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Background:Gastric cancer (GC) was usually associated with poor prognosis and invalid
therapeutical response to immunotherapy due to biological heterogeneity. It is urgent to
screen reliable indices especially immunotherapy-associated parameters that can predict
the therapeutic responses to immunotherapy of GC patients.

Methods: Gene expression profile of 854 GC patients were collected from The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets (GSE84433) with
their corresponding clinical and somatic mutation data. Based on immune cell infiltration
(ICI) levels, molecular clustering classification was performed to identify subtypes and ICI
scores in GC patients. After functional enrichment analysis of subtypes, we further
explored the correlation between ICI scores and Tumor Mutation Burden (TMB) and
the significance in clinical immunotherapy response.

Results: Three subtypes were identified based on ICI scores with distinct immunological
and prognostic characteristics. The ICI-cluster C, associated with better outcomes, was
characterized by significantly higher stromal and immune scores, T lymphocytes infiltration
and up-regulation of PD-L1. ICI scores were identified through using principal component
analysis (PCA) and the low ICI scores were consistent with the increased TMB and the
immune-activating signaling pathways. Contrarily, the high-ICI score cluster was involved
in the immunosuppressive pathways, such as TGF-beta, MAPK and WNT signaling
pathways, which might be responsible for poor prognosis of GC. External
immunotherapy and chemotherapy cohorts validated the patients with lower ICI scores
exhibited significant therapeutic responses and clinical benefits.

Conclusion: This study elucidated that ICI score could sever as an effective prognostic
and predictive indicator for immunotherapy in GC. These findings indicated that the
systematic assessment of tumor ICI landscapes and identification of ICI scores have
crucial clinical implications and facilitate tailoring optimal immunotherapeutic strategies.
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INTRODUCTION

As one of the most common tumors with a high morbidity and
mortality, gastric cancer (GC) leads to a poor prognosis and
increases critical social burden with 5.7% incidence and 8.2%
mortality rates (Bray et al., 2018). More than 50% of diagnosed
GC patients were at advanced stages and the prognosis of GC was
relatively poor with only less than 30% overall 5-year survival
rate (Yang et al., 2020a; Wang et al., 2021). Despite
remarkable progress have been made for the treatment of
GC, including radiotherapy, chemotherapy and surgery
according to different locations and clinical stages, there is
still lack of effective strategies for the advanced GC treatment
(Ai and Wang, 2020). Recently, the rapid rise of
immunotherapy has brought a new therapeutic landscape
for the patients who didn’t benefit from conventional
chemotherapy, radiation or surgery (Chivu-Economescu
et al., 2018). However, in clinical practice, the majority of
GC patients were usually still lack of effective therapeutical
response to immunotherapy (Li et al., 2020). Therefore, it is
crucial to screen reliable index especially immunotherapy-
related biological parameters that can predict the therapeutic
responses to immunotherapy of GC patients.

Tumor microenvironment (TME) is the inner environment of
malignant tumor progression and reveals the biological process of
host anti-tumor immune response and destruction of normal
tissue. Therefore, the TME was considered as an essential element
for exploring the relationship between immune response and
tumors with immune cell infiltration (ICI) (Anderson et al.,
2006). The TME of tumor tissue was usually complex and
associated with tumor initiation, development and prognosis,
of which massive immune cells were infiltrated and played great
significance to the prognosis of patients (Chen et al., 2020). For
instance, tumor-infiltrating lymphocytes (TLS) such as CD4+

T cell and CD8+ T cell could remarkably improve the curative
effects and survival rates (Vassilakopoulou et al., 2016). In
addition, tumor-associated macrophages (TAMs), accounting
for the majority of leukocytes, had been reported to be
involved in the progress of lung and kidney tumors through
secreting immunosuppressive cytokines (Vilaseca et al., 2017; Tie
et al., 2020). Besides various immune cells, the hypernomic
infiltration of stromal components in tumor tissues could
decrease the TLS trafficking into tumors (Senbabaoglu et al.,
2016). All these researches indicated that intercellular
relationships were more significant than the single cell
population in TME and the comprehensive landscape of
immune cells infiltrating of TME in GC patients still remained
unclear.

The identification of potential subtypes of GC by high-
throughput technologies may contribute to elucidating the
molecular mechanism, improving therapeutic response, and
providing insight into any possible evaluating indicators for
immunotherapy. In this study, based on the gene expression
profile of GC. we applied two major computational algorithms,
CIBERSORT and ESTIMATE, to acquire immune clustering
subtypes, establish the immune cells infiltration (ICI) scores
and further assess the comprehensive landscape about the

infiltration of immune cells in GC. Besides, the biological
characteristics of ICI subgroups was elucidated and the
significance of ICI scores in the prediction of immunotherapy
and common chemotherapeutics response was further estimated
to validate the ICI landscape for GC.

Conclusively, we are convinced that this study would help in
the identification of potential subtypes of GC for interpreting the
discriminatory curative responses to immunotherapy and
facilitating understanding of the underlying mechanisms of the
disease.

MATERIALS AND METHODS

Data Preparation and Preprocessing
The flow chart of our study was showed in Supplementary
Figure S1. Transcriptome profiling data of 854 GC samples
with their corresponding clinical and mutation data were
downloaded from two publicly available datasets, of which the
RNA-seq transcriptome data of 407 GC patients with fragments
per-kilobase million (FPKM) value were derived from The
Cancer Genome Atlas (TCGA) datasets (https://portal.gdc.
cancer.gov/) and other microarray data of 447 GC patients
(GSE84433) were derived from the Gene Expression Omnibus
(GEO) datasets (https://www.ncbi.nlm.nih.gov/geo/). To
standardize the expression levels between different sequencing
technologies, the FPKM value of TCGA-STAD datasets was
transformed into the transcripts per-kilobase million (TPMs)
form, which was consistent with the microarray datasets (Wagner
et al., 2012). In addition, the “ComBat” algorithm of “sva”
package was further applied to remove the non-biological
technical biases due to batch effects between different datasets
(Leek et al., 2012).

Consensus Cluster Analysis for Immune
Cells Infiltration in Gastric Cancer
To evaluate the immune cell infiltration (ICI) characteristics of
GC tissues, we used the “CIBERSORT” package (Chen et al.,
2018) to quantitatively analyze the infiltration levels of different
immune cells with the LM22 signatures by 1,000 random
permutations. Immune cell infiltration levels and stromal
contents in different samples were evaluated by using the
“ESTIMATE” algorithm (Yoshihara et al., 2013). Then, we
performed hierarchical clustering analysis according to the
immune infiltration of each sample and the
“ConsensuClusterPlus” R package (Wilkerson and Hayes,
2010) was applied to conducted unsupervised clustering based
on Euclidean distance and Ward’s linkage methods with 1,000
repeated times to ensure the stability of classification. We
performed multiple comparisons among different immune-
subtypes including tumor microenvironment (TME) and ICI
features to explore the immune characteristics. Moreover, R
packages “survival” (Therneau and Lumley, 2015) and
“survminer” (Kassambara et al., 2017) were used to perform
Kaplan-Meier survival analysis and create survival curves
between immune subtypes.
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Identification of ICI Gene-Types and
Functional Enrichment Analysis
ICI-associated genes were identified among ICI subtypes using
the “limma” package (Smyth, 2005) through setting significance
cutoff as adjusted p < 0.05 and absolute fold-change >1 and those
genes were also divided into different clusters using hierarchical
clustering. In order to clarify the biological function and
characteristics of gene-clusters, Gene Ontology (GO) enrichment
analysis was performed by using “ClusterProfiler” package (Yu et al.,
2012) and similar comparisons between gene-types were conducted
including TME, ICI and survival analysis. In addition, we also
compared the difference of TNM stages between ICI clusters
through the chi-square test using the “ggstatsplot” R package.

Definition and Immune Characteristics of
ICI Scores
Based on the unsupervised clustering of expression value of ICI-
associated genes, those GC samples were redistributed into
different gene-clusters and the expression values correlated
with clusters were identified as the ICI gene signatures A and
B respectively. Moreover, we applied the Boruta algorithm (Kursa
and Rudnicki, 2010) to reduce the dimension of above ICI gene
signatures and adopted principal component 1 as the signature
score by performing the principal component analysis (PCA)
(Zhang et al., 2020). Finally, the method similar to Gene
expression grade index was applied to define the ICI score as the
following formula: ICI score � ∑PC1A − ∑PC1B. Subsequently,
the threshold of ICI scores was identified through the
“surv_cutpoint” function of “survival” package and patients were
separated into High- and Low-ICI groups. The software of GESA
v4.0 was used for gene set enrichment analysis (GSEA) of ICI scores
in gastric cancer. To estimate the discriminative capacity of ICI
scores in predicting the prognosis of GCs, the “timeROC” package
was applied to draw time-dependent receiver operating
characteristic (ROC) curves (Blanche and Blanche, 2019).

Calculation and Analysis of Tumor Mutation
Burden
To explore the relationship between TMB and ICI score, we also
downloaded themutationdata ofGCpatients fromTCGAdatasets and
calculated TMB scores by using the “maftool” R package (Mayakonda
et al., 2018). In addition, the correlation analysis between TMB and ICI
scores was performed based on Spearman correlation coefficients and
combined survival analysis was further employed to clarify the
prognostic value. Furthermore, comprehensive mutation analysis
was conducted by “maftools” package and mutational signatures of
the top 20 genes were further chosen subsequent comparison between
ICI-score subgroups using chi-square test.

Exploration of the Significance of ICI Scores
in Clinical Immunotherapy Response
Another independent dataset, IMvigor210, included 298 urothelial
cancer patients receiving anti-PD-L1 immunotherapy with complete

clinical information and was downloaded from the freely available
“IMvigor210CoreBiologies” package (http://research-pub.gene.com/
IMvigor210CoreBiologies). Moreover, to evaluate the therapeutic
value of ICI scores in the clinic for GC treatment, we calculated the
half maximal inhibitory concentration (IC50) of common
chemotherapeutic drugs based on Genomics of Drug Sensitivity
in Cancer (GDSC) databases (Yang et al., 2013). From the GDSC
database, Antitumor drugs such as 5-Fluorouracil, Bleomycin,
Cisplatin, Docetaxel and Mitomycin-C have been recommended
for the GC treatment by current clinical guidelines. Difference of
IC50 of these chemotherapeutic drugs between ICI-score subgroups
was compared using Wilcoxon test and the results were exhibited in
box diagrams using the “ggpubr” package (Whitehead et al., 2019).

RESULTS

The Landscape of Immuno-Cell Infiltration
in the TME of Gastric Cancer
First, the “CIBERSORT” and “ESTIMATE” algorithm were used
to calculate the activity or enrichment levels of immune cells in
GC tumor tissues (Supplementary Table S1,2). Unsupervised
clustering was applied to classify the GC patients into distinct
subtypes by the “ConsesusClusterPlus” package based on 854
tumor samples with matched immune cell infiltration (ICI)
profiles from the databases (GSE84433 and TCGA-GC). Three
independent ICI subtypes had been identified with significant
survival differences (log rank test, p � 0.012) and ICI analysis
revealed complicated relation among immune cells in the TME of
GC tissues (Figure 1A,D). In order to further examine the
relationship of intrinsic biological differences and distinct
clinical phenotypes, we compared the composition of immune
cells in TME according to the three ICI subtypes. Among the
three subtypes, the ICI cluster C exhibited the longer median
survival time (Figure 1E) and higher infiltration of T
lymphocytes including CD8+ T cells, activated memory CD4+

T cells, follicular helper T (Tfh) cells, M1 macrophages and
resting dendritic cells (DCs) (Figure 1B,C). With a median
survival of 4 years, the ICI cluster A had the worst prognosis
and it was characterized by high infiltration of naive B cells,
resting memory CD4+ T cells, activated DCs and resting Mast
cells. The ICI cluster B was marked by high infiltration of M0 and
M1 macrophages with about 4.8 years’ median survival time.
Moreover, we also analyzed the expression of significant immune
checkpoint, PD-L1, in each ICI cluster to estimate the response to
immunotherapy. Consistent with the results of survival analysis,
the expression of PD-L1 was higher in ICI cluster C than that in
ICI cluster A and B (Figure 1F). In addition, the comparison of
TNM stages showed that Cluster A displayed more proportion of
severe stages than that of Cluster B and C (Figure 1G).

Identification of ICI Gene-Types and its
Functional Enrichment
To further elucidate the underlying biological characteristics
of different immunophenotypes, the differential transcriptome
variations analysis was performed among subtypes using the
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FIGURE 1 | Identification of immune molecular subtypes and characteristics of immuno-cell infiltration landscape in the gastric cancer. (A) Consensus clustering
matrix for k � 3 in GC patients. (B) Heatmap of immune cells infiltration and clinicopathologic features of the three subtypes. (C) The box plots showing the difference of
immune cells infiltration among three ICI clusters. (D) The correlation among the immune cell infiltration in GC patients. (E). Kaplan-Meier curves of overall survival (OS) for
the GC patients in three subtypes. (F) The expression of PD-L1 between different ICI cluster groups. (G) Difference of TMN stages among different ICI cluster
groups.
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“limma” package. Subsequently, we reperformed the
unsupervised hierarchical clustering based on the expression of
251 differentially expressed genes (DEGs) and classified the GC
cohorts into two genomic clusters named gene clusters A and B

(Figure 2A, Supplementary Table S4). Moreover, those DEGs
were positively/negatively associated with ICI signatures and also
classified into two clusters: ICI signature gene A and B
(Figure 2B) and survival analysis exhibited gene clusters A

FIGURE 2 | Identification of ICI gene-types and its functional enrichment. (A)Consensus clusteringmatrix for k � 2 in GC patients based on the expression of DEGs.
(B) Unsupervised clustering of DEGs to classify GC patients into novel two gene clusters (A,B). (C) Kaplan-Meier curves for the two gene clusters of patients. (D) Gene
Ontology enrichment analysis of the two ICI-related signature genes. (E) The difference of immune cells infiltrating in TME between two gene clusters. (F) The expression
of PD-L1 between different gene cluster groups. (G) Difference of TMN stages between different gene cluster groups.
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FIGURE 3 | Construction and identification of characteristics for ICI Score. (A) Alluvial diagram showing the ICI gene cluster distribution from different ICI gene
clusters, ICI score groups and final survival outcomes. (B) The expression of immune-checkpoint-associated signatures (CD274/PD-L1, PDCD1, LAG3, CTLA4 and
HAVCR2) and immune-activity-related genes (CD8A, CXCL9, CXCL10, GZMA, GZMB, PRF1, IFNG, TNF and TBX2) in different ICI score groups. (C) Kaplan-Meier
curves of overall survival (OS) for the GC patients in high and low ICI score groups. (D) Difference of TMN stages between different ICI score groups. (E) The results
of GSEA showing that Calcium signaling pathway, MAPK signaling pathway, TGF beta signaling pathway, WNT signaling pathway and NOD like receptor signaling
pathway were significantly enriched in high-ICI score group while RNA degradation, Spliceosome, Oxidative phosphorylation, Vascular smooth muscle contraction and
Natural killer cell mediated cytotoxicity were enriched in the low-ICI score group. (F) ROC analysis showed the 1-year, 3-year, and 5-year AUC values of the ICI scores in
predicting the prognosis of GCs were 0.580, 0.620, and 0.663, respectively.
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had a longer median survival time than cluster B (log rank test,
p � 0.038, Figure 2C). Functional enrichment analysis revealed
the ICI signature gene A was significantly enriched in the process
of humoral immune response, such as antimicrobial humoral
response, defense response to virus and response to interferon-
gamma, while the ICI signature gene B was associated with the
regulation of digestion, including negative regulation of insulin
secretion, peptide hormone secretion and protein secretion
(Figure 2D, Supplementary Table S5). In addition, in order
to explore the prognostic implications of the ICI gene clusters, we
also performed the Kaplan-Meier survival analysis and the gene
cluster B had a better prognosis than cluster A (Figure 2C).
Interestingly, TME analysis indicated gene cluster B had higher
infiltration of immune cells and were associated with significantly
high immune scores, suggesting its pro-tumor or anti-tumor
activity (Figure 2E). Additionally, the two genomic clusters
also showed significant differences in the expression of PD-L1
and the gene cluster B exhibited higher PD-L1 levels (Figure 2F).
Consistent with the results of survival analysis, cluster A exhibited
more severe TNM features than that of cluster B, suggesting the
latter cluster might have a better prognosis and efficacious
curative responses (Figure 2G). All these results indicated the
consistency between the ICI analysis and prognostic profile in
different gene clusters suggesting the scientificity and rationality
of our classification method.

Construction and Identification of
Characteristics for ICI Score
To acquire quantitative index of ICI landscape in GC, we defined
ICI scores using principal component analysis and successfully
divided the patients into High- and Low-ICI score subgroups
(Supplementary Table S7). Figure 3A showed the distribution
procedure of different subgroups and the gene cluster A was
almost divided into High-ICI score cohorts while massive cluster
B was contributed into Low-ICI score subgroups. Furthermore,
we also evaluated the immune activity and immune tolerance
condition of each cohort before determining the prognostic value
of ICI scores. To accomplish the evaluation, immune-checkpoint-
associated signatures were chosen to assess the response of
immunotherapy including CD274/PD-L1, PDCD1, LAG3,
CTLA4 and HAVCR2 while immune-activity-related genes
were selected to estimate the condition of immune activation
including CD8A, CXCL9, CXCL10, GZMA, GZMB, PRF1, IFNG,
TNF and TBX2. We observed that most signatures of immune-
checkpoint and immune-activity-relevant genes were
significantly upregulated in the Low-ICI score groups except
PDCD1, CD8A, HAVCR2, TBX2 and TNF (Figure 3B) and
Low-ICI group also had a better prognosis than High-ICI score
cohorts (Figure 3C). Clinical analysis of TNM stages also
demonstrated that Low-ICI scores subgroups exhibited more
frequent phenotypes with high-levels of clinical stages
(Figure 3D). Moreover, GSEA analysis also revealed that
Calcium signaling pathway, MAPK signaling pathway, TGF
beta signaling pathway, WNT signaling pathway and NOD
like receptor signaling pathway were significantly enriched in
high-ICI score group while RNA degradation, Spliceosome,

Oxidative phosphorylation, Vascular smooth muscle
contraction and Natural killer cell mediated cytotoxicity were
enriched in the low-ICI score group (Figure 3E, Supplementary
Table S6). Moreover, time-dependent ROC analysis showed the
1-year, 3-year, and 5-year AUC values of the ICI scores in
predicting the prognosis of GCs were 0.580, 0.620 and 0.663,
respectively (Figure 3F).

The Relationship Between ICI Scores and
Tumor Burden Mutation
Increasing evidence indicated that tumor burden mutation
(TMB) could affect the infiltration of CD8+ T cells, which was
considered as significant elements in alleviating the prognosis of
tumors (Rizvi et al., 2015; Cristescu et al., 2018). These studies
implied that TMB might determine the individual’s response to
target immunotherapy. To investigate the intrinsic relationship
between TMB and ICI scores, we compared the levels of TMB
scores between ICI score subgroups and performed Spearman
correlation analysis. The results revealed high-ICI score group
had a lower TMB scores than that of low-ICI score cohorts
(Wilcox test, p < 0.05) and the ICI scores were negatively
correlated with TMB scores (Spearman coefficient: R � −0.52,
p < 2.2e-16) (Figure 4A,B). Longer median survival time was also
identified in high-TMB groups than low-TMB subgroups by
survival analysis, consistent with the prognosis of low-ICI
score groups (Figure 4C). Moreover, the stratified survival
analysis further revealed patients with high TMB and low ICI
scores had the best prognosis status, suggesting the synergistic
effect of TMB and ICI scores in prognostic stratification of GC.
Besides, low-ICI score cohorts still exhibited a better prognosis
than that of high-ICI groups even in GC patients with same TMB
stages and in patients with same ICI-score condition, high-TMB
patients also had a longer median survival time than low-TMB
cohorts (Figure 4D). These results implied the negative
correlation between ICI scores and TMB values and their
potential complementary value in the application of prognosis
for GC patients.

Furthermore, we estimated the distribution of somatic variants
between the low and high ICI subgroups based on the TCGA
datasets. The results revealed various mutation patterns were
identified in both high- and low-ICI subgroups including
Missense Mutation, Nonsense Mutation, Frame Shift Del and
In Frame Del, and more frequent mutations were observed in
low-ICI groups (96.34%) than that of high-ICI groups (78.95%).
The top20 genes with most mutation frequency were exhibited in
Figure 4E,F, of which TTN, PIK3CA, KMT2D and OBSCN were
significantly different between the low and high ICI score groups
(chi-square test; p < 0.05) and the top20 genes with significantly
difference were displayed in Table1. These results might propose
novel ideas for exploring the potential mechanism of tumor ICI
composition and gene mutation in immune checkpoint therapy.

The significance of ICI scores in the prediction of
immunotherapy and common chemotherapeutics response.

To further explore the role of ICI scores in predicting the
therapeutic benefit in GC, the patients who accepted anti-PD-L1
immunotherapy from the IMvigor210 cohort were calculated ICI
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FIGURE 4 | The Relationship between ICI Scores and Tumor Burden Mutation. (A) The difference of TMB value between the high and low ICI score subgroups. (B)
The scatter diagram showing the negative correlation between TMB value and ICI scores. (C) Kaplan-Meier curves of the high and low TMB subgroups in GC patients.
(D) Stratified survival analysis for GC patients combining TMB groups and ICI score subtypes. (E,F) The oncoPrint showing the mutant situation of individual patients in
high ICI scores groups (red) and low ICI scores groups (blue) respectively.
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scores and assigned into high- or low-ICI scores groups
(Supplementary Table S8). Notably, the effective response
rate of anti-PD-L1 therapy was significantly higher in the low-
ICI score group than in high-ICI subgroups and the low-ICI
patients outlived the high-ICI score patients (Figure 5A,B).
Moreover, the rate of complete remission (CR) after
immunotherapy was also increased in low ICI scores than
high ICI cohorts (Figure 5C).

Besides checkpoint blockers therapy, we also attempted to
investigate the potential associations between ICI scores and the
curative efficacy of common chemotherapeutics in treating
gastric cancers. IC50 was calculated and five common anti-GC
chemotherapeutic drugs were obtained from the GDSC databases
including 5-Fluorouracil, Bleomycin, Cisplatin, Docetaxel and
Mitomycin-C (Supplementary Table S9). Interestingly, except
Mitomycin-C, other four drugs all exhibited lower IC50 value in
low-ICI score groups indicating the low-ICI patients might obtain
better curative efficacy from common chemotherapy (Figures
5D–H). Collectively, these outcomes indicated that ICI scores
could be associated with the response to immunotherapy and
common chemotherapy.

DISCUSSION

As a malignant tumor with high mortality, the prognosis of GC
remains poor without effective therapeutical tools. Despite the
development of combination chemotherapy, consisting of
platinum and 5-fluorouracil, only a mild survival advantage
was obtained in GC patients (Galdy et al., 2016). Recently,
cancer target immunotherapies have acquired considerable
attention as an effective and accurate therapeutic option for
GC including immune checkpoint inhibitors, tumor vaccines

and chimeric antigen rector (CAR)-T cells (Yang et al., 2019).
However, even if the GC patients were at the same clinical stage,
their prognosis and therapeutical response to the same treatment
might be still different in clinical practice. Gullo’s study has also
reported this phenomenon and attributed to genomic and
biological heterogeneity (Gullo et al., 2018). Therefore,
identification of a novel subtype and reliable index to evaluate
and predict the therapeutical response to immunotherapy for GS
is urgently needed.

In this study, we first proposed an immune molecular subtype
based on clustering immune infiltration scores with distinct
clinical and immunological signatures in the meta-cohort of
854 GC patients. Interestingly, the characteristics of the three
molecular subtypes manifested significant homogeneity. TME
analysis revealed higher stromal and immune scores were found
in ICI cluster C than other two clusters, indicating anti-tumor
immune response was significantly activated in ICI cluster C of
GC (Zeng et al., 2019). Moreover, higher infiltration scores of
T cells, especially activated CD4+ memory T cells, CD8+ T cells
and follicular helper T cells, which have been regarded as the
major immune cells for anti-tumor efficacy (Biase et al.,
20192019), were demonstrated in the ICI cluster C and this
subtype also presented longer median survival time than other
two clusters through Kaplan-Meier survival analysis
(Figure 1C,E). Immune checkpoint genes, especially PD-L1,
have been demonstrated playing significant role in immune
suppression in multiple tumors and the target inhibitors have
also been widely applied to immunotherapy for cancers (Kim
et al., 2020a). It was worth mentioning that the expression levels
of PD-L1 was significantly increased in ICI cluster C subgroups
suggesting a higher level of immune exhaustion and potential
better therapeutical response in GC patients.

To further explore the potential biological functional features
of the ICI subtypes in GC, we fetched the differential expression
genes among three subtypes and identified novel ICI gene types.
Interestingly, the ICI gene cluster B exhibited a better prognosis
for GC than gene cluster A and was positively associated with the
expression of ICI signature A, which were significantly enriched
in the process of humoral immune response. Conversely, the ICI
gene cluster A was positively associated with the ICI signature B
and major enriched in the negative regulation of digestion.
Increasing evidence had indicated that the H. pylori bacteria
could actively dampen the T-helper 1 (Th1) response and inhibit
CD4/CD8 positive T cell activation and IFN-γ production,
leading to considerable tissue damage during the progression
of GC (Wen et al., 2004; Ito et al., 2008). Therefore, the process of
humoral immune response would ameliorate the disease
condition and improve the survival for GS patients,
interpreting the better prognosis of ICI gene cluster B in our
study (Kurtenkov et al., 2007). In addition, we also observed ICI
gene cluster B had the higher stromal scores, immune scores,
expression levels of PD-L1, milder TNM stages and other
immune-response-related cells infiltration, consistent with the
results of survival analysis and GO functional enrichment
analysis. These outcomes suggested the ICI gene cluster B was
associated with the immune-activation condition with better
therapeutic reaction and prognosis for GC (Panda et al., 2018).

TABLE 1 | Top20 Somatic Variants between High- and Low-ICI Score group.

Gene symbol High ICI score (%) Low ICI score (%) p Value

TTN 58 (33.92%) 111 (58.12%) 6.75E-06
PLEC 7 (4.09%) 39 (20.42%) 6.86E-06
CNTLN 3 (1.75%) 29 (15.18%) 1.65E-05
PIK3CA 11 (6.43%) 43 (22.51%) 3.48E-05
ANKRD11 4 (2.34%) 29 (15.18%) 5.00E-05
HDAC4 0 (0%) 19 (9.95%) 6.31E-05
KMT2D 13 (7.6%) 45 (23.56%) 6.64E-05
ANK3 8 (4.68%) 36 (18.85%) 7.56E-05
ASPM 4 (2.34%) 28 (14.66%) 8.25E-05
HERC2 6 (3.51%) 32 (16.75%) 8.40E-05
JARID2 1 (0.58%) 21 (10.99%) 8.91E-05
NPAP1 1 (0.58%) 21 (10.99%) 8.91E-05
SIPA1L1 2 (1.17%) 23 (12.04%) 1.11E-04
SLITRK5 4 (2.34%) 27 (14.14%) 1.35E-04
FBN1 4 (2.34%) 27 (14.14%) 1.35E-04
SSPO 4 (2.34%) 27 (14.14%) 1.35E-04
HIVEP1 1 (0.58%) 20 (10.47%) 1.49E-04
OBSCN 13 (7.6%) 43 (22.51%) 1.63E-04
KMT2A 4 (2.34%) 26 (13.61%) 2.21E-04
ATP10 A 4 (2.34%) 26 (13.61%) 2.21E-04

p value was obtained based on the chi-square test between the high and low ICI, score
subgroups.
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Considering the individual biological heterogeneity to
immune checkpoint inhibitors, it was urgently required to
understand the ICI landscape of individual tumors.

In previous studies, tumor subtype-specific biomarkers had
been successfully established to improve individual outcome
prediction in breast and colorectal cancers, respectively
(Callari et al., 2016; Bramsen et al., 2017). In our study,
through the Boruta algorithm, we successfully established the
ICI score to quantify the ICI pattern and found most low-ICI
score groups were corresponding to the former ICI gene cluster B
with a longer lifetime. Moreover, the expression levels of most
immune-checkpoint-associated and immune-activity-related
genes were both significantly increased in the low-ICI score
groups, implying the activation of anti-tumor process in
gastric cancers. ROC analysis further demonstrated that ICI
scores had a good prediction capacity in all 1-year, 3-year and

5-year overall survival for GC patients, indicating the potential
predicted value of ICI scores. In addition, GSEA revealed that the
genes of high-ICI score cluster were involved in the
immunosuppressive pathways, such as TGF-beta, MAPK and
WNT signaling pathways, which had been reported associated
with the progression of GC (Chen et al., 2014; Jia et al., 2017; Yang
et al., 2020b). Contrarily, several immune-activated andmetabolic-
related pathways were found enriched in low-ICI score cohorts
including Natural killer cell mediated cytotoxicity and Oxidative
phosphorylation. Su et al. (2020) also identified three oxidative
phosphorylation genes associated with the clinical prognostic
significance in GC and multiple therapeutic technologies had
been found to activate NK cells directly or indirectly to improve
their killing activity for GC including cytokines, antibodies,
immunomodulatory drugs, immune checkpoint blockades and
gene therapy (Mimura et al., 2014).

FIGURE 5 | The role of ICI scores in the prediction of immunotherapy and common chemotherapeutics response. (A) ICI scores between groups with different
clinical immunotherapy response status. (B) Survival analysis for patients in high and low ICI score groups from the IMvigor210 cohort. (C) The distribution of the
complete remission (CR)/partial response (PR) rate and stable disease (SD)/progressive disease (PD) to anti-PD-L1 immunotherapy between high and low ICI score
groups based on the IMvigor210 cohort. (D–H) The difference of IC50 value from five common chemotherapy drugs between high and low ICI score groups,
including 5-Fluorouracil, Bleomycin, Cisplatin, Docetaxel and Mitomycin-C.
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TMB has been recognized as a new biomarker for immune
checkpoint treatment in various tumor types and reported to
applied in predicting the survival status after immunotherapy in
advanced gastric cancer patients (Kim et al., 2020b). Therefore,
TMB value was considered as a sensitive index to
immunotherapy. In the current study, we also detected that
the TMB was significantly increased in patients with low ICI
scores. The significantly negative correlation between the TMB
value and ICI scores was identified with the correlation coefficient
of −0.52. The stratified analysis revealed that the prognosis value
of ICI scores was consistent with TMB values and the patients
with high-TMB and low-ICI scores exhibited optimal survival
condition. Notably, ICI scores could still exhibit significant
discriminating capacity in estimating the survival period of
GC patients in same TMB conditions using stratified analysis,
indicating that ICI scores might provide insights not available
from TMB. Recently, the correlation between gene mutations and
response or tolerance to immunotherapy had been identified in
published reports (George et al., 2017). In our study, more
frequent mutations were observed in low-ICI groups and
massive mutable genes with significant variant frequency
differences were identified, suggesting somatic mutation might
participate in the process of immune-subtypes in GC.

Furthermore, to validate the significance of ICI scores in the
prediction of immunotherapy, the patients receiving
immunotherapy were evaluated based on the IMvigor210
datasets and we found the ICI score was significantly
decreased in patients responded to corresponding
immunotherapy, suggesting target immunotherapy might be
beneficial tool for the patients with low ICI scores. In
addition, the low-ICI score groups also demonstrated longer
median survival time and higher rate of complete remission
(CR) after immunotherapy in clinical trials. Besides
immunotherapy, common chemotherapeutic drugs also be
demonstrated lower IC50 value in low-ICI score cohorts
including 5-Fluorouracil, Bleomycin, Cisplatin and Docetaxel
from GDSC database, implying the low-ICI score patients
might be more efficacious against these chemotherapeutic
drugs. Overall, these findings from external datasets validated
the potential benefits in low-ICI scores and indicated ICI scores
might play a vital role in predicting the curative responses to
common chemotherapy and immune checkpoint therapy.

However, there are still several limitations in our study. For
one thing, the high-throughput sequencing datasets for initial
analysis were relatively insufficient because it was simply
obtained from the public databases. The corresponding results
and conclusion remain to be investigated through more external

congeneric researches. For another, there are still several concerns
need other researches, even clinical practices, to repeatedly
confirm and improve, such as the concrete role of ICI scores
in predicting the response to immunotherapy, the optimal
threshold for the classification ICI scores and so on.

CONCLUSION

In conclusion, we comprehensively explored the ICI
landscape of GC, providing a clear visual angle of the
characteristics in immune molecular subtypes based on
clustering immune infiltration scores with distinct clinical
and immunological signatures. The distinction in ICI
landscapes was found to be associated with the complexity
and heterogeneity of tumor treatment. Moreover, we
successfully identified and validated the significance of ICI
scores in predicting the therapeutic responses to
immunotherapy based on clinical trial data from external
datasets. The systematic assessment of tumor ICI
landscapes and identification of ICI scores have crucial
clinical implications and facilitate tailoring optimal
immunotherapeutic strategies.
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