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Abstract

The central serotonergic signalling system has been shown to play an important role in appetite control and the regulation
of food intake. Serotonin exerts its anorectic effects mainly through the 5-HT1B, 5-HT2C and 5-HT6 receptors and these are
therefore receiving increasing attention as principal pharmacotherapeutic targets for the treatment of obesity. The 5-HT2C

receptor has the distinctive ability to be modified by posttranscriptional RNA editing on 5 nucleotide positions (A, B, C, D, E),
having an overall decreased receptor function. Recently, it has been shown that feeding behaviour and fat mass are altered
when the 5-HT2C receptor RNA is fully edited, suggesting a potential role for 5-HT2C editing in obesity. The present studies
investigate the expression of serotonin receptors involved in central regulation of food intake, appetite and energy
expenditure, with particular focus on the level of 5-HT2C receptor editing. Using a leptin-deficient mouse model of obesity
(ob/ob), we show increased hypothalamic 5-HT1A receptor expression as well as increased hippocampal 5-HT1A, 5-HT1B, and
5-HT6 receptor mRNA expression in obese mice compared to lean control mice. An increase in full-length 5-HT2C expression,
depending on time of day, as well as differences in 5-HT2C receptor editing were found, independent of changes in total 5-
HT2C receptor mRNA expression. This suggests that a dynamic regulation exists of the appetite-suppressing effects of the 5-
HT2C receptor in both the hypothalamus and the hippocampus in the ob/ob mice model of obesity. The differential 5-HT1A,
5-HT1B and 5-HT6 receptor expression and altered 5-HT2C receptor editing profile reported here is poised to have important
consequences for the development of novel anti-obesity therapies.
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Introduction

Obesity is rapidly increasing in prevalence in developed

countries [1,2]. Thus, there is increasing medical and societal

needs for novel treatments, which induce appetite suppression and

weight loss. Satiety and appetite control pathways have been

studied extensively both in animals and humans but the exact

underlying molecular mechanisms remain unclear [3,4,5,6]. It is

well established that increased serotonin (5-hydroxytryptamine, 5-

HT) neurotransmission in the brain regulates food intake [7,8,9].

In particular, 5-HT1B, 5-HT2C and 5-HT6 receptors have received

attention as promising anti-obesity therapeutic targets [10,11,12,

13,14,15]. Centrally acting serotonergic agents, including sibu-

tramine, m-chlorophenylpiperazine (mCPP) and fenfluramine, act

as potent appetite suppressants [16,17,18]. However, these

compounds are pharmacologically promiscuous, showing activity

across multiple 5-HT and non-5-HT pathways and receptors, and

accordingly exert many unwanted side effects. A better under-

standing of the mechanisms by which serotonergic receptors

regulate appetite and energy homeostasis may lead to the

development of novel effective anti-obesity drugs.

Within the serotonergic system, the 5-HT2C receptor requires

special attention due to its distinctive ability to be modified by post-

transcriptional RNA editing [19]. The 5-HT2C receptor pre-RNA

can be enzymatically edited on 5 specific nucleotide positions (A, B,

C, D, E) converting an adenosine to inosine residues, causing amino

acid sequence changes. Selective editing can generate up to 32

different mRNA isoforms translating into 24 predicted protein

sequences, all with unique signalling features (Figure 1). Even

though not all 5-HT2C isoforms have been tested to date, it is

accepted that increased RNA editing reduces receptor constitutive

activity and decreases agonist potency and G-protein coupling,

resulting in an overall decreased receptor function [19,20,21,22,

23,24,25]. In addition, distribution of edited 5-HT2C isoforms has

been shown to be different across brain regions [26]. Therefore,

differential editing of the 5-HT2C receptors in the CNS may have

important consequences for the functional properties of the receptor

in vivo. Recently, it has been shown that feeding behaviour and fat

mass are altered when studying mice engineered to express a fully

edited 5-HT2C receptor isoform in the brain, suggesting a potential

role for 5-HT2C receptor editing in obesity [24,27,28]. In addition,

5-HT2C RNA editing status has been implicated in psychiatric and
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stress-related disorders and has been shown to be a dynamic

process, demonstrating changes in response to either stress or

pharmacotherapeutic drug across in vitro and in vivo studies

[26,29,30,31,32,33,34,35]. The 5-HT2C receptor RNA editing

profile within obesity phenotypes and its impact on feeding has so

far, to our knowledge not been investigated. The ob/ob mouse, a

leptin protein deficient strain, is one of the most widely used mouse

model of obesity and is characterised by several metabolic and

neuroendocrine abnormalities, including a prominent hyperphagia

leading to obesity [36,37,38,39]. This study aims to analyse central

mRNA expression levels of 5-HT receptors related to feeding (5-

HT1A, 5-HT1B, 5-HT6, 5-HT2C) within this mouse model of obesity

(ob/ob) and in particular to analyse if there is an altered 5-HT2C

receptor editing profile within the obesity phenotype, by analysing

the expression of partially as well as fully edited 5-HT2C receptor

isoforms.

Materials and Methods

Animals
Animals, male ob/ob mice (n = 8–10 per cohort) and lean

littermate controls (n = 8–10 per cohort), generated on a C57BL/6

background, were purchased from Harlan, UK. The sample size is

based on a power calculation aimed at detecting differences at the

0.05 level. Mice were received at the facility when they were 5 to 6

weeks old. Groups of four mice were housed in standard holding

cages in a light-controlled (12-hour light/dark cycle; lights on at 7.45

am), temperature-controlled (21uC61) and humidity-controlled

(55610%) environment. Water was available ad libitum throughout

the study and 10 g pre-weighed standard lab chow (2018S Teklad

Global 18% Protein Rodent Diet) was given per mouse each day.

Mice were weighed each day between 9am and 10am and the

amount of daily food intake was calculated. Animals were sacrificed at

ages between 8 and 9 weeks using cervical dislocation. Brain tissue

was dissected at 4uC, processed in RNA Later (Ambion, Warrington,

UK) and stored at 280uC until the analysis. The hypothalamus and

hippocampus were the two regions where most of the analysis is

carried out. The brains were removed from the skull and placed with

ventral side up on an ice-cooled Petri dish. For dissection, the

coordinates of the brain regions were selected according to the ‘‘The

Mouse Brain in Stereotaxic Coordinates, 3rd Edition’’ [40]. Using a

curved forceps, the hypothalamus was pinched out from the ventral

surface of the brain by pushing the curved part of the forceps down

around the hypothalamus starting directly behind the optic chiasm.

With the dorsal side up, a sagittal cut was made down the midline of

the brain, leaving the cerebellum and brainstem intact. The

hippocampai were separated from the white matter beneath the

neocortex with a curved forceps and pinched out from each side of

the brain. All daytime samples were harvested in the morning,

directly following the dark phase. In addition, hypothalamus brain

tissue was also harvested from a different cohort of animals in the

evening, before onset of the dark phase, designated as nighttime

samples. All experiments were conducted in full accordance with the

European Community Council Directive 86/609/EEC, the Recom-

mendation 2007/526/65/EC and approved by the Animal

Experimentation Ethics Committee of University College Cork

(Animal ethical permit number #2010/028). All efforts were made to

minimise animal suffering and to reduce the number of animals used.

All experiments in this manuscript are performed on the same cohort

of animals, with the exception of the neurotransmitter concentration

determination.

Neurotransmitter concentrations
Neurotransmitter concentrations were determined in ob/ob mice

and control littermates, using a modification of a previously

described procedure [41]. Briefly, brain tissue was sonicated in

500 ml of chilled mobile phase spiked with 4 ng/40 ul of N-Methyl

5-HT (Sigma Chemical Co., UK) as internal standard. The mobile

phase contained 0.1 M citric acid, 5.6 mM octane-1-sulphonic acid

(Sigma), 0.1 M sodium dihydrogen phosphate, 0.01 mM EDTA

(Alkem/Reagecon, Cork) and 9% (v/v) methanol (Alkem/Reage-

con), and was adjusted to pH 2.8 using 4N sodium hydroxide

(Alkem/Reagecon). Homogenates were then centrifuged for

15 minutes at 14,000 rpm at 4uC and 40 ml of the supernatant

injected onto the HPLC system which consisted of a SCL 10-Avp

system controller, LECD 6A electrochemical detector (Shimadzu), a

LC-10AS pump, a CTO-10A oven, a SIL-10A autoinjector (with

sample cooler maintained at 40C) and an online Gastorr Degasser

(ISS, UK). A reverse-phase column (Kinetex 2.6 u C18

10064.6 mm, Phenomenex) maintained at 30uC was employed in

the separation (Flow rate 0.9 ml/min). The glassy carbon working

electrode combined with an Ag/AgCL reference electrode

Figure 1. Serotonin 2C receptor gene structure. A) The human full-length 5-HT2C gene, located on the X chromosome and processed from
mRNA encoded from exon 3 to exon 6 after splicing out intronic sequence is depicted (not including 39- or 59- untranslated regions and not
according to scale). B) The 5-HT2C gene is translated into a seven-transmembrane G-protein coupled receptor. The editing cassette is located in the
second intracellular loop. C) The nucleotide sequence of the 5-HT2C editing cassette is depicted including the five nucleotide positions prone to
adenosine to inosine editing.
doi:10.1371/journal.pone.0032266.g001
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(Shimdazu) was operated a +0.8V and the chromatograms

generated were analysed using Class-VP 5 software (Shimadzu).

The neurotransmitters were identified by their characteristic

retention times as determined by standard injections, which were

run at regular intervals during the sample analysis. The ratios of

peak heights of analyte versus internal standard were measured and

compared with standard injection. Results were expressed as ng of

neurotransmitter per g fresh weight of tissue.

Sample preparation
Total RNA was isolated using the Absolutely RNAH Miniprep

kit (Stratagene, La Jolla, USA) according to manufacturer’s

instructions. Briefly, brain tissues were homogenized using a

Polytron PT2100 in RNA lysis buffer and nucleic acids were

extracted using a buffer and spin column protocol. The nucleic

acids were subsequently washed and separated using an elution

column. DNase treatment was carried out using the Ambion

Turbo DNase kit (Ambion, Warrington, UK) according to

manufacturer’s instructions. RNA was quantified using Nano-

DropTM spectrophotometer (Mason Technology, Cork, Ireland)

according to the manufacturer’s instructions. RNA quality and

RNA integrity number (RIN) were determined using the

AgilentTM Bioanalyzer (Agilent, Stockport, UK). RNA samples

that satisfied criteria (RIN value .7) were reverse transcribed to

cDNA using the High Capacity cDNA kit (Applied Biosystem,

Warrington, UK) according to manufacturer’s protocol. Briefly,

Multiscribe Reverse Transcriptase (50 U/mL) was added as part of

the RT master mix, incubated at 25uC for 10 minutes, at 37uC for

2 hours, at 85uC for 5 minutes and stored at 4uC.

Real-time quantitative RT-PCR
Quantitative PCR (Q-PCR) was carried out using 6 carboxy

fluorescein (FAMTM) dye-labeled TaqManH MGB probes supplied

by Applied BiosystemsTM to mouse specific 5-HT1A, 5-HT1B, total

5-HT2C, full-length 5-HT2C, 5-HT6, ADAR1 and ADAR2 while

using b-Actin as an endogenous control (Mm00434106_s;

Mm00439377_s1; Mm00434127_m1; Mm00664865_m1; Mm004

45320_m1; Mm00493794_m1; Mm00557717_m1; Mm0050

8001_m1; Mm00504621_m1; Mm00607939_s1). Custom made

probes to detect differentially edited 5-HT2C isoforms (Table 1),

were also supplied by Applied Biosystems and designed according to

a recently described method [42]: 5-HT2C-INI (non edited form),

probe = [Fam]tagcaatacgtaatcctattg [MGB/NFQ]; 5-HT2C-VNV

(ABD edited form), probe = [Fam]tagcagtgcgtaatcctgttga [MGB/

NFQ]; 5-HT2C-VSV (ABCD edited form), probe = [Fam]tag-

cagtgcgtagtcctgttg [MGB/NFQ]; 5-HT2C-VGV (ABECD edited

form), probe = [Fam]tagcagtgcgtggtcctgttg [MGB/NFQ] and 5-

HT2C-VNI (AB edited form), probe = [Fam]tagcagtgcgtaatcctattg

[MGB/NFQ]. Reaction mix was prepared using TaqManH
Universal PCR Master Mix (Applied Biosystems, Warrington,

UK). Q-PCR was carried out on the ABI7300 Real Time PCR

machine (Applied Biosystems, Warrington, UK). Samples were

heated to 95uC for 10 minutes, and then subjected to 50 cycles of

amplification by melting at 95uC and annealing at 60uC for

1 minute. Experimental samples were run in triplicate with 1 mL

cDNA per reaction. No template controls were included in each run

in triplicate to check for amplicon contamination. Cycle threshold

(Ct) values were normalised using b-Actin and transformed using

the 22DCt method [43]. Fold change of relative gene expression

level compared to control animals was calculated.

Sequence analysis
Direct sequencing of 5-HT2C receptor transcripts was per-

formed after amplification of the editing cassette of the 5-HT2C

receptor. The editing cassette was amplified with PCR using the

following primer sets: Editing cassette sense; 59-TGCTGA-

TATGCTGGTGGGACT-39, Editing cassette antisense; 59-

TCGTCCCTCAGTCCAATCACAG-39. PCR products were

run on a 2% agarose gel to reduce background on sequencing

chromatogram. Expected bands (,300 bp) were isolated and

purified using Purelink gel extraction kit (Invitrogen) according to

manufacturer’s instructions. Purified amplicons were eluted in

20 ul elution buffer and sent to Eurofins MWG operon for custom

DNA sequencing using primer Editing sequence antisense; 59-

GATATTGCCCAAACGATGGC-39. Sequencing chromato-

grams were aligned using Clustal W and raw relative peak

amplitude data for each sample was analyzed. Editing frequency

was quantified comparing the height of the adenosine and

guanosine peaks on the sequencing chromatogram. Gross editing

frequency was calculated using the following formula: X = G

height/(A height + G height). The real editing frequency was

calculated following the calibration quotation: A site; Y = 1.114*X,

B site; 1.009*X. Pyrosequencing analysis of the 5-HT2C receptor

RNA editing profiles were performed using next generation 454-

sequencing. Briefly, the 5-HT2C editing cassette was PCR purified

using similar primers as described above with the addition of an

adaptor, designated adaptor A (59-CGTATCGCCTCCCTC-

GCGCCATCAG-39) in forward primer as well as barcode 1 for

lean control animals (ACGAGTGCGT) and barcode 2 for ob/ob

animals (ACGCTCGACA). In addition, a reverse primer, similar

as above, was used including an adaptor, adaptor B (59

CTATGCGCCTTGCCAGCCCGCTCAG-39). Bands of correct

size (,300 bp) were isolated and purified using Purelink gel

extraction kit (Invitrogen) according to manufacturer’s instruc-

tions. Following gel purification, PCR products were precipitated

with sodium acetate to remove chaotropic salts. PCR products

from ob/ob (n = 8) and lean control (n = 8) were pooled,

respectively, and PCR product was sent on dry ice to Roche

(Branford CT USA) for 454-sequencing on a Roche 454 GS-FLX

using Titanium chemistry.

Statistical Analysis
Results for body weight and food intake are expressed as mean

6 SEM. A two-way repeated measures ANOVA was used where

appropriate with planned comparisons. Analysis of mRNA

expression levels is depicted as fold change compared to control.

Gene expression data are presented as the mean values 6 SEM.

Two-tailed unpaired Student’s t-test were used to compare

baseline values in obese and lean animals with a correction for

multiple tests. The statistical significance was indicated as follows:

* indicates p,0.05; ** indicates p,0.01 and *** indicates

p,0.001. For the pyrosequencing dataset, the sequenced cDNA

amplicons were quality filtered using Lucy software with the

defaults for maximum acceptable average probability of error

(0.025) and the maximum probability of error that is allowed for

the 2 bases at each end (0.02). Sequences were aligned with

MUSCLE (version 3.8.31) [44]. Identification of differentially

associated RNA editing sites was carried out by assigning

sequences based on the associated barcode, using the barcode

identifiers. Frequencies of each base at the sites of interest were

analysed using the Fisher’s exact test with Bonferroni correction.

Results

Food intake and body weight
In our experiments, the leptin-deficient ob/ob mice were

hyperphagic, consuming 50% more food compared to their

controls during ad libitum conditions, and displayed significantly

5-HT2C Receptor Editing and Obesity
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higher body weights characteristic of the obesity phenotype

(Figure 2A and B). When analysing body weight, repeated

measures ANOVA showed significant main effect of genotype;

F(1;14) = 66.421;p,0.001, as well as a significant interaction of

day and genotype; F(1.938;27.135) = 33.589;p,0.001, and a

significant main effect of day: F(1.938;27.135) = 420.308;

p,0.001. In addition, food intake analysed using repeated

measures ANOVA showed a significant main effect of genotype;

F(1;2) = 52.333;p,0.001, as well as a significant interaction of day

and genotype; F(17.904;35.808) = 5.993;p,0.001, and a signifi-

cant main effect of day: F(17.904;35.808) = 5.081;p,0.001.

Serotonin turnover
Serotonin levels and serotonin metabolites were analysed in a

different cohort of animals in the hypothalamus and hippocampus

(Figure 3). No changes in 5-HT levels could be detected in ob/ob

mice compared to control (data not shown). However, an overall

decrease in the 5HIAA levels was observed (data not shown)

leading to significant decrease in 5HIAA/5HT ratio in ob/ob mice

in hippocampus (p,0.001) and hypothalamus (P,0.01) compared

to lean control littermates. The hypothalamus is the main

processor and integrator of peripheral metabolic information

controlling food intake and plays a key role in the homeostatic

regulation of appetite and energy metabolism [3,45]. The

hippocampus, a brain structure involved in learning and memory

function, has recently been linked with food intake control [46].

Serotonergic receptor mRNA expression
To determine central serotonergic receptor expression in

relation to the obesity phenotype, hypothalamic receptor mRNA

expression was analysed using quantitative real-time PCR together

with mRNA levels in the hippocampus and amygdala. The

hippocampal 5-HT1A (p,0.001), 5-HT1B (p,0.001) and 5-HT6

(p,0.01) were significantly increased in obese, leptin-deficient

mice compared to their lean counterpart control (Figure 4A, B and

C). On the hypothalamic level, only the 5-HT1A receptor of 5-HT

receptors analysed demonstrated a significant (p = 0.042) increased

expression in obese mice compared to lean control (Figure 4A).

Total 5-HT2C mRNA expression was analysed using a probe

spanning the exon 3 and 4 boundary of translated mRNA,

detecting the full-length 5-HT2C receptor expression as well as

expression of all splice variants. No differential expression of total

5-HT2C receptor mRNA expression was observed between ob/ob

and control groups in all regions assessed (Figure 4D). However,

when analysing 5-HT2C receptor mRNA expression levels using a

probe spanning the exon 5 and 6 boundary which solely detects

full-length 5-HT2C receptor mRNA, a significant (p = 0.004)

increase in expression of full-length 5-HT2C mRNA was observed

in the hypothalamus of obese mice relative to the lean mice

(Figure 5A). No difference in full-length 5-HT2C mRNA

expression was observed in the hippocampus or amygdale (data

not shown).

Hippocampal 5-HT2C receptor editing
Editing of the 5-HT2C receptor relative to total 5-HT2C mRNA

levels in the hippocampus was analysed by a recently described

real-time PCR method using a 5-HT2C probes specific for several

edited 5-HT2C isoforms, all expressed in mouse brain [26,42].

Specific significantly increased expression of the 5-HT2C-VNV

isoform (ABD edited), indicative of increased editing, was observed

in the hippocampus (p = 0.005) of ob/ob mice compared to lean

control (Figure 6B). A numerical decrease in mRNA levels of the

unedited 5-HT2C-INI isoform was noted in ob/ob mice compared

Figure 2. Body weight and food intake in mouse model of obesity. A) Repeated measures ANOVA showed significant increase in body
weight in ob/ob mice; F(1;14) = 66.421;p,0.001. B) Food intake was significantly higher in ob/ob mice compared to lean control as analysed using
repeated measures ANOVA; F(1;2) = 52.333;p,0.001; n = 8 per genotype.
doi:10.1371/journal.pone.0032266.g002

Figure 3. Monoamine analysis in brain regions. Decreased
serotonin turnover is observed in hippocampus and hypothalamus of
ob/ob mice compared to control. Unpaired, two-tailed T-test; statistical
significance is notated as *** p,0.001, ** p,0.01 compared to lean
control; n = 8 for hypothalamus, n = 10 for hippocampus.
doi:10.1371/journal.pone.0032266.g003
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to control, but this effect was not statistically significant (Figure 6A).

No difference was observed when analysing mRNA expression

with the 5-HT2C-VSV (ABCD edited) or the 5-HT2C-VGV

(ABECD edited) probe (Figure 6C and 6D). No differential editing

of 5-HT2C receptor in amygdala was found (data not shown). In

addition, the 5-HT2C receptor editing frequency was analysed

using a direct sequencing method, pinpointing the change in 5-

HT2C editing to position A and B of the editing cassette (Figure 7),

which corresponds to the isoform detected with the 5-HT2C-VNV

(ABD edited) probe.

Hypothalamic 5-HT2C receptor editing
In the hypothalamus, using quantitative real-time PCR, a

significant increase in 5-HT2C mRNA editing in ob/ob mice

compared to control was shown for all edited 5-HT2C isoforms

tested (Figure 8). However, no difference in editing could be

observed for the 5-HT2C receptor using direct sequencing (data

not shown). This apparent contradiction between sequencing

results and quantitative real-time PCR outcome may be explained

by the observed increased mRNA levels of full-length 5-HT2C

(Figure 5A). Full-length 5-HT2C can be edited and therefore an

increase of all major 5-HT2C isoforms, including the low abundant

isoforms, may merely reflect an increase of full-length 5-HT2C

receptor. This concept is reinforced by the observed lack of an

increase in full-length 5-HT2C mRNA levels observed in the

evening (Figure 5B) coupled with unchanged mRNA levels of 5-

HT2C isoforms (data not shown). To more precisely pinpoint if

hypothalamic 5-HT2C receptor editing is affected in obese versus

lean mice, samples were analysed using pyrosequencing, which is a

more sensitive and quantitative method of sequencing. In

pyrosequencing, approximately equal amounts of cDNA ampli-

cons from ob/ob mice (14763) compared to lean control (14958)

were sequenced, with a combined total of 29721 reads. After

sequence validation and filtering, a total of 20951 sequences,

comprising both lean control and ob/ob 5-HT2C editing cassette

sequences were passed and aligned accordingly. Pyrosequencing

demonstrated the 5-HT2C–VNV (ABD/AD edited), 5-HT2C–VNI

(AB/A edited) and the 5-HT2C–VSV (ABCD/ACD edited)

isoforms to be indeed the major isoforms, in decreasing order of

occurrence (Table 1). The fully edited isoform, 5-HT2C-VGV

(ABECD/AECD edited) was one of the least abundantly expressed

isoforms. Specific 5-HT2C RNA residues in the pooled ob/ob group

Figure 4. Central serotonin (5-HT) receptor mRNA expression. A) 5-HT1A mRNA is increased in ob/ob mice in hippocampus and
hypothalamus. B) 5-HT1B mRNA is increased in ob/ob mice in hippocampus. C) 5-HT6 mRNA is increased in ob/ob mice in hippocampus. D) No change
in mRNA levels of total 5-HT2C mRNA measured using qRT-PCR relative to b-actin expression. Fold changes depicted compared to hippocampus in
control group. Unpaired, two-tailed T-test; statistical significance is notated as *** p,0.001, ** p,0.01, * p,0.05 compared to lean control; n = 7–8
per genotype.
doi:10.1371/journal.pone.0032266.g004
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Figure 5. Daytime and nighttime full-length 5-HT2C receptor mRNA expression in the hypothalamus. A) Significantly increased
expression of the full-length 5-HT2C receptor in hypothalamus of ob/ob mice was observed in daytime. B) No change in expression of the full-length
5-HT2C receptor was observed in animals culled in nighttime. mRNA measured using qRT-PCR relative to b-actin expression. Unpaired, two-tailed T-
test; statistical significance is notated as ** p,0.01, compared to lean control; n = 7–10 per genotype.
doi:10.1371/journal.pone.0032266.g005

Figure 6. 5-HT2C receptor editing in the hippocampus. Expression of 5-HT2C receptor isoforms in order of fully unedited isoform to fully edited
5-HT2C receptor isoform. A) Decreased expression of the unedited 5-HT2C-INI isoform in hippocampus of ob/ob mice, but not statistically significant. B)
Significantly increased expression of the edited 5-HT2C-VNV (ABD edited) isoform in hippocampus of ob/ob mice. C) No change in mRNA levels of 5-
HT2C-VSV (ABCD edited) isoform. D) No change in mRNA levels of the 5-HT2C-VGV (ABECD edited) isoform. All mRNA measured using qRT-PCR relative
to b-actin expression and depicted as fold change compared to lean control littermates. Unpaired, two-tailed T-test; statistical significance is notated
as ** p,0.01, compared to lean control; n = 7–8 per genotype.
doi:10.1371/journal.pone.0032266.g006
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were compared to the pooled lean control group and pinpointed

an increase in editing on position A (p = 2.07*1028) and a decrease

in editing on position D (p = 4.47*10211) in ob/ob mice compared

to control (Table 2). This small but significant change of editing

corresponds to an increase of the 5-HT2C-VNI isoform in ob/ob

mice compared to lean counterpart (Table 1). The 5-HT2C

Figure 8. 5-HT2C receptor editing in the hypothalamus. Expression of 5-HT2C receptor isoforms in order of fully unedited isoform to fully
edited 5-HT2C receptor isoform. A) No change in expression of the unedited 5-HT2C-INI isoform. B) Significantly increased expression of the edited 5-
HT2C-VNI (AB edited) isoform in hypothalamus of ob/ob mice. C) Significantly increased expression of the edited 5-HT2C-VNV (ABD edited) isoform in
hypothalamus of ob/ob mice. D) Significant increase in expression of mRNA levels of 5-HT2C-VSV (ABCD edited) in ob/ob mice compared to control. E)
Significant increase in expression of mRNA levels of 5-HT2C-VGV (ABECD edited) isoform. All mRNA measured using qRT-PCR relative to b-actin
expression and depicted as fold change compared to lean control littermates. Unpaired, two-tailed T-test; statistical significance is notated as **
p,0.01, * p,0.05 compared to lean control; n = 7–8 per genotype.
doi:10.1371/journal.pone.0032266.g008

Figure 7. 5-HT2C receptor editing in the hippocampus. Editing of hippocampal the 5-HT2C receptor was pinpointed to nucleotide position A
and B using direct sequencing. A) Column scatter plot of editing frequencies on site A and B of the editing cassette. B) A typical reverse complement
chromatogram trace of an ob/ob mouse is depicted. Specific editing positions A to E are indicated by arrows. C) A typical control chromatogram is
depicted. Unpaired, two-tailed T-test; statistical significance is notated as * p,0.05, compared to lean control; n = 5 per genotype.
doi:10.1371/journal.pone.0032266.g007
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receptors are widely expressed in the hypothalamus, well beyond

the pro-opiomelanocortin (POMC) expressing neurons of the

arcuate nucleus regulating feeding behaviour, and this small

increase in 5-HT2C–VNI isoform may well be diluted by other 5-

HT2C receptor expressing nuclei in the hypothalamus.

Hypothalamic adenosine deaminase mRNA levels and
effect of time

In samples harvested during the daytime, no significant

alterations in adenosine deaminase acting on RNA (ADAR1 and

ADAR2), the enzymes responsible for editing, were observed in

either hippocampus or hypothalamus (Figure 9 A to D). However,

a decrease of ADAR1 mRNA expression was observed in

hippocampal tissue of ob/ob mice compared to lean control, but

Figure 9. Adenosine deaminase (ADAR) mRNA expression. No significantly increased expression of the adenosine deaminase, ADAR1 (A) or
ADAR2 (B) in the hippocampus. No significantly increased expression of the hypothalamic adenosine deaminase, ADAR1 (C) or ADAR2 (D) in
hypothalamus during the day. No significantly increased expression of the hypothalamic adenosine deaminase, ADAR1 (E) at nighttime. However,
ADAR2 mRNA levels at nighttime are significantly reduced in hypothalamus of ob/ob mice (F). All mRNA is measured using qRT-PCR relative to b-actin
expression. Unpaired, two-tailed T-test; statistical significance is notated as * p,0.05 compared to lean control; n = 7–10 per genotype.
doi:10.1371/journal.pone.0032266.g009

Table 2. Site-specific hypothalamic 5-HT2C mRNA editing in
ob/ob mice compared to control.

Edit site percentage
(%) A B E C D

Lean Control (n = 8) 87.58 75.23 3.67 24.39 55.18

ob/ob (n = 8) 90.01 76.67 3.01 23.7 50.65

D (%) q2.43 q1.44 Q0.66 Q0.69 Q4.5

P-value 2.07*1028 - - - 4.47*10211

doi:10.1371/journal.pone.0032266.t002
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this did not reach statistical significance. Interestingly, a similar

decrease in ADAR2 expression, which did reach significance

(p,0.05), was detected in the hypothalamus of obese mice relative

to lean mice in the evening, before the active phase of food intake

(Figure 9F). Interestingly, a significant increase in ADAR1

(p = 0.005) was detected in the amygdala of obese mice relative

to lean mice (data not shown).

Discussion

The importance of the central serotonergic system, including

the 5-HT2C, 5-HT1B and 5-HT6 receptors, in the regulation of

feeding behaviour, body weight and energy homeostasis has been

consistently demonstrated in pharmacological and genetic studies

[7,9,12,47]. This study demonstrates significant increases in

hypothalamic 5-HT1A and 5-HT2C receptor mRNA expression

as well as in hippocampal 5-HT1A, 5-HT1B and 5-HT6 receptor

expression in obese mice (ob/ob) compared to lean control.

Moreover, editing of the 5-HT2C receptor on specific nucleotide

positions was detected in the hippocampus as well as in

hypothalamic tissue. In conclusion, we suggest that 5-HT2C

receptor mRNA expression changes and 5-HT2C receptor editing

may play a key role in the observed hyperphagic phenotype in the

leptin-deficient obese mouse model.

Serotonin 2C receptor mRNA expression
Hypothalamic full-length 5-HT2C receptor mRNA levels were

increased in obese mice relative to lean controls, which reinforce

the key role of the 5-HT2C receptor in the regulation of food

intake and appetite. Previously, it has been shown that 5-HT2C

receptor mutants are hyperphagic leading to an obese phenotype

and impaired glucose tolerance [48]. In addition, hyperphagia in

A(y) mice with increased expression levels of the agouti peptide has

been associated with increased hypothalamic 5-HT2C expression

[49]. The increased hypothalamic full-length 5-HT2C receptor

expression in obese mice was observed only in samples harvested

after the active phase of the animals (daytime samples), while in

samples taken at the onset of the dark phase (nighttime) no altered

full-length 5-HT2C receptor expression was observed. The

nighttime is the active phase of the mouse where baseline food

intake is greater. We therefore hypothesize that the increase in

hypothalamic full-length 5-HT2C in the ob/ob mice may occur as a

compensatory mechanism during the active phase of food intake in

an attempt to increase the 5-HT2C mediated satiety signalling and

curb the phenotypical associated hyperphagia.

Serotonin 2C receptor editing
Considering recent data, demonstrating that that feeding

behaviour and fat mass are altered in mice engineered to express

a fully edited 5-HT2C receptor isoform [24,27,28], we found it

important to investigate whether 5-HT2C receptor editing was

affected in a physiological model of obesity. We therefore set out to

determine the expression of specific edited isoforms of the 5-HT2C

receptor using specific probes detecting the major editing variants of

the 5-HT2C receptor in the hippocampus and hypothalamus. In

addition, we employed direct sequencing to pinpoint the exact

editing position. Noteworthy, the employment of direct sequencing

to quantify RNA editing has its limitations as the height of peaks

depicting the same nucleotide can differ within a chromatogram,

although we found nucleotide height to be consistent based on

position. Therefore, this technique requires careful interpretation

and should be used in support of other methods, such as the

qRTPCR employed here. This study demonstrated altered 5-HT2C

receptor editing in both the hippocampus and the hypothalamus of

the obese mice model. Increased 5-HT2C editing in the hippocam-

pus could be pinpointed to position A and B of the 5-HT2C receptor

editing cassette. A recent study showed that hippocampal leptin

signalling reduced food intake and that ventral hippocampal leptin

signalling contributes to the inhibition of food-related memories

elicited by contextual stimuli [46] indicating a key role for

hippocampal mediated regulation of food intake. The absence of

hippocampal leptin signalling in the leptin deficient ob/ob mice may

suggest abnormal food-related memory processing to be involved in

the hyperphagic phenotype (but see [50]). Our findings suggest that

differential 5-HT2C isoform expression potentially also plays a key

role in the hippocampal mediated regulation of food intake and

food-related memory processing. This hypothesis is reinforced by

studies demonstrating the involvement of the 5-HT2C receptor in

memory function and consolidation [51,52,53]. However, the

hippocampus is mainly involved in learning and memory and

involvement of 5-HT2C receptor editing within this domain of

hippocampal function and particularly within psychological disor-

ders, such as schizophrenia and seizure disorders such as epilepsy,

remains to be investigated. Analysis of the editing profile of the 5-

HT2C receptor in the hypothalamus demonstrated a significant

increase in editing on position A but a significantly decreased editing

on position D, corresponding to an increased expression of the

partially edited 5-HT2C–VNI isoform. It is tempting to speculate on

the functional consequences of selective 5-HT2C receptor mRNA

editing in specific regions of the brain. Individual 5-HT2C isoforms

have shown to demonstrate differential constitutive activity, affinity,

potency and a different ability to couple to G-proteins

[19,20,21,22,23,24,25]. An increased 5-HT2C receptor editing

profile renders the 5-HT2C receptor less functional. Thus, the

increased expression of the VNI edited 5-HT2C receptor isoform

may point to a reduced cellular function. This supports the premise

of decreased 5-HT2C receptor function in reducing appetite-

suppression in the ob/ob mouse model. However, we cannot

exclude that different hypothalamic nuclei express different 5-HT2C

receptor editing isoforms.

Additionally, expression levels of the adenosine deaminase

enzymes (ADAR1 and ADAR2), the enzymes responsible for

RNA editing, were investigated. It has been shown that expression

levels of both the enzymes ADAR1 and ADAR2 directly affect the

RNA editing level of 5-HT2C [25,26,54,55,56]. ADAR1 selectively

edits the A and B sites of the 5-HT2C receptor, whereas ADAR2

edits exclusively D site of the 5-HT2C receptor. No differential

ADAR expression were found in the hippocampus (Figure 8A and

8B) or hypothalamus (Figure 8C and 8D) of the obese mice in the

daytime experiments. This may suggest that the increased 5-HT2C

editing in obese mice is not a consequence of altered ADAR

expression but may potentially be due to other molecular

mechanism, such as 5-HT2C receptor splicing or degradation.

Interestingly, a significant decrease in ADAR2 mRNA levels, in

hypothalamic ob/ob mice relative to the lean control mice, in

samples taken in the evening was observed (Figure 8F). Reduced

ADAR2 expression may lead to a subsequent decrease in editing

on position D of the hypothalamic 5-HT2C editing cassette, as

observed after pyrosequencing of hypothalamic 5-HT2C receptor

during the daytime. In conclusion, altered 5-HT2C receptor

editing in combination with changes in ADAR expression in ob/ob

mice suggest a dynamic regulation in the appetite-suppressing

activity of the 5-HT2C receptor through receptor editing.

Serotonin 1A, serotonin 1B and serotonin 6 receptor
expression

We also showed significant increased hypothalamic 5-HT1A

mRNA expression levels and increases in 5-HT1A, 5-HT1B and 5-
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HT6 receptor expression in the hippocampus of obese mice (ob/

ob). Previously, exposure to 5-HT1A receptor agonists have shown

to increase food intake, which would be in line with the altered 5-

HT1A receptor expression [57,58,59]. The 5-HT1A and 5-HT1B

receptors have also been shown to regulate 5-HT release by a

negative feedback mechanism as presynaptic autoreceptors by

exerting direct inhibitory effects [59]. In addition, down-regulation

of neuropeptide release involved in food intake has also been

demonstrated via serotonin-mediated activation of post-synaptic 5-

HT1A receptors in both AgRP/NPY and POMC/CART

containing neurons of the arcuate nucleus [60]. Therefore, the

increased post-synaptic 5-HT1A and 5-HT1B expression in

hypothalamus and hippocampus may lead to a decrease in

terminal serotonin release and may consequently reduce seroto-

nergic activation of anorectic pathways as previously suggested

[14]. Indeed, decreased 5HIAA levels and a decreased 5HIAA/

5HT ratio were observed in obese, leptin deficient mice compared

to lean control littermates, indicating decreased 5HT turnover,

which is supported in a previous a study by Rowland and

colleagues [61]. However, 5-HT1A has not been a major focus as a

therapeutic target in obesity research and is implicated stronger in

serotonergic regulation of anxiety and depression [62,63]. A

dysregulated serotonergic tone in the hippocampus in ob/ob mice

might contribute to the anxiogenic phenotype observed in ob/ob

mice compared to lean control mice [50] which warrants further

investigation. The 5-HT6 receptor has also been implicated to play

a role in the regulation of satiety and energy homeostasis.

However, an effect on body weight is usually associated with

antagonism of this receptor [64,65,66]. Overall, increased central

5-HT1A, 5-HT1B and 5-HT6 receptor gene expression may

contribute to the obesity phenotype by decreasing serotonergic

tone leading to a decreased sensitivity towards satiety signals in the

leptin-deficient ob/ob mice.

Together, these studies demonstrate aberrant mRNA expression

changes in the 5-HT receptors studied in leptin deficient obese

mice. Most interestingly, our findings suggests a diurnal hypotha-

lamic 5-HT2C receptor expression and increases in 5-HT2C

receptor editing in the ob/ob mouse model of obesity, which may

have important physiological consequences to either the regulation

of feeding behaviour through the modulation of 5-HT2C receptor

mediated appetite-suppressing effects or compensatory responses

to the absence of leptin. The increase in 5-HT2C receptor editing

in the ob/ob mouse model would suggest the 5-HT2C receptor

editing to occur as a consequence of leptin-deficiency or as a

compensatory mechanism to the phenotypical-associated weight

gain or hyperphagia. However, significant reduced leptin levels

have previously been associated with 5-HT2C editing in mice

genetically engineered to only express the 5-HT2C-VGV isoform,

the fully edited variant of the 5-HT2C receptor [27]. These mice

were also hyperphagic but had reduced fat mass due to increased

energy expenditure. This may suggest, a bidirectional relationship

between leptin and 5-HT2C receptor editing independent of body

weight but directly correlating to hyperphagia. It would be

interesting to investigate if 5-HT2C receptor editing would still

occur in absence of weight gain in the ob/ob leptin-deficient mouse

model. In addition, it would be interesting to see if 5-HT2C

receptor editing profiles are dynamically regulated such the

observed diurnal change in full-length 5-HT2C receptor mRNA

expression in this study and the time-of day dependent ghrelin

receptor mRNA expression observed in our previous studies [67].

In addition, these results warrant further investigation into

corresponding 5-HT2C receptor protein expression following the

phenotype-associated 5-HT2C receptor editing. Concomitant

changes in 5-HT2C receptor protein expression and receptor

functioning could potentially support the conclusion that 5-HT2C

receptor editing is associated with obesity.
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