, memory 32 GB, and Graphics card NVDIA GTX 1050

Ti.
Software:
PC Windows 10 (64 bits), Python, Pycharm IDE, and Tensorflow + Keras.

4.2. Performance Comparison between DQN and DQN with Target Network
In order to understand whether the method with Target network has any difference

in overall training, we trained DQN and DQN with Target network 26,000 rounds each
and combined with the average floor reached every 100 rounds as an evaluation. The
training trend is shown in Figure 7. We can see that the difference between the two is the
growth rate of training effectiveness. The method with Target network is higher than the
original DQN at about 10,000 training. We also compared the average number of reached
floors in the best 100 rounds. As shown in Table 6, the results show that DQN with Target
network is relatively good. Therefore, we choose DQN with Target network as our
method.

Figure 7. Comparison of the number of floors between DQN and DQN with Target network.

Figure 7. Comparison of the number of floors between DQN and DQN with Target network.

Table 6. Average number of reached floors in the best 100 rounds.

Method Average Number of Reached Floors in the
Best 100 Rounds

DQN 18.63

DQN with Target network 20.26

Sensors 2022, 22, 5265 12 of 25

4.3. Effect of Sample Frequency

Sample frequency refers to how many pictures need to be captured per second for
training, and the amount of sample frequency affects the amount of picture change. The
schematic diagram is as shown in Figure 8.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 25

Table 6. Average number of reached floors in the best 100 rounds.

Method Average Number of Reached Floors in the Best 100
Rounds

DQN 18.63
DQN with Target network 20.26

4.3. Effect of Sample Frequency
Sample frequency refers to how many pictures need to be captured per second for

training, and the amount of sample frequency affects the amount of picture change. The
schematic diagram is as shown in Figure 8.

Figure 8. Effect of sample frequency.

Taking 60 pictures per second, we can see that there is almost no change in the pic-
tures at the three time points of T = 1~3. If taking 20 pictures per second, we can clearly
see that the characters in the picture have been done. The action of moving to the right is
now, and the difference is even greater at T = 20. The 60 Hz Sample frequency is about to
leave the original floor, while the 20 Hz Sample frequency has already left the original
floor, and the picture has changed. Then you can see the next floor with acupuncture.

In order to understand whether different Sample frequencies have an impact on the
training of DQN with Target network, we use sample frequency as the test item and the
rest of the parameters are unchanged, as shown in Table 7.

Table 7. The parameters for testing sample frequency.

Parameter Value
Mini-batch size 32

Replay memory size 30,000
Update period 4
Learning rate 0.00001

ε-greedy initial value 1
ε-greedy final value 0.1

Final exploration frame 1,000,000
Replay start size 1000

Target network update period 10,000
Frame skipping 0

Sample frequency Test item

Figure 8. Effect of sample frequency.

Taking 60 pictures per second, we can see that there is almost no change in the pictures
at the three time points of T = 1~3. If taking 20 pictures per second, we can clearly see that
the characters in the picture have been done. The action of moving to the right is now, and
the difference is even greater at T = 20. The 60 Hz Sample frequency is about to leave the
original floor, while the 20 Hz Sample frequency has already left the original floor, and the
picture has changed. Then you can see the next floor with acupuncture.

In order to understand whether different Sample frequencies have an impact on the
training of DQN with Target network, we use sample frequency as the test item and the
rest of the parameters are unchanged, as shown in Table 7.

Table 7. The parameters for testing sample frequency.

Parameter Value

Mini-batch size 32
Replay memory size 30,000

Update period 4
Learning rate 0.00001

ε-greedy initial value 1
ε-greedy final value 0.1

Final exploration frame 1,000,000
Replay start size 1000

Target network update period 10,000
Frame skipping 0

Sample frequency Test item

We trained these four different Sample frequencies separately for 24,200 rounds and
combined with the average floor reached every 100 rounds as an evaluation. The training
trend is shown in Figure 9.

Sensors 2022, 22, 5265 13 of 25

Sensors 2022, 22, x FOR PEER REVIEW 13 of 25

We trained these four different Sample frequencies separately for 24,200 rounds and
combined with the average floor reached every 100 rounds as an evaluation. The training
trend is shown in Figure 9.

Figure 9. The training trend of sample frequency.

We can see that the results of training at a too low sample frequency (12 Hz) are much
slower than others and cannot achieve a good result in the end. Although the sample fre-
quency (60 Hz) is too high at the beginning, the training effect has a better trend than
others, but it is ultimately lower than other sample frequencies. We compared the best 100
rounds of average reaching floors as shown in Table 8. The results show that sample fre-
quency (20 Hz) is a relatively good setting, so we choose sample frequency (20 Hz) as the
final training parameter.

Table 8. Average number of reached floors in the best 100 rounds for 4 sample frequencies.

Sample Frequency
Average Number of Reached Floors in the Best 100

Rounds
20 19.1
60 17.73
32 19.03
12 17.69

4.4. Frame Skipping
Since we usually don’t take many actions in one second when playing a game, DQN

does not calculate the Q value per frame, but predicts once every k frames to reduce the
computational cost and collect more experience, which is called frame skipping. However,
since different games may have different suitable methods and the NS-SHAFT game is
more complicated, we re-evaluate whether to use frame skipping. Before the re-evalua-
tion, we introduce the method with or without frame skipping separately as follows.

Figure 10 shows the case where frame skipping is not used. The game screens at the
four time points of T = 1~4 are used as the input of Neural Network and predict an action.
When T = 5, the screens of T = 2~5 are used as the input of Neural Network again to predict
the next action.

Figure 9. The training trend of sample frequency.

We can see that the results of training at a too low sample frequency (12 Hz) are much
slower than others and cannot achieve a good result in the end. Although the sample
frequency (60 Hz) is too high at the beginning, the training effect has a better trend than
others, but it is ultimately lower than other sample frequencies. We compared the best
100 rounds of average reaching floors as shown in Table 8. The results show that sample
frequency (20 Hz) is a relatively good setting, so we choose sample frequency (20 Hz) as
the final training parameter.

Table 8. Average number of reached floors in the best 100 rounds for 4 sample frequencies.

Sample Frequency Average Number of Reached Floors in
the Best 100 Rounds

20 19.1
60 17.73
32 19.03
12 17.69

4.4. Frame Skipping

Since we usually don’t take many actions in one second when playing a game, DQN
does not calculate the Q value per frame, but predicts once every k frames to reduce the
computational cost and collect more experience, which is called frame skipping. However,
since different games may have different suitable methods and the NS-SHAFT game is
more complicated, we re-evaluate whether to use frame skipping. Before the re-evaluation,
we introduce the method with or without frame skipping separately as follows.

Figure 10 shows the case where frame skipping is not used. The game screens at the
four time points of T = 1~4 are used as the input of Neural Network and predict an action.
When T = 5, the screens of T = 2~5 are used as the input of Neural Network again to predict
the next action.

Sensors 2022, 22, 5265 14 of 25

Sensors 2022, 22, x FOR PEER REVIEW 14 of 25

Figure 11 shows the use of frame skipping. The game screens at the four time points
of T = 1~4 are used as the input of Neural Network, and predict an action. However, the
three time points of T = 5~7 continue to use the action adopted at T = 4. Until T = 8, the
screens of T = 5~8 are used as the input of Neural Network to predict the next action.

Figure 10. The case without frame skipping.

Figure 11. The case with frame skipping.

In order to understand whether the different frame skipping settings have an impact
on the training of DQN with target network, we use frame skipping as test item and the
rest of the parameters are unchanged for the comparison of different frame skipping set-
tings, as shown in Table 9. We train four different frame skipping settings and compared
them without frame skipping. A total of 25,900 rounds of training were combined and the
average floor reached every 100 rounds was used as an evaluation. The training trend is
shown in the Figure 12.

Table 9. The parameters for testing frame skipping.

Parameter Value
Mini-batch size 32

Replay memory size 30,000
Update period 4
Learning rate 0.00001

ε-greedy initial value 1
ε-greedy final value 0.1

Final exploration frame 1,000,000

Figure 10. The case without frame skipping.

Figure 11 shows the use of frame skipping. The game screens at the four time points
of T = 1~4 are used as the input of Neural Network, and predict an action. However, the
three time points of T = 5~7 continue to use the action adopted at T = 4. Until T = 8, the
screens of T = 5~8 are used as the input of Neural Network to predict the next action.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 25

Figure 11 shows the use of frame skipping. The game screens at the four time points
of T = 1~4 are used as the input of Neural Network, and predict an action. However, the
three time points of T = 5~7 continue to use the action adopted at T = 4. Until T = 8, the
screens of T = 5~8 are used as the input of Neural Network to predict the next action.

Figure 10. The case without frame skipping.

Figure 11. The case with frame skipping.

In order to understand whether the different frame skipping settings have an impact
on the training of DQN with target network, we use frame skipping as test item and the
rest of the parameters are unchanged for the comparison of different frame skipping set-
tings, as shown in Table 9. We train four different frame skipping settings and compared
them without frame skipping. A total of 25,900 rounds of training were combined and the
average floor reached every 100 rounds was used as an evaluation. The training trend is
shown in the Figure 12.

Table 9. The parameters for testing frame skipping.

Parameter Value
Mini-batch size 32

Replay memory size 30,000
Update period 4
Learning rate 0.00001

ε-greedy initial value 1
ε-greedy final value 0.1

Final exploration frame 1,000,000

Figure 11. The case with frame skipping.

In order to understand whether the different frame skipping settings have an impact
on the training of DQN with target network, we use frame skipping as test item and
the rest of the parameters are unchanged for the comparison of different frame skipping
settings, as shown in Table 9. We train four different frame skipping settings and compared
them without frame skipping. A total of 25,900 rounds of training were combined and the
average floor reached every 100 rounds was used as an evaluation. The training trend is
shown in the Figure 12.

Sensors 2022, 22, 5265 15 of 25

Table 9. The parameters for testing frame skipping.

Parameter Value

Mini-batch size 32
Replay memory size 30,000

Update period 4
Learning rate 0.00001

ε-greedy initial value 1
ε-greedy final value 0.1

Final exploration frame 1,000,000
Replay start size 1000

Target network update period 10,000
Frame skipping Test item

Sample frequency 20 Hz

Sensors 2022, 22, x FOR PEER REVIEW 15 of 25

Replay start size 1000
Target network update period 10,000

Frame skipping Test item
Sample frequency 20 Hz

Figure 12. The training trend of frame skipping in different setting.

One can see that the effectiveness of training in frame skipping (4, 8, 12) is much
lower than the others and cannot achieve a good result in the end. The effectiveness is the
best without using frame skipping (0). The average number of reached floors in the best
100 rounds is shown in Table 10. The results also show that it is better to not use frame
skipping in this experiment. Accordingly, we do not use frame skipping.

Table 10. Average number of reached floors in the best 100 rounds for different frame skipping
settings.

Frame Skipping Settings Average Number of Reached Floors in the Best 100 Rounds
0 20.6
2 16.79
4 8.23
8 3.63

12 2.43

4.5. Mini-Batch Size
We update the Neural Network by using Mini-batch from Replay Memory to solve

the problem of high correlation of samples obtained by reinforcement learning, as shown
in the Figure 13.

Figure 12. The training trend of frame skipping in different setting.

One can see that the effectiveness of training in frame skipping (4, 8, 12) is much
lower than the others and cannot achieve a good result in the end. The effectiveness is the
best without using frame skipping (0). The average number of reached floors in the best
100 rounds is shown in Table 10. The results also show that it is better to not use frame
skipping in this experiment. Accordingly, we do not use frame skipping.

Table 10. Average number of reached floors in the best 100 rounds for different frame
skipping settings.

Frame Skipping Settings Average Number of Reached Floors in the
Best 100 Rounds

0 20.6
2 16.79
4 8.23
8 3.63
12 2.43

Sensors 2022, 22, 5265 16 of 25

4.5. Mini-Batch Size

We update the Neural Network by using Mini-batch from Replay Memory to solve
the problem of high correlation of samples obtained by reinforcement learning, as shown
in the Figure 13.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 25

Figure 13. Mini-batch size.

In order to understand whether the different settings of the Mini-batch size (number
of samples taken) have an impact on the training of DQN target network, we conducted
a training comparison of each mini-batch size. We used the Mini-batch size as the test item
and the rest of the parameters were unchanged. The training parameters are shown in
Table 11.

Table 11. The parameters for testing sample Mini-batch size.

Parameter Value
Mini-batch size Test item

Replay memory size 30,000
Update period 4
Learning rate 0.00001

ε-greedy initial value 1
ε-greedy final value 0.1

Final exploration frame 1,000,000
Replay start size 1000

Target network update period 10,000
Frame skipping 0

Sample frequency 20 Hz

We trained five different batch size settings, and trained a total of 20,500 rounds,
combined with the average floor reached every 100 rounds as an evaluation. The training
trend is shown in Figure 14.

Figure 13. Mini-batch size.

In order to understand whether the different settings of the Mini-batch size (number
of samples taken) have an impact on the training of DQN target network, we conducted a
training comparison of each mini-batch size. We used the Mini-batch size as the test item
and the rest of the parameters were unchanged. The training parameters are shown in
Table 11.

Table 11. The parameters for testing sample Mini-batch size.

Parameter Value

Mini-batch size Test item
Replay memory size 30,000

Update period 4
Learning rate 0.00001

ε-greedy initial value 1
ε-greedy final value 0.1

Final exploration frame 1,000,000
Replay start size 1000

Target network update period 10,000
Frame skipping 0

Sample frequency 20 Hz

We trained five different batch size settings, and trained a total of 20,500 rounds,
combined with the average floor reached every 100 rounds as an evaluation. The training
trend is shown in Figure 14.

Sensors 2022, 22, 5265 17 of 25

Sensors 2022, 22, x FOR PEER REVIEW 17 of 25

Figure 14. The training trend of Mini-batch size in different setting.

We can see that the effectiveness of training with too high batch size (64, 128) is much
lower than others and cannot achieve a good result in the end, while the amplitude of
vibration during training with too low batch size (8) is compared others are larger. Aver-
age number of reached floors in the best 100 rounds for different frame skipping settings
is shown in Table 12. The results show that the moderate batch size (32) in this experiment
is a better setting, so we use batch size (32) as the final training parameter.

Table 12. Average number of reached floors in the best 100 rounds for different frame skipping
settings.

Mini-Batch Size Settings Average Number of Reached Floors in the Best 100 Rounds
32 18.8
8 16.28

16 18.07
64 9.01
28 3.69

4.6. Update Period of Target Network
In order to understand whether the setting of the target network update period has

an impact on the DQN training, we use the target network update period as the test item
and the remaining parameters are unchanged to compare the training of different target
network update periods. The training parameters are shown in Table 13.

Table 13. The parameters for testing target network update period.

Parameter Value
Mini-batch size 32

Replay memory size 30,000
Update period 4
Learning rate 0.00001

ε-greedy initial value 1
ε-greedy final value 0.1

Figure 14. The training trend of Mini-batch size in different setting.

We can see that the effectiveness of training with too high batch size (64, 128) is much
lower than others and cannot achieve a good result in the end, while the amplitude of
vibration during training with too low batch size (8) is compared others are larger. Average
number of reached floors in the best 100 rounds for different frame skipping settings is
shown in Table 12. The results show that the moderate batch size (32) in this experiment is
a better setting, so we use batch size (32) as the final training parameter.

Table 12. Average number of reached floors in the best 100 rounds for different frame
skipping settings.

Mini-Batch Size Settings Average Number of Reached Floors in the
Best 100 Rounds

32 18.8
8 16.28
16 18.07
64 9.01
28 3.69

4.6. Update Period of Target Network

In order to understand whether the setting of the target network update period has
an impact on the DQN training, we use the target network update period as the test item
and the remaining parameters are unchanged to compare the training of different target
network update periods. The training parameters are shown in Table 13.

Sensors 2022, 22, 5265 18 of 25

Table 13. The parameters for testing target network update period.

Parameter Value

Mini-batch size 32
Replay memory size 30,000

Update period 4
Learning rate 0.00001

ε-greedy initial value 1
ε-greedy final value 0.1

Final exploration frame 1,000,000
Replay start size 1000

Target network update period Test item
Frame skipping 0

Sample frequency 20 Hz

We train four different Target network Update periods separately, and train 17,100
rounds in total. The average floor is reached every 100 rounds as an evaluation. The
training trend is shown in Figure 15.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 25

Final exploration frame 1,000,000
Replay start size 1000

Target network update period Test item
Frame skipping 0

Sample frequency 20 Hz

We train four different Target network Update periods separately, and train 17,100
rounds in total. The average floor is reached every 100 rounds as an evaluation. The train-
ing trend is shown in Figure 15.

Figure 15. The training trend of target network update period.

We can see that there is no significant difference in the comparison of the Target net-
work Update period. It may be necessary to set the parameter to be larger to have a sig-
nificant difference. Average number of reached floors in the best 100 rounds for different
target network update periods is shown in Table 14. Target network update period
(10,000) is a better setting, so we use Target network update period (10,000) as the final
training parameter.

Table 14. Average number of reached floors in the best 100 rounds for different target network
update period.

Target Network Update Pe-
riod

Average Number of Reached Floors in the Best 100
Rounds

5000 16.76
10,000 16.25
15,000 14.97
20,000 16.42

4.7. Discount Value
When DQN calculates the target value, it will multiply the future maximum action

value max (,)
a
Q s aγ

′
′ ′ by a discount value (γ), which means that we value the benefits that

can be brought to us in the future when the discount is larger; otherwise, we value the
benefits of the moment without considering the future.

Figure 15. The training trend of target network update period.

We can see that there is no significant difference in the comparison of the Target
network Update period. It may be necessary to set the parameter to be larger to have
a significant difference. Average number of reached floors in the best 100 rounds for
different target network update periods is shown in Table 14. Target network update period
(10,000) is a better setting, so we use Target network update period (10,000) as the final
training parameter.

Table 14. Average number of reached floors in the best 100 rounds for different target network
update period.

Target Network Update Period Average Number of Reached Floors in the
Best 100 Rounds

5000 16.76
10,000 16.25
15,000 14.97
20,000 16.42

Sensors 2022, 22, 5265 19 of 25

4.7. Discount Value

When DQN calculates the target value, it will multiply the future maximum action
value γmax

a′
Q(s′, a′) by a discount value (γ), which means that we value the benefits that

can be brought to us in the future when the discount is larger; otherwise, we value the
benefits of the moment without considering the future.

In order to understand whether the different discount value (γ) settings have any
difference in DQN training, we conducted a training comparison of each discount value (γ).
We took the discount value (γ) as the experimental item and the rest of the parameters were
unchanged, and we trained separately four different discount value (γ) settings, a total of
26,000 rounds of training combined with the average floor reached every 100 rounds as an
evaluation, the training trend is shown in Figure 16.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 25

In order to understand whether the different discount value (γ) settings have any
difference in DQN training, we conducted a training comparison of each discount value
(γ). We took the discount value (γ) as the experimental item and the rest of the parameters
were unchanged, and we trained separately four different discount value (γ) settings, a
total of 26,000 rounds of training combined with the average floor reached every 100
rounds as an evaluation, the training trend is shown in Figure 16.

We can see that the lower discount value (0.7, 0.8) training effect is much lower than
the others, and that closer (0.9, 0.99) gets better results from the higher value (0.99), so we
use the discount value (0.99) is used as the final training parameter.

Figure 16. The training trend of discount value.

4.8. Reward Function
By the testing from 4.3 to 4.7, the parameters of DQN with target network for our

architecture are determined as shown in Table 15.

Table 15. The parameters setting of DQN with target network for our architecture.

Parameters Value Unit
Mini-batch size 32 transition

Replay memory size 30,000 transition
Update period 4 frame
Learning rate 0.00001

ε-greedy initial value 1
ε-greedy final value 0.1

Final exploration frame 1,000,000 transition
Replay start size 1,000 frame

Target network update period 10,000 frame
Frame skipping 0 frame

Sample frequency 20Hz frame

After finishing the parameter setting, we will compare the design of different reward.
There are two ways to define the target value y in DQN. First, it is judged that if an action
is taken that leads to the end of the game round, the terminal is set to true, which means
that the actual value after the action is only the reward obtained at the moment, and there

Figure 16. The training trend of discount value.

We can see that the lower discount value (0.7, 0.8) training effect is much lower than
the others, and that closer (0.9, 0.99) gets better results from the higher value (0.99), so we
use the discount value (0.99) is used as the final training parameter.

4.8. Reward Function

By the testing from 4.3 to 4.7, the parameters of DQN with target network for our
architecture are determined as shown in Table 15.

Table 15. The parameters setting of DQN with target network for our architecture.

Parameters Value Unit

Mini-batch size 32 transition
Replay memory size 30,000 transition

Update period 4 frame
Learning rate 0.00001

ε-greedy initial value 1
ε-greedy final value 0.1

Final exploration frame 1,000,000 transition
Replay start size 1,000 frame

Target network update period 10,000 frame
Frame skipping 0 frame

Sample frequency 20Hz frame

Sensors 2022, 22, 5265 20 of 25

After finishing the parameter setting, we will compare the design of different reward.
There are two ways to define the target value y in DQN. First, it is judged that if an action
is taken that leads to the end of the game round, the terminal is set to true, which means
that the actual value after the action is only the reward obtained at the moment, and there
is no maximum action reward value that can be obtained in the next state. In another case,
the game continues after the action has not ended. At this time, the terminal is false, which
means that the actual value after the action includes not only the reward currently obtained,
but also the maximum reward value of action in the next state. We assume the content of
reward function as Table 16.

Table 16. The content of reward function.

Version 1

After the action, if the floor increases, a positive reward (+1) will be given. If the
character dies after the action, a negative reward (−1) will be given. If the

character’s blood inventory decreases after the action, a negative reward (−1) will
be given.

Version 2

After the action, if the character’s Y-axis value is not within the defined range
(100, 260), a negative reward (−3) will be given. If the character dies after the action,

a negative reward (−10) will be given. If the character’s blood volume decreases
after the action, a negative reward (−5). Positive rewards (+1) for other states.

Version 3

The content is roughly the same as that of version 2. The difference lies in the
definition of terminal. In version 1 and version 2, terminal is set to true only when
the character dies (representing the end of the game round), while version 3 sets the
character’s HP after the action The reduced state also sets terminal to true, but in

fact the game is still in progress, and its impact is that the target value update
calculation is different.

Then we trained these three versions of reward separately, and compared with the
completely random selection of actions, a total of 26,000 rounds were trained and the
average floor reached every 100 rounds was used as an evaluation. The training trend is
shown in Figure 17.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 25

is no maximum action reward value that can be obtained in the next state. In another case,
the game continues after the action has not ended. At this time, the terminal is false, which
means that the actual value after the action includes not only the reward currently ob-
tained, but also the maximum reward value of action in the next state. We assume the
content of reward function as Table 16.

Table 16. The content of reward function.

Version 1

After the action, if the floor increases, a positive reward (+1) will be
given. If the character dies after the action, a negative reward (−1)
will be given. If the character’s blood inventory decreases after the

action, a negative reward (−1) will be given.

Version 2

After the action, if the character’s Y-axis value is not within the de-
fined range (100, 260), a negative reward (−3) will be given. If the

character dies after the action, a negative reward (−10) will be given.
If the character’s blood volume decreases after the action, a negative

reward (−5). Positive rewards (+1) for other states.

Version 3

The content is roughly the same as that of version 2. The difference
lies in the definition of terminal. In version 1 and version 2, terminal
is set to true only when the character dies (representing the end of

the game round), while version 3 sets the character’s HP after the ac-
tion The reduced state also sets terminal to true, but in fact the game
is still in progress, and its impact is that the target value update cal-

culation is different.

Then we trained these three versions of reward separately, and compared with the
completely random selection of actions, a total of 26,000 rounds were trained and the av-
erage floor reached every 100 rounds was used as an evaluation. The training trend is
shown in Figure 17.

Figure 17. The training trend of the three versions of reward function.

We can see that the performance of version 3 in training greatly exceeds the perfor-
mance of other versions. Set terminal to true when the character loses blood, so that the
neural network avoids blood loss actions, thereby increasing the possibility of survival for
the game. Continue, and under the comparison of positive rewards, we found that version

Figure 17. The training trend of the three versions of reward function.

We can see that the performance of version 3 in training greatly exceeds the perfor-
mance of other versions. Set terminal to true when the character loses blood, so that the
neural network avoids blood loss actions, thereby increasing the possibility of survival
for the game. Continue, and under the comparison of positive rewards, we found that
version 1 only rewards when the floor increases after the action. It is too sparse for the

Sensors 2022, 22, 5265 21 of 25

neural network to effectively improve the overall performance, so we set the character Y
axis value in the appropriate range It is correct to give positive rewards to motivate the
character to stay in the proper range from time to time.

We use the ε-greedy strategy for action selection during training, and we set ε to
eventually drop to 0.1 and remain unchanged, which means that every time an action is
selected, there will be a 10% chance of randomly selecting the action output, in order to
verify whether the model meets the training results; therefore, we will apply each trained
model to the game for verification, and select the maximum Q value action as the output
each time.

We tested the three versions of the model for 400 rounds, and plotted the average of
each 100 rounds into Figure 18. It can be found that the average achieved floor of each
version is higher than the value achieved during training, which can confirm that each
model can be applied the game, and we found that the average achieved floors of version 3
are all above 20 floors, while version 1 is below 15 floors, which once again confirms how
to define the reward function is an important key in reinforcement learning.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 25

1 only rewards when the floor increases after the action. It is too sparse for the neural
network to effectively improve the overall performance, so we set the character Y axis
value in the appropriate range It is correct to give positive rewards to motivate the char-
acter to stay in the proper range from time to time.

We use the ε-greedy strategy for action selection during training, and we set ε to
eventually drop to 0.1 and remain unchanged, which means that every time an action is
selected, there will be a 10% chance of randomly selecting the action output, in order to
verify whether the model meets the training results; therefore, we will apply each trained
model to the game for verification, and select the maximum Q value action as the output
each time.

We tested the three versions of the model for 400 rounds, and plotted the average of
each 100 rounds into Figure 18. It can be found that the average achieved floor of each
version is higher than the value achieved during training, which can confirm that each
model can be applied the game, and we found that the average achieved floors of version
3 are all above 20 floors, while version 1 is below 15 floors, which once again confirms
how to define the reward function is an important key in reinforcement learning.

Finally, we counted the highest reached floors and the highest 100 average floor in-
formation in 400 rounds of each version, as shown in Figure 18.

Figure 18. Verify the results of 400 rounds separately.

We tested the three versions of the model for 400 rounds respectively, and plotted
the average of each 100 rounds into the above figure. We can find that the average
achieved floor of each version is higher than the value achieved during training, which
can confirm that each model can be applied the game, and we found that the average
achieved floors of version 3 are all above 20 floors, while version 1 is below 15 floors,
which once again confirms how to define the reward function is an important key in rein-
forcement learning.

Finally, we counted the highest reached floor and the highest 100 average floor infor-
mation in 400 rounds of each version, as shown in Figure 19.

Figure 18. Verify the results of 400 rounds separately.

Finally, we counted the highest reached floors and the highest 100 average floor
information in 400 rounds of each version, as shown in Figure 18.

We tested the three versions of the model for 400 rounds respectively, and plotted the
average of each 100 rounds into the above figure. We can find that the average achieved
floor of each version is higher than the value achieved during training, which can confirm
that each model can be applied the game, and we found that the average achieved floors
of version 3 are all above 20 floors, while version 1 is below 15 floors, which once again
confirms how to define the reward function is an important key in reinforcement learning.

Finally, we counted the highest reached floor and the highest 100 average floor infor-
mation in 400 rounds of each version, as shown in Figure 19.

Sensors 2022, 22, 5265 22 of 25Sensors 2022, 22, x FOR PEER REVIEW 22 of 25

Figure 19. 400 round statistics.

In 400 rounds, the highest floor of version 3 reached 90. The number of needles in the
game increased sharply after the 80th floor, as shown in Figure 20, so we can regard the
80th floor as the end of the game, and the average of the highest 100 pens reached 53
layers, it can be seen that in a few cases of this game, version 3 can reach the level of
ordinary players or even surpass some players.

Figure 20. 80-layer schematic.

4.9. Q value Visualization
After training the model, in order to understand the meaning of the maximum action

Q value estimated by the neural network in the game screen, we observed a period of the
game. The trend of the maximum Q value is shown in Figure 21.

Figure 19. 400 round statistics.

In 400 rounds, the highest floor of version 3 reached 90. The number of needles in the
game increased sharply after the 80th floor, as shown in Figure 20, so we can regard the
80th floor as the end of the game, and the average of the highest 100 pens reached 53 layers,
it can be seen that in a few cases of this game, version 3 can reach the level of ordinary
players or even surpass some players.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 25

Figure 19. 400 round statistics.

In 400 rounds, the highest floor of version 3 reached 90. The number of needles in the
game increased sharply after the 80th floor, as shown in Figure 20, so we can regard the
80th floor as the end of the game, and the average of the highest 100 pens reached 53
layers, it can be seen that in a few cases of this game, version 3 can reach the level of
ordinary players or even surpass some players.

Figure 20. 80-layer schematic.

4.9. Q value Visualization
After training the model, in order to understand the meaning of the maximum action

Q value estimated by the neural network in the game screen, we observed a period of the
game. The trend of the maximum Q value is shown in Figure 21.

Figure 20. 80-layer schematic.

4.9. Q value Visualization

After training the model, in order to understand the meaning of the maximum action
Q value estimated by the neural network in the game screen, we observed a period of the
game. The trend of the maximum Q value is shown in Figure 21.

Sensors 2022, 22, 5265 23 of 25
Sensors 2022, 22, x FOR PEER REVIEW 23 of 25

Figure 21. Trend graph of maximum Q value. Each meaning of numbers 1–4 is explained in Figure
22.

We recorded the maximum action Q value estimated by the neural network from the
1100th frame to the 1400th frame in the game. As shown in Figure 22, we will use the game
screen in which the Q values of the two parts of the trend graph increase from low to high
for explanation.

First, we see the game screen marked 1 and we can find that the character in this state
is in a very bad position, and there is no floor below to keep the character alive. At this
time, the Q values given by the network to the three actions are: Still: 30, Move right: 33,
Move left: 31, no matter what action is taken, it is not good for the game to continue. Then,
we see that the game screen marked 2 and we can find that there is a normal floor under
the character. If the character is at this point, it can continue the game, the Q values given
to the three actions by the network at this time are: static: 65, moving right: 63, moving
left: 67. Taking a leftward action is most beneficial to land on the floor, so the network The
highest estimate is given for the movement to the left.

When we see that the game screen is marked 3, we can find that the character in this
state is in a very bad position. The needles below will cause the character to reduce the
blood volume. At this time, the Q value given by the network for the three actions are:
static: 27. Move to the right: 25. Move to the left: 28. No matter what action is taken, it is
not good for the game to continue. Then, when you see the game screen marked 4, you
can find that there is a normal floor under the character. If the character moves to the left,
it will If there is a chance at this point, the Q values given to the three actions by the net-
work at this time are: static: 55, moving right: 39, moving left: 61, taking a leftward action
is most beneficial to land on the floor, so the network gives the highest estimate of the
movement to the left.

By analyzing the Q value predicted by the Neural Network one by one, we can find
that the Neural Network we trained gives the correct estimation in each state of the game
and clearly understands the actual meaning of its Q value in the game.

Figure 21. Trend graph of maximum Q value. Each meaning of numbers 1–4 is explained in Figure 22.

Sensors 2022, 22, x FOR PEER REVIEW 23 of 25

Figure 21. Trend graph of maximum Q value. Each meaning of numbers 1–4 is explained in Figure
22.

We recorded the maximum action Q value estimated by the neural network from the
1100th frame to the 1400th frame in the game. As shown in Figure 22, we will use the game
screen in which the Q values of the two parts of the trend graph increase from low to high
for explanation.

First, we see the game screen marked 1 and we can find that the character in this state
is in a very bad position, and there is no floor below to keep the character alive. At this
time, the Q values given by the network to the three actions are: Still: 30, Move right: 33,
Move left: 31, no matter what action is taken, it is not good for the game to continue. Then,
we see that the game screen marked 2 and we can find that there is a normal floor under
the character. If the character is at this point, it can continue the game, the Q values given
to the three actions by the network at this time are: static: 65, moving right: 63, moving
left: 67. Taking a leftward action is most beneficial to land on the floor, so the network The
highest estimate is given for the movement to the left.

When we see that the game screen is marked 3, we can find that the character in this
state is in a very bad position. The needles below will cause the character to reduce the
blood volume. At this time, the Q value given by the network for the three actions are:
static: 27. Move to the right: 25. Move to the left: 28. No matter what action is taken, it is
not good for the game to continue. Then, when you see the game screen marked 4, you
can find that there is a normal floor under the character. If the character moves to the left,
it will If there is a chance at this point, the Q values given to the three actions by the net-
work at this time are: static: 55, moving right: 39, moving left: 61, taking a leftward action
is most beneficial to land on the floor, so the network gives the highest estimate of the
movement to the left.

By analyzing the Q value predicted by the Neural Network one by one, we can find
that the Neural Network we trained gives the correct estimation in each state of the game
and clearly understands the actual meaning of its Q value in the game.

Sensors 2022, 22, x FOR PEER REVIEW 24 of 25

Figure 22. Actual game screen marked 1, 2, 3, and 4 in the trend graph of maximum Q value.

Finally, we give a comparison with other methods by the average number of reached
floors in the best 100 rounds of 2600 rounds. From the results shown in Table 17, the per-
formance of the proposed method is better than the methods in Sarsa [13] and HNeat Pixel
[18]. When comparing with the methods proposed in HNeat Best [18], DQN [14], and
DQN best [15], the proposed method shows comparable performance.

Table 17. The comparison with other methods by the average number of reached floors in the best
100 rounds of 2600 rounds.

 Average Floors (Score) of NS-SHAFT Game
Sarsa [13] 7.86

HNeat Best [18] 17.54
HNeat Pixel [18] 9.25

DQN [14] 18.63
DQN best [15] 20.26

The proposed method 20.31

5. Conclusions
In this paper, we successfully used deep reinforcement learning technology in the

real-time game environment, and built a real-time game operation learning system with
Cheat Engine as API. From the experimental results, it is still a bit behind the average
performance of the average player. When comparing with the architecture that takes com-
pletely random actions, our method has taken a correct step for this game. Moreover, we
found that the performance is affected by low parameter value or high parameter value.
We also compared the settings of different reward functions and found that the definition
of terminal and the internal information of the game can effectively improve the overall
training results.

Author Contributions: Conceptualization, S.-T.C. and C.-L.C.; methodology, S.-T.C. and C.-L.C.;
software, P.-Y.L.; validation, C.-L.C. and C.-Y.C.; writing—review and editing, S.-T.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This paper was financially supported by the “Intelligence Recognition Industry
Service Research Center (IR-IS Research Center)” from The Featured Areas Research Center Pro-
gram within the framework of the Higher Education Sprout Project by the Ministry of Education
(MOE) in Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 22. Actual game screen marked 1, 2, 3, and 4 in the trend graph of maximum Q value.

We recorded the maximum action Q value estimated by the neural network from the
1100th frame to the 1400th frame in the game. As shown in Figure 22, we will use the game
screen in which the Q values of the two parts of the trend graph increase from low to high
for explanation.

First, we see the game screen marked 1 and we can find that the character in this state
is in a very bad position, and there is no floor below to keep the character alive. At this
time, the Q values given by the network to the three actions are: Still: 30, Move right: 33,
Move left: 31, no matter what action is taken, it is not good for the game to continue. Then,
we see that the game screen marked 2 and we can find that there is a normal floor under
the character. If the character is at this point, it can continue the game, the Q values given
to the three actions by the network at this time are: static: 65, moving right: 63, moving
left: 67. Taking a leftward action is most beneficial to land on the floor, so the network The
highest estimate is given for the movement to the left.

Sensors 2022, 22, 5265 24 of 25

When we see that the game screen is marked 3, we can find that the character in this
state is in a very bad position. The needles below will cause the character to reduce the
blood volume. At this time, the Q value given by the network for the three actions are:
static: 27. Move to the right: 25. Move to the left: 28. No matter what action is taken, it is
not good for the game to continue. Then, when you see the game screen marked 4, you can
find that there is a normal floor under the character. If the character moves to the left, it will
If there is a chance at this point, the Q values given to the three actions by the network at
this time are: static: 55, moving right: 39, moving left: 61, taking a leftward action is most
beneficial to land on the floor, so the network gives the highest estimate of the movement
to the left.

By analyzing the Q value predicted by the Neural Network one by one, we can find
that the Neural Network we trained gives the correct estimation in each state of the game
and clearly understands the actual meaning of its Q value in the game.

Finally, we give a comparison with other methods by the average number of reached
floors in the best 100 rounds of 2600 rounds. From the results shown in Table 17, the
performance of the proposed method is better than the methods in Sarsa [13] and HNeat
Pixel [18]. When comparing with the methods proposed in HNeat Best [18], DQN [14], and
DQN best [15], the proposed method shows comparable performance.

Table 17. The comparison with other methods by the average number of reached floors in the best
100 rounds of 2600 rounds.

Average Floors (Score) of NS-SHAFT Game

Sarsa [13] 7.86
HNeat Best [18] 17.54
HNeat Pixel [18] 9.25

DQN [14] 18.63
DQN best [15] 20.26

The proposed method 20.31

5. Conclusions

In this paper, we successfully used deep reinforcement learning technology in the
real-time game environment, and built a real-time game operation learning system with
Cheat Engine as API. From the experimental results, it is still a bit behind the average
performance of the average player. When comparing with the architecture that takes
completely random actions, our method has taken a correct step for this game. Moreover,
we found that the performance is affected by low parameter value or high parameter value.
We also compared the settings of different reward functions and found that the definition
of terminal and the internal information of the game can effectively improve the overall
training results.

Author Contributions: Conceptualization, S.-T.C. and C.-L.C.; methodology, S.-T.C. and C.-L.C.;
software, P.-Y.L.; validation, C.-L.C. and C.-Y.C.; writing—review and editing, S.-T.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This paper was financially supported by the “Intelligence Recognition Industry
Service Research Center (IR-IS Research Center)” from The Featured Areas Research Center Program
within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE)
in Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 5265 25 of 25

References
1. Lin, J.T.; Chen, T.-L.; Chu, H.-C. A stochastic dynamic programming approach for multi-site capacity planning in TFT-LCD

manufacturing under demand uncertainty. Int. J. Prod. Econ. 2014, 148, 21–36. [CrossRef]
2. Chang, C.-L.; Chen, C.-J.; Lee, H.-T.; Chang, C.-Y.; Chen, S.-T. Bounding the Sensing Data Collection Time with Ring-Based

Routing for Industrial Wireless Sensor Networks. J. Internet Technol. 2020, 21, 673–680.
3. Chang, C.-L.; Syu, J.-M.; Chang, C.-Y.; Chen, S.-T. Optimization-based Deployment of Beacons for Indoor Positioning Using

Wireless Communications and Signal Power Ranking. IET Commun. 2020, 14, 2915–2923. [CrossRef]
4. Chang, C.-L.; Chen, S.-T.; Chang, C.-Y.; Jhou, Y.-C. The Application of Machine Learning in Air Hockey Interactive Control

System. Sensors 2020, 18, 7233. [CrossRef] [PubMed]
5. Lin, S.-J.; Chen, S.-T. Enhance the perception of easy-to-fall and apply the Internet of Things to fall prediction and protection. J.

Healthc. Commun. 2020, 5.
6. Chang, C.-L.; Tsai, Y.-L.; Chang, C.-Y.; Chen, S.-T. Emergency Evacuation Planning via the Point of View on the Relationship

between Crowd Density and Moving Speed. Wirel. Pers. Commun. 2021, 119, 2577–2602. [CrossRef]
7. Chen, S.-Y.; Lin, S.-J.; Tsai, M.-C.; Tang, Y.-J.; Chen, S.-T.; Wang, L.-H. Patient Confidential Information Transmission Using the

Integration of PSO-based Biomedical Signal Steganography and Threshold-based Compression. J. Med. Biol. Eng. 2021, 41,
433–446. [CrossRef]

8. Chen, S.-T.; Hua, C.-C.; Chuang, C.-C. Forest Management using Internet of Things in the Fushan Botanical Garden in Taiwan. J.
Adv. Artif. Life Robot. 2021, 2, 2795.

9. Zhao, M.; Chen, S.-T.; Chen, T.-L.; Tu, S.-Y.; Yeh, C.-T.; Lin, F.-Y.; Lu, H.-C. Intelligent Healthcare System Using Patients
Confidential Data Communication in Electrocardiogram Signals. Front. Aging Neurosci. 2022, 14, 870844. [CrossRef]

10. De Koning, M.; Santos, B.F. Fleet Planning under Demand Uncertainty: A Reinforcement Learning Approach. Master Thesis,
Delft University of Technology, Delft, The Netherlands, 2021.

11. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. Mastering the game of Go with deep Neural Networks and tree search. Nature 2016, 529, 484–489. [CrossRef]

12. Schmidhuber, J. Deep Learning in Neural Networks: An Neural Networks. Neural Netw. 2015, 61, 85–117. [CrossRef]
13. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. AI Res. 1996, 4, 237–285. [CrossRef]
14. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with deep reinforce-

ment learning. arXiv 2013, arXiv:1312.5602.
15. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
16. Van Hasselt, H. Double Q-Learning. Adv. Neural Inf. Processing Syst. 2010, 23, 2613–2621.
17. Akihiko, K. NS-SHAFT 1.3J. Available online: https://www.nagi-p.com/v1/nssh.html (accessed on 1 October 2019).
18. Shi, D.; Van Roy, B.; Zhou, Z. Simple Agent, Complex Environment: Efficient Reinforcement Learning with Agent States. arXiv

2021, arXiv:2102.05261v17.
19. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double Q-learning. In Proceedings of the 30th AAAI

Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.
20. Williams, R. What is Flappy Bird? The Game Taking the App Store by Storm. 2014. Available online: https://www.

telegraph.co.uk/technology/news/10604366/What-is-Flappy-Bird-The-game-taking-the-App-Store-by-storm.html (accessed
on 1 January 2020).

21. Ebeling-Rump, M.; Kao, M.; Hervieux-Moore, Z. Applying Q-Learning to Flappy Bird; Queen’s University: Kingston, ON,
Canada, 2016.

22. Watkins, C.J.; Dayan, P. Q-Learning. Mach. Learn. 1996, 8, 279–292. [CrossRef]
23. Bellemare, M.G.; Naddaf, Y.; Veness, J.; Bowling, M. The arcade learning environment: An evaluation platform for general agents.

J. Artif. Intell. Res. 2013, 47, 253–279. [CrossRef]
24. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional Neural Networks. Adv. Neural Inf.

Processing Syst. 2012, 25, 1106–1114. [CrossRef]
25. Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-dependent pre-trained deep Neural Networks for large-vocabulary speech

recognition. IEEE Trans. Audio, Speech, Lang. Process. 2012, 20, 30–42. [CrossRef]
26. Lin, L.-J. Reinforcement Learning for Robots using Neural Networks; Carnegie Mellon University: Pittsburgh, PA, USA, 1993.
27. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
28. Wang, Z.; Schaul, T.; Hessel, M.; van Hasselt, H.; Lanctot, M.; de Freitas, N. Dueling network architectures for deep reinforcement

learning. arXiv 2015, arXiv:1511.06581.
29. Horgan, D.; Quan, J.; Budden, D.; Barth-Maron, G.; Hessel, M.; van Hasselt, H.; Silver, D. Distributed prioritized experience

replay. arXiv 2018, arXiv:1803.00933.
30. Cheat Engine Developers. Cheat Engine. Available online: http://cheatengine.org (accessed on 1 January 2020).

http://doi.org/10.1016/j.ijpe.2013.11.003
http://doi.org/10.1049/iet-com.2019.0201
http://doi.org/10.3390/s20247233
http://www.ncbi.nlm.nih.gov/pubmed/33348665
http://doi.org/10.1007/s11277-021-08345-y
http://doi.org/10.1007/s40846-021-00641-z
http://doi.org/10.3389/fnagi.2022.870844
http://doi.org/10.1038/nature16961
http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.1613/jair.301
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
https://www.nagi-p.com/v1/nssh.html
https://www.telegraph.co.uk/technology/news/10604366/What-is-Flappy-Bird-The-game-taking-the-App-Store-by-storm.html
https://www.telegraph.co.uk/technology/news/10604366/What-is-Flappy-Bird-The-game-taking-the-App-Store-by-storm.html
http://doi.org/10.1007/BF00992698
http://doi.org/10.1613/jair.3912
http://doi.org/10.1145/3065386
http://doi.org/10.1109/TASL.2011.2134090
http://cheatengine.org

	Introduction
	Preliminaries and Background
	Introduction to NS-SHAFT
	Reinforcement Learning
	Q-Learning
	Deep Q-Network
	Deep Q-Network with Target Network
	Related Work

	Proposed Method
	Image Pre-Processing
	Reward Function
	Neural Network Architecture Used by DQN

	Experimental Results
	Experimental Environment
	Performance Comparison between DQN and DQN with Target Network
	Effect of Sample Frequency
	Frame Skipping
	Mini-Batch Size
	Update Period of Target Network
	Discount Value
	Reward Function
	Q value Visualization

	Conclusions
	References

