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The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global public
health challenge. Most patients do not experience severe complications, but
approximately 25% of patients progress to acute respiratory distress syndrome
(ARDS), and the mortality rate is approximately 5–7%. Clinical findings have determined
several risk factors for severe complications and mortality in COVID-19 patients, such as
advanced age, smoking, obesity, and chronic diseases. Obesity is a common and serious
health problem worldwide that initiates a cascade of disorders, including hypertension,
cardiovascular disease (CVD), diabetes mellitus, and chronic kidney disease (CKD). The
presence of these disorders is linked to a more severe course of COVID-19. Given the
“epidemic” of obesity worldwide and the importance of obesity in the progression of
COVID-19, we investigated the mechanisms through which obesity increases the
susceptibility to and severity of COVID-19 to support the selection of more appropriate
therapies for individuals with obesity.
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INTRODUCTION

With the acceleration of the coronavirus disease 2019 (COVID-19) pandemic worldwide, people are
concerned about implementing the necessary measures to avoid infection and facilitate recovery
should they become infected. Therefore, it is necessary to identify risk factors contracting COVID-
19 and progressing to severe disease. Accumulating statistical analyses have shown that there is a
higher risk of severe disease in individuals with obesity. An academic health system in New York
reported that among 4,103 COVID-19 patients, a BMI>40 kg/m2 was the second strongest
independent predictor of hospitalization after advanced age (1). It is worth noting that obesity is
the chronic disease most closely related to critical illness, and the odds ratio for critical illness is
higher among obese individuals than those with any cardiovascular or pulmonary disease. Most
importantly, recent data from the UK, the USA, and Mexico revealed elevated mortality rates in
COVID-19 patients with obesity (2–4). Considering that over one-third of the population
worldwide is overweight or obese (5), it is crucial to discuss the mechanisms that make
individuals with obesity more susceptible to severe disease.

Studies have shown that the binding of the spike protein(s) with angiotensin-converting enzyme
2 (ACE2) mediates the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
into host cells. The activation of the spike protein(s) depends on the activation of a serine protease in
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host cells (6). First, SARS-CoV-2 binds the N-terminal portion of
the S1 protein unit to the ACE2 receptor pocket. Second,
transmembrane protease serine 2 (TMPRSS2) and furin
mediate protein cleavage between the S1 and S2 units, and the
remaining viral S2 unit undergoes conformational
rearrangement. Finally, SARS-CoV-2 fuses with the cellular
membrane and enters the host.

Obesity has a comprehensive effect on the human body.
Obesity contributes to respiratory dysfunction and immune
impairment and is also responsible for comorbidities related to
severe COVID-19 (hypertension, cardiovascular disease, diabetes
mellitus, and kidney disease) (Figure 1); thus, individuals with
obesity may be more likely to develop severe COVID-19. Here, we
discuss the mechanism by which obesity increases the likelihood
of progression to severe COVID-19 and potential therapeutic
strategies for obese individuals with severe COVID-19.
POTENTIAL MECHANISMS BY WHICH
OBESITY INCREASES THE LIKELIHOOD
OF PROGRESSION TO SEVERE COVID-19

Obesity and COVID-19
In this section, the mechanistic links between obesity and severe
COVID-19 are discussed from the perspective of the
pathophysiology of COVID-19, the immune system, and
respiratory physiology.
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ACE2 is the putative receptor mediating the entry of SARS-
CoV-2 into host cells; therefore, ACE2 expression is closely
correlated with susceptibility to COVID-19. In addition to the
heart, vessels, gut, lung, kidney, testis, and brain, ACE2 is also
expressed in adipose tissue (7, 8). Individuals with obesity have
more adipocytes to express ACE2, making them more susceptible
to contracting COVID-19. This finding is supported by a study
revealing that elevated serum ACE2 levels in obese individuals are
correlated with severe outcomes of COVID-19 (9). Moreover, a
previous study suggested that furin expression is significantly
enhanced during adipogenesis (10), and furin facilitates the entry
of SARS-CoV-2 into cells and the release of virus particles from
cells (11). Unfortunately, data regarding furin expression in patients
with obesity and COVID-19 are currently lacking. Following their
entry into host cells, viruses exploit the cellular translation
apparatus to express viral proteins (12). Most coronaviruses are
thought to undergo cap-dependent translation using eIF4F because
of the 5′ cap structures in their genomic and subgenomic mRNAs
(12). mTORC1 regulates eIF4F complex assembly and cap-
dependent mRNA translation machinery by sensing nutrient
availability (13). Obesity induces mTOR hyperactivation in
multiple tissues (14), facilitating the replication of coronaviruses
(15). The accelerated replication of SARS-CoV-2 mRNA also
potentially increases susceptibility to severe COVID-19.

Adipose tissue is recognized as an endocrine organ. Different
adipocytokine profiles are produced by subcutaneous and
visceral fat, and adipose tissue plays an important role in the
immune system. Subcutaneous fat produces higher levels of
FIGURE 1 | The centrality of obesity in the course of severe COVID-19. Schematic demonstrating the interaction between obesity and multiple body systems,
contributing to severe COVID-19.
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leptin and adiponectin (16). Leptin acts on monocytes/
macrophages (17, 18) and induces neutrophil chemotaxis and
oxygen radical release (19). Leptin has also been shown to
modulate NK cell development and activation in vitro and in
vivo (20, 21). Moreover, leptin deficiency leads to reduced levels
of TNF-a and IL-18 and reduced T cell counts (22). Adiponectin
is the only adipocytokine negatively related to body fat.
Adiponectin induces the production of IL-10 and IL-1 receptor
antagonists and reduces the production of TNF-a and IL-6 (23–
25). The hypertrophy and hyperplasia of adipocytes in obese
individuals disrupt the balance in adipokine production by
inducing the secretion of proinflammatory adipokines, such as
leptin, and decreasing the production of anti-inflammatory
adipokines, especially adiponectin (26). Visceral fat produces
relatively more proinflammatory cytokines, including IL-6, TNF-
a, and IL-8 (16). Cytokine storm syndrome, which is triggered by
IL-6, is the main cause of COVID-19-related death (27).
Therefore, visceral fat is the more harmful of the two types of
fat for patients with COVID-19. A research team from Sapienza
University of Rome reported that among 150 patients with
COVID-19, visceral fat was the strongest predictor of
intubation, whereas an elevated subcutaneous fat area did not
increase the risk of ICU admission (28). Another study also
showed that for every increase of ten square centimeters in
visceral fat area, the likelihood of ICU admission and
mechanical ventilation increased 1.37- and 1.32-fold,
respectively (29).

From a physiological perspective, obesity impairs respiratory
mechanics and gas exchange, increases airway resistance, and
lowers respiratory muscle strength and lung volumes (30). A
study involving 121,965 patients showed that abdominal obesity
was the strongest predictor of lung function impairment among
the specific components of metabolic syndrome, with odds ratios
(ORs) for impaired FEV (1) and FVC of 1.94 and 2.11,
respectively (31). In addition, hypertrophic adipocytes produce
high levels of adipokines, such as leptin, that bind to their
receptors on airway epithelial cells, contributing to airway
remodeling and hyperreactivity (32). These adipokines are also
associated with airway inflammation. Leptin acts on lung
fibroblasts and contributes to lung inflammation by inducing
proinflammatory cytokines and chemokines (33). Initial findings
suggest that high leptin levels are associated with more severe
pulmonary inflammation in COVID-19 patients (34). Recent
evidence has confirmed that the accumulation of lung
parenchyma adipose tissue in subjects with obesity may
contribute to the development of inflammatory infiltrate (35).
It is noteworthy that intrapulmonary adipocytes can have an
additional proinflammatory effect on the respiratory function of
patients with COVID-19 (36). Excess fat can lead to the location
of ectopic adipocytes within the alveolar interstitial space. Those
adipocytes may be directly infected by SARS-CoV-2, leading to
aggravation of the inflammatory infiltrate and massive interstitial
edema. A meta-analysis that pooled three studies with 208
patients showed that patients who needed invasive mechanical
ventilation (IMV) had higher visceral fat area values than
patients who did not need IMV (37), indicating the risk of
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respiratory dysfunction in patients with obesity and severe
COVID-19.

Obesity-Associated Comorbidities
and COVID-19
Cardiovascular and Metabolic Complications
A study published in The Lancet showed that approximately 1/3-
1/2 of 41 COVID-19 patients had underlying diseases (13
[32%]), including diabetes (eight [20%]), hypertension (six
[15%]), and cardiovascular disease (six [15%]) (38). Another
analysis of 1527 patients showed that the prevalences of
hypertension, cardio-cerebrovascular diseases, and diabetes
were approximately two-, three-, and two-fold higher,
respectively, in patients treated in the ICU or with severe
COVID-19 than in their counterparts (39). These results
showed that there is a relationship between cardiovascular and
metabolic diseases and COVID-19 and its severity. Obesity is
associated with adipose tissue dysfunction, which can lead to the
onset of several pathologies, including hypertension,
cardiovascular disease (CVD), and type 2 diabetes.

Activation of the renin-angiotensin system (RAS) and
activation of the sympathetic nervous system (SNS) have been
unequivocally associated with the development and persistence
of hypertension. Adipose tissue not only contains most
components of the RAS system (angiotensinogen, angiotensin-
converting enzyme, angiotensin II and angiotensin II receptors)
(40) but also secretes adipocytokines that participate in the
regulation of SNS. For example, leptin increases sympathetic
activity through a melanocortin-dependent pathway within the
hypothalamus (41). In addition, adiponectin blocks the
activation of the SNS by increasing endothelial NO synthase
activity (42). Obesity also causes structural alterations in the
kidneys and the loss of nephron function, which further elevates
blood pressure (43).

Several studies have shown that obesity is linked to the risk of
incident CVD (44, 45). The mechanism by which obesity affects the
development of CVD is complex. In addition to well-known
obesity-related factors (including hypertension, IR, and
dyslipidemia), adipokines also seem to have adverse effects that
promote CVD. Adipocytes secrete many proinflammatory
cytokines, chemokines, and hormone-like factors, inducing the
increased secretion of very-low-density lipoprotein, apolipoprotein
B (apo B), and triglycerides in the liver (46). These liver-released
molecules regulate the gene expression and function of vascular
endothelial cells, arterial smooth muscle, and macrophages, exerting
atherogenic effects on vessel walls (44, 45). Among the adipokines,
resistin stimulates endothelial cells to express adhesion molecules,
proinflammatory cytokines, and pentraxin, accelerating the
development of coronary atherosclerosis (47). Leptin induces
endothelial cell oxidative stress, increases the production of
adhesion molecules and chemokines and promotes smooth
muscle cell migration (44). Visfatin, localized to foam cell
macrophages within unstable atherosclerotic lesions, has a key
role in plaque destabilization (48). Additionally, elevated levels of
visfatin cause vascular endothelial dysfunction (49). Adiponectin
reduces the risk of coronary atherosclerosis by downregulating the
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expression of adhesion molecules on endothelial cells (50),
decreasing endothelial oxidative stress and increasing eNOS
activity (51). Recently, a case report showed the induction of
endothelial inflammation in a patient with obesity (52), which
confirms the role of obesity in endothelial dysfunction in patients
with COVID-19. Importantly, vascular endothelial cells highly
express ACE2, TMPRSS2, and furin (53), which makes the
endothelium of patients with obesity readily accessible by SARS-
CoV-2.

Type 2 diabetes is mainly characterized by lipid metabolic
disorder and insulin resistance. The absence or excess of
adipokines secreted by adipose tissue leads to severe alterations
in lipid metabolism and insulin sensitivity. Studies have shown
the molecular mechanisms by which adipokines modulate lipid
metabolism and insulin resistance. For example, leptin blocks
carbohydrate conversion into long-chain fatty acids (54) and
promotes hormone-sensitive lipase expression but inhibits fatty
acid synthase expression (55). In addition, leptin directly inhibits
insulin binding by adipocytes, which contributes to insulin
resistance (56). Adiponectin increases fatty acid oxidation and
reduces glucose synthesis in the liver (57). It benefits insulin
sensitivity via two receptors, ADIPOR1 and ADIPOR2 (58). The
simultaneous disruption of both ADIPOR1 and R2 abolishes
adiponectin binding and activity, leading to insulin resistance
and glucose intolerance (59). Acylation-stimulating protein
(ASP), a complement-derived adipokine, enhances insulin
sensitivity by increasing glucose transport into adipocytes and
blocks lipolysis by inhibiting hormone-sensitive lipase (60).

Kidney Disease
Renal impairment is a common phenomenon among COVID-19
patients. A retrospective study showed that 60%, 31%, 22%, 20%,
70%, and 96% of COVID-19 patients had proteinuria; elevated
levels of BUN, SCr, uric acid (UA), D-dimer (DD); and
radiographic abnormalities of the kidney, respectively (61).
Furthermore, the prevalence of kidney disease on admission and
the incidence of AKI during hospitalization are associated with in-
hospital mortality (62). SARS-CoV-2 initiates and aggravates kidney
damage, and patients with pre-existing chronic kidney disease
(CKD) are more likely to develop severe COVID-19. A meta-
analysis showed that COVID-19 patients with CKD have a 2.22-fold
increased risk of developing severe disease (63). Previous studies
have shown that weight loss facilitates a reduction in proteinuria
(64), and body mass index (BMI) is a predictor of end-stage renal
disease (ESRD) (65).

The CKD-relatedmechanisms induced by obesity include renal
remodeling, hyperinsulinemia/insulin resistance, hyperleptinemia,
hyperlipidemia, and essential hypertension. In the early stages of
obesity, mesangial and capillary endothelial cells proliferate, the
deposition of hyaluronate accelerates in the inner medulla,
Bowman’s capsule space area is augmented, the glomerular
basement thickens, and the focal formation of TGF-b increases
(66–68). These changes in renal structure and function can lead to
obstructed urine outflow and increased intrarenal pressure, which
can induce renal impairment. Insulin resistance leads to higher
glomerular pressure and albuminuria by increasing salt sensitivity
(69). Consequently, insulin-sensitizing agents can attenuate
Frontiers in Endocrinology | www.frontiersin.org 4
proteinuria and renal injury (70). Hyperleptinemia has
proliferative and sclerotic effects on glomeruli, stimulating
glomerular endothelial cell proliferation and increasing TGF-b
synthesis and collagen type IV production (71). Hyperlipidemia
acts on proximal tubular cells, promotes monocyte/macrophage
infiltration into glomeruli, and aggravates tubulointerstitial cells
(72). Obesity causes increased renal sodium levels and impaired
pressure natriuresis in patients with essential hypertension by
activating the RAS and SNS and by altering intrarenal physical
forces (43).
POTENTIAL THERAPEUTIC STRATEGIES
FOR PATIENTS WITH OBESITY

At present, no specific drugs are available that have been
approved as treatments for COVID-19. With the increasing
understanding of the pathophysiology of COVID-19, several
strategies have been developed to improve the prognosis of
patients with COVID-19. These strategies have been proposed
based on the confirmation of their effectiveness in clinical studies
and their theoretical rationality supported by scientific evidence.
Their long-term efficacy needs to be observed over time.
PHARMACOLOGICAL INTERVENTIONS

Glucocorticoids have potent anti-inflammatory and antifibrotic
properties, which may attenuate inflammation-mediated lung
injury. Low doses of glucocorticoids facilitate the resolution of
pulmonary and systemic inflammation in pneumonia by
inhibiting proinflammatory cytokine production and the
consequent cytokine storms (73). However, the use of
glucocorticoids also leads to immunosuppression, slower
pathogen clearance and accelerated virus replication (74).
Therefore, it might be reasonable to administer low-dose
glucocorticoids in the short term to patients with severe COVID-
19 who have progressed to ARDS. A multicenter, randomized
controlled trial demonstrated that dexamethasone significantly
increased the survival duration and duration of freedom from
mechanical ventilation during the first 28 days in COVID-19
patients with ARDS (75). Additionally, the administration of
dexamethasone contributed to a lower 28-day mortality among
patients undergoing IMV (29.3% vs. 41.4%) and among those
receiving oxygen without IMV (23.3% vs. 26.2%) but not among
those who were not receiving respiratory support (17.8% vs. 14.0%)
(76). However, no analyses have evaluated the usefulness of
dexamethasone in subpopulations of patients with COVID-19. In
addition to anti-inflammatory, antifibrotic and immunosuppressive
effects, glucocorticoids can impair glucose metabolism, leading to
glucose homeostasis imbalance and hyperglycemia (77). Poorly
controlled blood glucose is correlated with worse outcomes in
patients with COVID-19 (78). Therefore, for obese individuals
with severe COVID-19, the rational use of glucocorticoids may
yield a better prognosis after cautiously weighing the benefits
and risks.
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Metabolic disorders and immune impairment, which are two
important risk factors for COVID-19, have been found in obese
patients. Therefore, overcoming oxidative stress and attenuating the
inflammatory response may improve the outcome in these patients.
Melatonin exerts an anti-obesity effect by reducing fat depot mass,
inhibiting adipocyte hypertrophy, and lowering the levels of total
cholesterol, triglycerides and LDL cholesterol. In addition,
melatonin can reverse the obesity-induced overexpression of
inflammatory cytokines in epididymal adipose depots, including
leptin, IL-6, MCP-1, and TNF-a (79). An observational study
involving 26,779 individuals found that the use of melatonin is
significantly associated with a 28% reduced likelihood of a positive
laboratory test result for SARS-CoV-2 (80). Additionally, melatonin
administration after intubation contributed to a positive outcome in
COVID-19 patients (81). Melatonin may serve as a potential
therapeutic adjuvant to improve clinical outcomes in obese
individuals with COVID-19.
STEM CELL-BASED THERAPY

Mesenchymal stem cells (MSCs) can intrinsically express
interferon-stimulated genes against viral infection (82). In
particular, the interferon-induced transmembrane family (IFITM)
prevents infection with some pathogenic viruses, including SARS-
CoV (83). The accumulation of some MSCs in the lungs can
suppress lung inflammation, protect alveolar epithelial cells,
prevent pulmonary fibrosis, and improve lung function (84). The
gene expression profile showed that MSCs are ACE2- and
TMPRSS2-negative, indicating that MSCs cannot be infected by
SARS-CoV-2 (85). The restoration of MSCs could alleviate SARS-
CoV-2-induced immune dysfunction and tissue damage. A study
involving 41 patients showed that the administration of MSCs has
favorable effects in COVID-19 patients, including a faster time for
the oxygenation index and lymphocyte count to return to within the
normal range and reduced lung inflammation (86). A randomized
controlled trial conducted by the University of Miami Miller School
of Medicine found that umbilical cord mesenchymal stem cell (UC-
MSC) infusions can increase patient survival to more than double
(91% vs 42%) in subjects with COVID-19-related ARDS without
serious adverse events (87). Obesity-associated factors can disrupt
the functions of MSCs with regard to tissue regeneration, anti-
inflammation, and immunemodulation (88). Given the dysfunction
of MSCs in obesity, stem cell-based therapy may be effective in
these patients.
NONPHARMACOLOGICAL
INTERVENTIONS

In addition to pharmacological interventions, diet therapy may be
considered for patients with COVID-19, such as a eucaloric
ketogenic diet (EKD). There is a growing interest in the clinical
use of ketogenic diets, particularly in the context of severe obesity
with related metabolic complications (89), in consideration of
Frontiers in Endocrinology | www.frontiersin.org 5
their role in the effective reduction of subjects at risk of SARS-
COV-2 infection and worse outcome of disease. An EKD can serve
as a metabolic treatment for cytokine storm syndrome by reducing
aerobic glycolysis in activated M1 macrophages, thereby limiting
their proinflammatory functions (90). Meanwhile, since M2
macrophages predominantly express OXPHOS enzymes, the
supply of free fatty acids from an EKD facilitates the metabolism
of anti-inflammatory M2 macrophages and counteracts
proinflammatory cytokines in the alveolar space by producing
anti-inflammatory cytokines (IL-10 and IL-1) (91, 92). In
addition, the finding that excessive lactate inhibits IFN-I
production indicated that the inhibitory effects of an EKD on
glucose metabolism and lactate production can promote IFN-I
production, reducing the likelihood of virus infection (93).
Recently, an in vitro study showed that targeting glycolysis with a
deoxy-D-glucose glycolysis inhibitor inhibited the replication of
SARS-CoV-2 in cells (94). The similar antiglycolytic effect obtained
by means of KDs may make an EKD a therapeutic strategy for
COVID-19. A high-fat, low-carbohydrate diet is also beneficial for
patients with respiratory failure or ARDS. Studies found that a high-
fat, low-carbohydrate diet shortened the duration of ventilator use
in patients with respiratory failure and ARDS (95, 96). Therefore, an
EKD together with moderate high-fat supplementation may blunt
the COVID-19-induced cytokine storm. A clinical study is
warranted to observe the outcome in COVID-19 patients fed a
high-fat EKD diet.

Vitamin D deficiency increases the risk of various chronic
illnesses, including diabetes mellitus, hypertension, chronic
cardiovascular and respiratory diseases, and cancers (97), all of
which are linked to the progression of COVID-19. Recently, low
25-hydroxyvitamin D levels have been identified as being related
to susceptibility to infection with SARS-CoV-2 (98) and
progression to severe COVID-19 (99). In vivo experiments
suggested that vitamin D has protective effects against ARDS by
blocking AngII expression (100). Notably, the level of plasma
AngII in COVID-19 patients is significantly increased and linearly
related to the viral load and lung injury (101). Therefore, vitamin
D supplementation may prevent adverse COVID-19 outcomes.
Physically, vitamin D stabilizes the pulmonary epithelial barrier to
prevent virus infection (102) and stimulates epithelial repair to
attenuate lung injury (103). At the cellular level, vitamin D can
inhibit inflammatory processes to prevent ARDS by reducing the
expression of proinflammatory cytokines by T helper type 1 (Th1)
cells and increasing the production of anti-inflammatory cytokines
by macrophages (104). A clinical study involving 76 patients with
COVID-19 demonstrated that 25-hydroxyvitamin D
administration significantly reduced the need for admission to
the ICU (105). Given the high prevalence of vitamin D deficiency
among people with obesity (106), it may be important to provide
these patients with supplemental vitamin D when they have
COVID-19.

Previous studies found that individuals participating in regular
exercise have lower incidence and mortality rates for influenza and
pneumonia than inactive individuals (107, 108). Exercise
interventions may be beneficial for obese patients with COVID-
19. Viral infections, including infections with SARS-CoV-2, can
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accelerate endothelial dysfunction, with reduced nitric oxide (NO)
expression and abnormal coagulation (109). Coagulation
abnormalities have been reported to be associated with a poor
prognosis in patients with COVID-19 (110). The restoration of NO
expression induced by physical activity can contribute to pulmonary
vasodilation and antithrombotic activity (109), thus lowering the
risk of disseminated intravascular coagulation (DIC) in patients
with severe COVID-19. Regular moderate exercise may help reduce
systemic inflammation by inhibiting the TLR-inflammatory
signaling pathway (111). Physical activity-mediated AMPK
signaling induces the phosphorylation of ACE2 and the
subsequent conversion of Ang II to Ang 1-7 (112), thus reducing
lung inflammation. In addition, regular moderate exercise can
create an anti-inflammatory environment in muscle and adipose
tissue through the involvement of macrophages, cytokines and
adipokines (113). Physical inactivity is very common among
people with obesity; therefore, regular moderate exercise can be
included as part of their rehabilitation after COVID-19.
CONCLUSIONS

In conclusion, obesity plays a comprehensive role in the course of
severe COVID-19. Individuals with obesity need more nursing
care during COVID-19 and rehabilitation support as they
recover. In addition to the evaluation of standard hospital
Frontiers in Endocrinology | www.frontiersin.org 6
parameters (such as the Sequential Organ Failure Assessment
and the levels of D-dimer and proinflammatory markers), the
measurements associated with obesity, such as anthropometric
and metabolic parameters, need to be seriously considered to
better estimate patient risk and to aid in the selection of more
appropriate therapies. It is worth noting that weight loss may be
beneficial for individuals with obesity as a precautionary measure
and to assist in the rehabilitation or treatment of patients with
COVID-19. A variety of appropriate treatments for COVID-19
patients with obesity could be selected to obtain better
curative effects.
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