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Abstract: Pancreatic ductal adenocarcinoma (PDAC) elicits a dense stromal response that 

blocks vascular access because of pericyte coverage of vascular fenestrations. In this way, 

the PDAC stroma contributes to chemotherapy resistance, and the small-sized nanocarrier 

loaded with platinum has been adopted to address this problem which is not suitable for 

loading docetaxel (DTX). In the present study, we used the poly(D,L-lactide)-b-polyethylene 

glycol-methoxy (mPEG-b-PDLLA) to encapsulate DTX and got a small-sized polymeric 

micelle (SPM); meanwhile we functionalized the SPM’s surface with TAT peptide (TAT-PM) 
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for a higher permeability. The diameters of both SPM and TAT-PM were in the range of  

15–26 nm. In vitro experiments demonstrated that TAT-PM inhibited Capan-2 Luc PDAC 

cells growth more efficiently and induced more apoptosis compared to SPM and Duopafei. 

The in vivo therapeutic efficiencies of SPM and TAT-PM compared to free DTX was 

investigated on the orthotopic transplantation model of Capan-2 Luc. SPM exerted better 

therapeutic efficiency than free DTX, however, TAT-PM didn’t outperformed SPM.  

Overall, these results disclosed that SPM could represent a new therapeutic approach against 

pancreatic cancer, but its permeability to PDAC was not the only decisive factor. 

Keywords: pancreatic ductal adenocarcinoma; small-sized polymeric micelles; docetaxel; 

permeability; orthotopic transplantation model 

 

1. Introduction 

Exocrine tumors, which occur in the exocrine cells of the pancreas, are the most common form of 

pancreatic cancer. These tumors account for well over 95% of all pancreatic cancers, and can occur 

anywhere along the length of the pancreas. Pancreatic ductal adenocarcinoma (PDAC) is the most 

common type, making up about 90% of all exocrine tumors. Due to delayed diagnosis and aggressiveness 

of pancreatic cancer, only 10% of patients are eligible for curative treatment and 90% of patients undergo 

palliative therapies [1]. 

Chemotherapy may be used either in the palliative setting for metastatic or locally advanced 

unresectable tumors, or in resectable disease before (neoadjuvant) or after surgery (adjuvant treatment). 

However, pancreatic cancer is one of the most intrinsically drug resistant tumors and resistance to 

chemotherapeutic agents is a major cause of treatment failure in pancreatic cancer. Decades of effort 

have witnessed the failure of many chemotherapeutic regimens and the current standard-of-care therapy, 

gemcitabine, extends patient survival by only a few weeks [2–4]. Impaired drug delivery is one of  

the major possible mechanisms of chemoresistance. The limitations of clinical chemotherapy have  

been ascribed primarily to mechanisms that mediate drug resistance at the cellular level [5]. However, 

substantial evidence suggests that mechanisms that involve the tumor microenvironment also mediate 

resistance of solid tumors to chemotherapy. Neoplasms of the pancreas tend to have a characteristic 

vascularization pattern and adenocarcinomas are often hypovascularized as compared to the surrounding 

tissue [6]. In addition, the tumor-associated stroma (e.g., carcinoma-associated fibroblasts, CAFs)  

has been implicated as a physical barrier to the delivery of chemotherapy in PDAC and other solid 

malignancies [5]. Using a genetically engineered mouse model of PDAC that develops extensive stroma, 

Olive and colleagues showed improved efficacy of gemcitabine when combined with a Hedgehog 

antagonist [7]. Tumors in this model are poorly perfused, which hampers the delivery and efficacy of 

gemcitabine treatment. However, treatment with a Hedgehog antagonist depleted tumor-associated 

stroma and improved tumor vascularity, increased intratumoral concentration of gemcitabine, and 

stabilized disease [7]. Therefore, there is a dire need for designing new and targeted therapeutic  

strategies that can overcome the chemoresistance and improve the clinical outcome for patients 

diagnosed with PDAC. 
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Advances in nanotechnology have shown great promise in improving the therapeutic efficiency for 

chemotherapeutic agents in cancer therapy. A variety of nanocarriers and vehicles have been widely 

studied to transport diagnostic or therapeutic agents to cancer cells [8–10]. However, poor penetration 

of antitumor drugs into the extravascular tumor tissue is often a major factor limiting the efficacy of 

cancer treatments. The strategy of using small-sized nanocarriers to deliver a chemotherapeutic drug 

deeply into the tumor has drawn much attention recently [11,12]. H. Cabral et al. compare the therapeutic 

effects of 30, 50, 70 and 100 nm drug-loaded polymeric micelles against PDAC, and found only the 30 nm 

micelles could penetrate poorly permeable pancreatic tumor to achieve an antitumor effect [13]. Hence, 

rationally decreasing the size could increase the penetration of nanomedicines, which is potentially to 

overcome the penetration obstacles against PDAC. 

Transportation of agents by nanocarriers depends largely on agent structures [14], and the 

aforementioned small-sized nanocarrier has been found to be suitable for incorporating platinum agents 

because of their electrostatic interactions and hydrophobic forces, but has not been shown to be suitable 

for hydrophobic taxanes (e.g., paclitaxel and docetaxel (DTX)) [13,15]. Taxanes demonstrate a high 

level of clinical activity, represented by clinical remissions in advanced ovarian, breast and the upper 

aerodigestive tract cancers [16–18]. The central role of taxanes in the therapy of common epithelial 

cancers is further highlighted by their ability to induce remissions in patients with anthracycline- or  

cis-platinum-resistant epithelial cancers [18]. DTX, in particular, is broadly indicated for the treatment 

of non-small cell lung cancer, and breast, prostate, stomach and head and neck cancers [19], though these 

results remain open to debate [20], and is clinically preferred to paclitaxel [19]. However, to our best of 

our knowledge, very few studies have tested the efficacy of small-sized nanoparticles to deliver DTX  

in PDAC, and developing a small (10–30 nm) nanocarrier for DTX is desperately needed. 

In addition, oncology drug development relies heavily on mouse models bearing transplanted  

tumors for efficacy testing of novel agents. However, such models of PDAC respond to numerous 

chemotherapeutic agents, including gemcitabine [21–26], suggesting that their predictive utility may be 

limited. The experimental models used in these studies will never faithfully reflect the clinical disease. 

Orthotopic human pancreatic cancer xenografts models offer an alternative to transplantation models for 

preclinical therapeutic evaluation and are used as the preference for cancer research due to the increased 

clinical relevance and similar to the ideal of the “anthropomorphic” pancreatic cancer model [27]. 

DTX-loaded small-sized polymeric micelles (SPM) which assemble from amphiphilic block 

copolymers, poly(D,L-lactide)-b-polyethylene glycol-methoxy (mPEG-b-PDLLA), have shown great 

advantages because of the high drug loading capacity, higher permeability and controlled release profiles 

by our previous study [28,29]. Better penetrating capability would be achieved by modification with 

TAT peptide [30] at the surface of SPM (TAT-PM). In this study, SPM and TAT-PM were used as the 

vehicle for DTX against PDAC. The aim of this study was to investigate the therapeutic efficiencies of 

SPM and TAT-PM in the clinically relevant PDAC (Capan-2 Luc) orthotopic xenografts compared to 

Duopafei (free DTX; Qilu Pharm. Co., Ltd., Jinan, China). As TAT-PM probably being with elevated 

permeability, the therapeutic difference would tell us how important the permeability is and provide us 

an important clue to the future design of small-sized nanoparticles for the PDAC therapy. 
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2. Results 

2.1. Preparation and Characterization of SPM and TAT-PM 

As shown in Figure 1A, mPEG-b-PDLLA and Maleimide-PEG-b-PDLLA (Mal-PEG-b-PDLLA) 

were synthesized by ring opening polymerization of D,L-lactide [31]. The degree of polymerization of 

PDLLA was calculated by comparing integral intensity of characteristic resonance of PDLLA at 5.2 ppm 

(–C(O)–CH(–CH3–)) and PEG resonance at 3.64 ppm (–OCH2CH2–) in the 1H NMR spectrum  

(as shown in Figure 1B). The calculated results indicated that Mn of Mal-PEG-b-PDLLA was 3000 Da. 

Then TAT-SH was conjugated with Mal-PEG-b-PDLLA. The excessive TAT-SH was removed by 

dialysis (MWCO 3500 Da; Millipore, Billerica, MA, USA) against distilled water. The successful 

conjugation of TAT-SH to Mal-PEG-b-PDLLA was further confirmed by 1H NMR. As shown in  

Figure 1B, the absence of the characteristic resonance of maleimide at 6.7 ppm indicated the conjugation 

as described previously [31]. The CMC of mPEG-b-PDLLA was determined as 2.90 µg/mL by a 

fluorescence spectroscopy measurement in our previous study [28], while the CMC of TAT-PEG-b-PDLLA 

was determined as 5.57 µg/mL using the same measurement method as well. 

Then we incorporated DTX into SPM and TAT-PM (shown in Figure 1C) using the self-assembly 

procedure. Their sizes were examined by dynamic light scattering (DLS). As shown in Figure 1D,E, 

SPM and TAT-PM had a unimodal size distribution, and the mean diameter were 16.76 and 25.28 nm, 

respectively. The average micelle sizes of both formulations were in the range of 15–25 nm. The in vitro 

release behavior of SPM and TAT-PM presented as the cumulative percentage release is shown in  

Figure 1F, which demonstrated that TAT-PM was less stable than SPM probably because of the surface 

functionalization by TAT peptide. 

2.2. In Vitro Cytotoxicity Assays 

We sought to determine whether encapsulation of DTX in SPM or TAT-functionalized micelles 

would increase drug entry into tumor cells and cytotoxicity. Capan-2 Luc cells were exposed to a series 

of equivalent concentrations of Duopafei, SPM and TAT-PM for 48 h, and the percentage of inhibiting 

rate was quantified using the MTT method. Figure 2A shows the cell viability after 48 h incubation as  

a function of the DTX amount used for Duopafei, SPM or TAT-PM. Duopafei, SPM and TAT-PM 

demonstrated the striking dose-dependent cytotoxicities against tumor cells. At the DTX-concentration 

range of 0.1–50 nmol/mL, SPM and TAT-PM demonstrated higher cytotoxicities than Duopafei against 

Capan-2 Luc cells as shown in Figure 2A. Especially, there is a significantly higher cytotoxicity with 

TAT-PM compared to SPM (p < 0.05). This could be explained by the increased interaction of TAT-PM 

with cells because of TAT peptide [30]. 

2.3. SPM and TAT-PM Increased DTX-Induced Apoptosis 

DTX has been described as an antimitotic agent that binds to β-tubulin, resulting in block of the cell 

cycle at the G2/M phase and apoptosis of cells [18,19]. Encapsulation of DTX in nanoparticles could 

induce more apoptosis of prostate cancer cells through the activation of the caspase-2 pathway [32]. 

Given that SPM and TAT-PM demonstrated stronger in vitro cytotoxicity than Duopafei, we performed 
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apoptosis assays using Annexin V-FITC and PI staining to compare apoptosis induction among 

Duopafei, SPM and TAT-PM. As predicted, SPM increased late apoptosis in Capan-2 Luc cells 

compared with Duopafei (13.98% vs. 11.79%); moreover, TAT-PM induced more late apoptosis than 

SPM (24.20% vs. 13.98%) (Figure 2B). 

2.4. Interaction to Capan-2 Luc Cells 

Confocal microscopy was used to observe internalization speed of SPM and TAT-PM. For the in vitro 

fluorescence imaging investigation, the near-infrared fluorescent probe Coumarin 6 (C6) was loaded into 

mPEG-b-PDLLA micelles or TAT-PEG-b-PDLLA/mPEG-b-PDLLA micelles to yield C6-SPM or  

C6-TAT-PM respectively. The CLSM images of Capan-2 Luc cells after incubation with C6-SPM and 

C6-TAT-PM for 5, 10, 20 and 30 min are demonstrated in Figure 2C. 5 min CLSM images in Figure 2C 

showed that the fluorescence of C6-SPM in Capan-2 Luc cells was weaker than C6-TAT-PM, which 

indicated that the internalization process of C6-SPM was slower than C6-TAT-PM. These results give us 

strong evidence that TAT modified micelles show the significant tumor penetration efficiency to  

Capan-2 Luc cells compared to plain micelles. 

Figure 1. The characterization of small-sized polymeric micelles (SPM) and TAT-PM.  

(A) The synthesis scheme of mPEG-b-PDLLA, Mal-PEG-b-PDLLA and TAT-PEG-b-

PDLLA; (B) 600 MHz 1H NMR spectra of mPEG-b-PDLLA, Mal-PEG-b-PDLLA and 

TAT-PEG-b-PDLLA; (C) Schematic illustration of SPM and TAT-PM; (D) Size distribution 

of SPM and TAT-PM in aqueous medium measured by dynamic light scattering (DLS) 

analysis; (E) Transmission electron microscopy (TEM) images of SPM and TAT-PM;  

scale bar = 50 and 200 nm respectively; and (F) In vitro release profile of SPM & TAT-PM 

in PBS (pH 7.4). 
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Figure 2. The in vitro assessment of SPM and TAT-PM. (A) Cytotoxicity effect of Duopafei, 

SPM and TAT-PM on Capan-2 Luc cells, which was assessed by the MTT assay. SPM 

treated group vs. TAT-PM treated group: * p < 0.05, ** p < 0.01; (B) Confocal laser scanning 

microscopy (CLSM) images of the Capan-2 Luc cells incubated with SPM and TAT-PM at 

37 °C for 5, 10, 20 and 30 min respectively, scale bar = 37.5 μm; and (C) Flow cytometry 

detected cell apoptosis of Capan-2 Luc cells incubated with 10 nmol/mL Duopafei, SPM and 

TAT-PM for 48 h. 

 
  



Int. J. Mol. Sci. 2014, 15 23579 

 

 

Figure 2. Cont. 

 

 

2.5. Antitumor Effect of Duopafei, SPM and TAT-PM in Capan-2 Luc Human Pancreatic  
Cancer Model 

In order to test the in vivo therapeutic efficiency, the treatment by Duopafei, SPM and TAT-PM 

commenced on day 21 and terminated on day 49 after inoculation of Capan-2 Luc tumor cells. In Figure 3A, 

the fluorescence of the pancreas in situ at day 49, suggested that the transplanted tumor has been well 

established. SPM achieved a good control of tumor growth, while TAT-PM having the equal therapeutic 

effects to SPM, as evidenced by the lowest luciferase activity compared with the negative control group. 

However, Duopafei showed no effect against tumor growth since expressing almost same luciferase 

activity with negative control group. During the treatment process, animals were weighed at day 21, 28, 

35, 42 and 49 (Figure 3B). The body weight changing results indicated that weekly injections were well 

tolerated with no significant alteration in animal weight relative to saline controls and exhibited no 

significant difference among the four treatment groups (Figure 3B). Haematoxilyn and eosin (HE) 

staining of Capan-2 Luc tumors revealed a poorly-vascularized histological pattern and the formation of 

nests of cancer cells surrounded by fibrotic tissue (Figure 3C), which may act as a barrier against the 

penetration of drugs and nanocarriers and proved by many studies [13,33,34]. The results showed that 

SPM and TAT-PM remained high permeability against poorly-vascularized tumors and significantly 

inhibited tumor growth in vivo. 
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3. Discussion 

Despite much effort taken recently, PDAC still presents resistance to currently available conventional 

treatment approaches [1]. Hence, new drugs discovery to multiple and comprehensive treatments are 

highly necessary. The appropriate animal models could accelerate the development of therapies and 

drugs discovery against PDAC. Subcutaneous model could provide visual confirmation that mice used 

in an experiment have tumors prior to therapy, and provide a means of assessing tumor response or 

growth over time. However, a major disadvantage of subcutaneous xenografts models is that are curative 

in mouse subcutaneous xenografts models often do not have a significant effect on human disease. The 

primary cause of this failure may be due to the observation that the subcutaneous microenvironment is 

not relevant to that of the organ site of primary or metastatic disease. Orthotopic human pancreatic cancer 

xenografts models are used as the preference for cancer research due to the increased clinical relevance 

and similar to the ideal of the “anthropomorphic” pancreatic cancer model [27]. Optical imaging system 

was also used to detect the real-time growth of Capan-2 Luc human pancreatic tumors. The Capan-2 Luc 

cell line has been engineered to constitutively express the firefly luciferase gene. As shown in Figure 4, 

we implanted Capan-2 Luc human pancreatic cancer cells into the pancreas of BALB/c nude mice. When 

mice carrying Capan-2 Luc tumors are injected with Luciferin the tumors emit a visual light signal that 

can be monitored using a sensitive optical imaging system like the IVIS Spectrum [35]. The photon flux 

from the tumor is proportional to the number of light emitting cells and the signal can be measured to 

monitor tumor growth and development, in this study, we were able to match initial tumor burden 

between groups, monitor the progression of tumors, and the antitumor activity of micelles in real time 

by bioluminescence imaging due to the expression of luciferase in the tumors. 

The fibrous stroma of PDAC is unusually dense, forming up to 90% of the tumor volume in some 

patients, and its interactions with the malignant epithelial cells are thought to be an important 

determinant of the aggressive nature of these cancers [36]. Histological investigations using HE staining 

also revealed the formation of nests of Capan-2 Luc cancer cells surrounded by fibrotic tissue (Figure 3C), 

which may act as a barrier against the penetration of drugs and nanocarriers [5,7]. 

It was recently found that the size of the micelles was critical for achieving deep penetration, 

particularly in poorly permeable malignancies, such as pancreatic tumors, with 30 nm diameter micelles 

being capable of passing through the vasculature and interstitium and deeply penetrating inside the 

tumors [13]. The central role of taxanes in the therapy of common epithelial cancers is further highlighted 

by their ability to induce remissions in patients with anthracycline- or cis-platinum-resistant epithelial 

cancers [18]. However, in conventional chemotherapy using DTX, the gradients of drug concentration 

in the tumor may cause the cells far from the vasculature to receive sublethal doses, leading to the 

development of drug resistance [5]. In contrast, we hypothesized that, by using ultra-small polymeric 

micelles loaded with DTX, most tumor cells may be exposed to therapeutic concentrations of the drug, 

improving the scenario of tumor recurrence and resistance to the therapy. Our results confirmed the 

efficacy of DTX-loaded SPM against an orthotopic pancreatic tumor xenograft as they limited the 

growth of primary tumors compared to Duopafei (Figure 3A), which suggests that SPM may be novel 

therapies for the treatment of pancreatic cancer. 

There haven’t been any studies concerning on surface-functionalized SPM against PDAC so far, 

hereby the surface-functionalized SPM was developed. Hypothesizing better DTX treatment efficacy 
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against PDAC tumor, TAT-PM with higher permeability was obtained by modifying the surface of SPM 

with TAT peptide. In vitro experiments demonstrated that TAT-PM inhibited Capan-2 Luc cells growth 

more efficiently and induced more apoptosis compared to SPM and Duopafei (Figure 2). However,  

TAT-PM didn’t outperformed SPM in the in vivo experiments (Figure 3A), which indicated SPM exerted 

its therapeutic efficiency not totally relying on permeability. Hence, further study is still needed to find 

out the exact causes of ultra-small nanoparticles against PDAC except for permeability. 

Figure 3. In vivo anticancer efficacy of Duopafei, SPM and TAT-PM in the orthotopic 

transplantation model of Capan-2 Luc. (A) The bioluminescent images of nude mice after 

treated with 5% glucose solution (Negative control), Duopafei, SPM and TAT-PM. Red 

signal represents the highest level on the colorimetric scale; (B) Body weight changes of 

mice bearing Capan-2 Luc human pancreatic cancer xenografts treated with 5% glucose 

solution (Negative Control), Duopafei, SPM and TAT-PM; and (C) The representative 

pictures of histopathologic examination of Capan-2 Luc tumor, scale bar = 20 μm. 

 

 
  



Int. J. Mol. Sci. 2014, 15 23582 

 

 

Figure 3. Cont. 

 

4. Materials and Methods 

4.1. Materials, Cell Line and Animals 

All reagents and solvents were used as received without further purification. mPEG with a molecular 

weight of 2000 Da, D,L-lactide and stannous octoate were purchased from Sigma-Aldrich Chemical Corp. 

(Shanghai, China); DTX was purchased from Norzer Pharmaceutical Co., Ltd. (Beijing, China); 

Duopafei was manufactured by Qilu Pharm Co., Ltd. (Jinan, China); HO-PEG-Mal with a molecular 

weight of 2000 Da was purchased from Jenkem Technology Co., Ltd. (Beijing, China); TAT-SH(Gly-

Cys-Gly-Gly-Gly-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg) peptides were purchased from  

GL Biochem. (Shanghai, China); the 3-(4,5)-dimethylthiazol(-z-y1)-3,5-di-phenytetrazoliumromide 

(MTT) was obtained from Amresco (Solon, OH, USA). All other reagents used were of analytical grade. 

Trypsin, fetal bovine serum (FBS) and RPMI-1640 mediums were purchased from Hyclone  

(Logan, UT, USA); culture flasks and dishes were from Corning (Corning, NY, USA).The Capan-2  

Luc cell line is a pancreatic ductal adenocarcinoma (PDAC) cell line, which was kindly provided by 

Shenghua Zhang in Institute of Medicinal Biotechnology of Peking Union Medical College. Canpan-2 

Luc cells were cultured in RPMI 1640 medium supplemented with 10% FBS and incubated in a 

humidified atmosphere of 5% CO2 and 95% air at 37 °C. 

Eight- to ten-week old female BALB/c mice and BALB/c athymic nude mice used for antitumor 

efficacy studies were purchased from Beijing Vital River Laboratories (Beijing, China). Animals were 

acclimatized in the holding facility prior to beginning the study, and all animal studies were approved 

by Peking Union Medical College Council on Animal Care. All surgery was performed under sodium 

pentobarbital anesthesia, and all efforts were made to minimize suffering. 
  



Int. J. Mol. Sci. 2014, 15 23583 

 

 

4.2. The Synthesis of mPEG-b-PDLLA and TAT-PEG-b-PDLLA 

mPEG-b-PDLLA was synthesized exactly according to our previous study [28]. Mal-PEG-b-PDLLA 

was synthesized by ring opening polymerization of D,L-lactide at 110 °C as described previously [31]. 

Briefly, HO-PEG-Mal was used as a macro-initiator. D,L-lactide was added as a monomer and Stannous 

octoate was added as a catalyst. After reacting for 4 h, the mixture was allowed to cool down to room 

temperature. Mal-PEG-b-PDLLA was purified by dialysis against distilled water. The degree of 

polymerization of the PDLLA was determined by 1H NMR according to the previous studies [28,31]. 

For the conjugation of TAT-PEG-b-PDLLA, Mal-PEG-b-PDLLA was dissolved in acetonitrile; then 

rotary evaporated to form thin film at 37 °C and hydrated with HEPES solution (pH 8.0). TAT-SH was 

added and the reaction was kept stirring overnight under N2 atmosphere. The excessive TAT-SH was 

removed by dialysis against distilled water. All the micelle materials were characterized via 1H NMR 

600 MHz using a Mercury spectrometer (Varian Inc., Palo Alto, CA, USA). 

4.3. Preparation of Micelles Encapsulating DTX 

DTX-loaded Small-sized Polymeric Micelle (SPM), was prepared by thin-film hydration method 

according to our previous study [28]. The DTX-loaded micelle of TAT-PEG-b-PDLLA (TAT-PM) was 

prepared via co-precitation method as follows. Briefly, TAT-PEG-b-PDLLA (1.25 μmol), mPEG-b-PDLLA 

(6.25 μmol) and DTX (6.68 μmol) were mixed in a DMF solution (1 mL), which was then added 

dropwise to a water solution (10 mL). The final solution was purified by dialysis (membrane MWCO 

12,000–14,000) to give TAT-PM. 

Both DTX-loaded micelles were extruded through a membrane of poresize 220 nm. The sample was 

diluted with water to yield 1 mg/mL final DTX concentration, as determined by high-performance liquid 

chromatography (HPLC, 1200 series; Agilent Technologies, Palo Alto, CA, USA) with a pentafluorophenyl 

column (Curosil-PFP, 4.6 mm × 250 mm, 5 μm; Phenomenex, Torrance, CA, USA). Size distribution of 

the micelles was investigated by dynamic light scattering (DLS) method using Nano ZS90 (Malvern 

Instruments Inc., Worcs, UK). 

The release profile of DTX from SPM and TAT-PM was evaluated using a dialysis membrane 

method: 0.5 mL of SPM or TAT-PM solution at a DTX concentration of 1 mg/mL was placed in  

a dialysis bag (MWCO 3500). The dialysis bag was incubated in 40 mL of phosphate buffered saline 

(PBS, pH 7.4) at 37 °C with gentle shaking at 100 rpm, and aliquots of incubation medium were removed 

at predetermined time points. DTX in the samples was quantified by HPLC using the above method. 

4.4. In Vitro Cytotoxicity 

For in vitro cytotoxicity study, MTT assay was used. Briefly,Capan-2 Luc cells were harvested from 

exponential phase cultures growing in RPMI 1640 medium supplemented with 10% FBS, counted and 

plated in 96-well flat-bottomed microtiter plates (5 × 103 cells per well). After a 24 h incubation, cells 

were then treated with a series of doses of Duopafei, SPM, or TAT-PM, respectively. After 48 h of 

incubation, 20 μL of MTT solution (5 mg/mL) was added to each well of the plate. After incubating for 

additional 4 h, MTT was aspirated off and 200 μL/well of DMSO was added to dissolve the formazan 

crystals. Absorbance was measured at 490 nm by a microplate reader (Synergy H1/H1 MF; Bio-Tek Inc., 
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Winooski, VT, USA). Untreated cells were taken as control with 100% viability and cells without 

addition of MTT were used as blank to calibrate the spectrophotometer to zero absorbance. The results 

were expressed as mean values ± standard deviation of five measurements. 

4.5. Cell Apoptosis Assay 

Apoptotic cells were determined by dual staining with an Annexin V and propidium iodide (PI) kit 

(China KeyGEN Biosciences Company, Nanjing, China) according to the manufacturer’s instructions. 

After 48 h of culture in the exponential stage, Capan-2 Luc cells seeded in 12-wellplates were treated 

for a further 48 h with 10 nmol/mL Duopafei, SPM or TAT-PM, respectively. After treatment, cells were 

washed twice with warm PBS, detached by trypsin without EDTA, collected, centrifuged, washed with 

warm PBS, resuspended in the binding buffer and further stained with PI and Annexin V-FITC for  

15 min at ambient temperature in the dark. Apoptosis was then analyzed using a FACScan cytometer 

equipped with Cell Quest software (BD Biosciences, San Jose, CA, USA). Quadrant analysis was 

performed and cells that stained positive for both Annexin V-FITC and PI were designated as apoptotic, 

while unstained cells were designated as live. 

4.6. Cellular Uptake of C6-SPM or C6-TAT-PM 

For the in vitro fluorescence imaging investigation, the near-infrared fluorescent probe C6 was loaded 

into mPEG-b-PDLLA micelles or TAT-PEG-b-PDLLA/mPEG-b-PDLLA micelles to yield C6-SPM or 

C6-TAT-PM respectively. In brief, the polymers and C6 were co-dissolved in CHCl3 and a thin film 

formed by evaporation of CHCl3. Phosphate Buffered Solution (PBS, pH 7.4) was added, followed by 

votex for 10 min. The micelle suspension was extruded through a membrane of poresize 220 nm to 

remove the free C6. 

Capan-2 Luc cells were cultured in RPMI 1640 medium supplemented with 10% FBS. The culture 

was maintained in incubator containing 5% CO2 at 37 °C. The cells were incubated with C6-SPM and 

C6-TAT-PM at 37 °C for 5, 10, 20 and 30 min, rinsed with cold PBS for three times and then fixed by 

4% paraformaldehyde for 10 min. Finally, cells were observed by confocal laser scanning microscope 

(CLSM, TCS SP2; Leica, Wetzlar, Germany). The images of the cells were determined with differential 

interference contrast (DIC) channel, and the images of C6-SPM and C6-TAT-PM were recorded with 

green channel (C6) with excitation at 488 nm. 

4.7. Capan-2 Luc Orthotopic Transplantation Human Pancreatic Tumor Model 

Capan-2 Luc cells growing in exponential phase were diluted to 1.5 × 107 cells/mL in exponential 

stage growth with RPMI 1640 medium. Nude mice were anesthetized with injection of 60 mg/mL 

pentobarbital sodium intravenously, and followed by making a small incision into the abdomen along 

the lower left rib cage to pull out the pancreas and inject 3 × 105/0.02 mL of Capan-2 Luc cell suspension 

into it. Incision suture was operated according to conventional surgery. The whole surgery process was 

demonstrated in Figure 4. On day 21 after inoculation, the mice were randomized into 4 equal groups  

(n = 5 for each group) for treatment: negative control (5% glucose solution, 0.2 mL/mice), Duopafei, 

SPM and TAT-PM. Each formulation was injected intravenously via the tail vein at a dose of  

10 mg DTX/kg body weigh every 7 days for 21 days and the mice body weights were measured 
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simultaneously. At day 49 after inoculation, luciferase substrate D-luciferin (150 mg/kg) was injected 

intraperitoneally, and the mice were placed onto the warmed stage inside the camera box (IVIS-live 

Imaging System 200; Xenogen Corp., Alameda, CA, USA) to observe tumor growth. Then all mice  

were sacrificed, and representative pancreatic tissues were taken for HE staining after formalin-fixation  

and paraffin-embedding. 

Figure 4. The establishment of the orthotopic transplantation model of Capan-2 Luc. 

 

4.8. Statistics 

Data were described as means ± SD of the indicated number of individual experiments. If there  

was significant variation between treatment and control groups, the mean values were compared using 

Student’s t-test. p-values less than 0.05 were considered statistically significant difference and p-values 

less than 0.01 were considered statistically very significant difference. 

5. Conclusions 

Our findings strengthen the usefulness of polymeric micelles, particularly of SPM, for the clinical 

setting. Delay of disease progression without negatively impacting quality of life may be significant 

benefits from SPM. And what’s more, we found there should be other cause except permeability for 

SPM exerting its therapeutic ability against PDAC. Despite considerable progress in demonstrating 

therapeutic effects of SPM against PDAC, the molecular basis and in vivo distribution process underlying 

its inhibitory functions remains obscure and further experiments are needed to address this issue. 
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