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Quantitative models reveal the organization
of diverse cognitive functions in the brain
Tomoya Nakai1,2 & Shinji Nishimoto 1,2,3✉

Our daily life is realized by the complex orchestrations of diverse brain functions, including

perception, decision-making, and action. The essential goal of cognitive neuroscience is to

reveal the complete representations underlying these functions. Recent studies have char-

acterised perceptual experiences using encoding models. However, few attempts have been

made to build a quantitative model describing the cortical organization of multiple active,

cognitive processes. Here, we measure brain activity using fMRI, while subjects perform 103

cognitive tasks, and examine cortical representations with two voxel-wise encoding models.

A sparse task-type model reveals a hierarchical organization of cognitive tasks, together with

their representation in cognitive space and cortical mapping. A cognitive factor model uti-

lizing continuous, metadata-based intermediate features predicts brain activity and decodes

tasks, even under novel conditions. Collectively, our results show the usability of quantitative

models of cognitive processes, thus providing a framework for the comprehensive cortical

organization of human cognition.
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The cortical basis of daily cognitive processes has been
studied using voxel-wise encoding and decoding modeling
approaches1. These approaches employ multivariate

regression analysis to determine how the brain activity in each
voxel is modeled by target factors, including visual features2,3,
object or scene categories4–6, sound features7–9, and linguistic
information10–12. Moreover, other studies have further described
the cortical (e.g., semantic) representational space that elucidates
important categorical dimensions in the brain (e.g., mobile vs.
nonmobile, animate vs. inanimate) and how such representations
are mapped onto the cortex4,10. However, the previous studies
have relied on brain activity recorded during passive listening or
viewing tasks, and no study has yet clarified the comprehensive
cortical representations underlying active cognitive processes

In this study, we address this issue by combining encoding
modeling and metadata-based reverse-inference to further reveal
such representations. Six subjects underwent functional MRI
experiments to measure whole-brain blood-oxygen-level-
dependent (BOLD) responses while they performed 103 natur-
alistic tasks (Fig. 1a, b). The tasks included as many cognitive
varieties as possible and ranged from simple visual detection to
complex cognitive tasks, including memorization, language
comprehension, and calculation (see Supplementary Methods for
the task list and associated descriptions). Our experimental setup
is aimed at extending previous efforts at describing the semantic
space4,10 by estimating the cognitive space that depicts the rela-
tionships among diverse cognitive processes. In this process, each
task was regarded as a sample taken from the entire cognitive
space. To obtain a comprehensive representation of the cognitive
space, we modeled voxel-wise responses using regularized linear
regression1 based on two sets of features (Fig. 1c, d). First, using a
task-type encoding model, in which tasks are represented as
binary labels (Fig. 1c), we evaluated the representational rela-
tionships among the cognitive tasks across the cerebral cortex.
Second, to further examine the generalizability of the modeling
approach to the cognitive tasks, we constructed an additional
cognitive factor encoding model, in which each task was trans-
formed into a 715-dimensional continuous feature space using
metadata references13 (Fig. 1d). This enabled the latent feature
space to be used for each task1,14. Furthermore, we were able to
predict and decode activity for novel tasks not used during model
training (Fig. 1e). Our framework provides a powerful step
toward the comprehensive modeling of the brain representations
underlying human cognition.

Results
Hierarchical organization of cognitive tasks. To examine how
the cortical representations of over 100 tasks were related, we
modeled task-evoked brain activity using a task-type model
(Fig. 1) and calculated a representational similarity matrix (RSM)
using the estimated weights, which were concatenated across six
subjects (Fig. 2a). The training dataset consisted of 3336 samples
(6672s) and the test dataset consisted of 412 samples (824s,
repeated four times). The representational relationship of over
100 tasks was further visualized by a dendrogram obtained using
hierarchical clustering analysis (HCA). The HCA results sug-
gested that the tasks formed six clusters based on their associated
representational patterns in the cerebral cortex. The largest
clusters contained tasks based on sensory modalities, such as
visual (“AnimalPhoto,” “MapSymbol”), auditory (“RateNoisy,”
“EmotionVoice”), and motor (“PressLeft,” “EyeBlink”) tasks. In
addition, some clusters contained higher cognitive components,
such as language (“WordMeaning,” “RatePoem”), introspection
(“ImagineFuture,” “RecallPast”), and memory (“MemoryLetter,”
“RecallTaskEasy”). Although six clusters were determined by

visual inspection for a descriptive purpose, the same analyses can
be performed on any subclusters in the dendrogram. We also
obtained a similar hierarchy pattern using an RSM calculated
directly from brain activity (see Supplementary Fig. 1 and Sup-
plementary Note 1).

To investigate the plausible cognitive factors related to each
task cluster, we next performed a metadata-based evaluation of
the cognitive factors. For each of the cortical maps of the task
cluster weight matrix (Supplementary Fig. 2 and Supplementary
Note 2), we calculated Pearson’s correlation coefficients with the
715 reverse-inference maps taken from the Neurosynth data-
base13. The top ten terms for the most task clusters were
consistent with our interpretation based on the included task
types (Table 1). High correlation was observed between the visual
cluster and vision-related terms (e.g., “visual”, “perceptual”), the
memory cluster and working memory-related terms (“working
memory”, “executive”), and the language cluster and language-
related terms (“language”, “reading”). In addition, the motor
cluster showed a high correlation with motor-related terms
(“movement”, “motor”), and the auditory task cluster showed a
high correlation with auditory-related terms (“auditory”, “listen-
ing”). Moreover, the introspection cluster showed a high
correlation with the default mode-related terms (“default mode”,
“default network”). The reverse-inference analysis is applicable to
any subcluster (Supplementary Table 1). For example, there is a
time-perception subcluster (“TimeSound”, “Rhythm”) within the
Auditory cluster. The reverse-inference analysis assigned cogni-
tive factors of “timing”, “monitoring”, and “working memory” to
this subcluster in addition to the auditory factors. In the
knowledge-recalling subcluster (“RecallKnowledge,” “Category-
Fluency”) within the Introspection cluster, the reverse-inference
analysis assigned cognitive factors of “phonological”, “produc-
tion”, and “language” even though the participants were not
asked to overtly produce linguistic information. These results
suggested that data-driven reverse-inference is effective in
providing a valid interpretation of the cognitive factors under-
lying the different task clusters.

The tasks were further represented in the subclusters of the
specific cognitive properties (Fig. 2b–d). For example, in the
visual cluster, tasks with food pictures (“RateDeliciousPic”,
“DecideFood”) were closely located (Fig. 2b), whereas tasks with
negative pictures (“RateDisgustPic”, “RatePainfulPic”) formed a
separate cluster. Memory tasks involving calculations (“Cal-
cEasy”, “CalcHard”) were closely located (Fig. 2c), whereas those
involving simple digit matching (“MemoryDigit”, “MatchDigit”)
formed a separate cluster. For the introspection cluster (Fig. 2d),
tasks involving the imagination of the future and recalling of past
events (“ImagineFuture,” “RecallPast”) were more closely located
than those involving the imagination of places or faces
(“ImaginePlace”, “RecallFace”).

To further explore whether hierarchical information is useful in
capturing cortical representation, we constructed an additional
hierarchical model that was based on the task clusters subordinated
by each non-terminal node in the dendrogram (see Methods
section). By comparing the prediction accuracy of brain activity
using the task-type model (Fig. 1c) and the hierarchical model, we
found that the hierarchical model outperformed the task-type
model (hierarchical model, mean ± SD, 0.313 ± 0.046; task-type
model, 0.293 ± 0.053; one-sided Wilcoxon signed-rank tests, p <
0.001 for all subjects). These results indicated that the hierarchically
organized brain representations of cognitive tasks can be captured
using this modeling procedure.

Visualization of cognitive space and its cortical mapping. HCA
revealed the relative relationships between the task samples
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Fig. 1 Schematic diagrams of the task setting and analysis methods. a Example image of 12 tasks, with task names described at the top. b The subjects
performed 103 naturalistic tasks while the brain activity was measured using functional MRI. c Schematic of the encoding model fitting using the task-type
model. d Schematic of the cognitive factor model. The cognitive transform function was calculated based on correlation coefficients between the weight
maps of each task and the 715 metadata references13. Task-type features were transformed into cognitive factor features. e Schematic of the encoding
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taken from the entire cognitive space. To further determine the
structure and cortical organization of the cognitive space, we
performed principal component analysis (PCA) using the
estimated weight matrix of the task-type model, concatenated
across subjects (Fig. 3a). Accordingly, Fig. 3a shows the dis-
tributions of the tasks according to their PCA loadings, where

the task position was determined by the first and second PCs,
with task color determined by the first, second, and third PCs
(corresponding to red, green, and blue, respectively; see Fig. 3a
inset). Tasks with similar representations were assigned similar
colors and closely located within the two-dimensional space.
Tasks involving movie processing were clustered on the top left,
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Fig. 2 Hierarchical organization of over 100 tasks. a Representational similarity matrix of the 103 tasks (see Supplementary Methods for the descriptions
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dendrogram shown at the top panel represents the results of the HCA. The six largest clusters were named after the included task types. b–d Example task
subclusters and their dendrograms in the visual (b), memory (c), and introspection clusters (d).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14913-w

4 NATURE COMMUNICATIONS |         (2020) 11:1142 | https://doi.org/10.1038/s41467-020-14913-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


whereas those dedicated to image and auditory processing were
located more centrally on both the left and right sides, with a
gradual shift toward complex cognitive tasks involving lan-
guage, memory, logic, and calculation at the bottom of the
distribution. We also obtained a similar distribution using a
multi-dimensional scaling directly applied to brain activity
(Supplementary Fig. 3 and Supplementary Note 3).

To interpret each PC, we first determined those that were
meaningful based on the explained variance (Fig. 3b). The top
four PCs that explained more than 5% of the variance were
regarded as meaningful, and the dominant cognitive components
were further analyzed based on these PCs. We then quantified the
relative contribution of each task using PCA loadings; tasks with
higher PCA loading values were contributing more to the target
PC (Supplementary Table 2 and Supplementary Note 4). Thus,
each PC was labeled based on these cognitive tasks. To obtain an
objective interpretation of the PC labeling, we also performed a
metadata-based inference of the PC-related cognitive factors
(Supplementary Table 3).

To further examine the relationship between HCA and PCA
results, we next calculated the relative contribution of the top four
PCs to the six largest task clusters (Fig. 3c). By averaging the PCA
loadings of the tasks included in each of the target clusters, we found
that the top PCs corresponded well to the related clusters, with
mean PCA loadings significantly different from zero (two-sided sign
test, p < 0.05, FDR-corrected). PC1 (the auditory component)
contributed to the auditory cluster; PC2 (the audiovisual compo-
nent) contributed to the auditory and visual clusters; PC3 (the
language component) contributed to the language cluster; and PC4
(the introspection component) contributed to the motor and
introspection clusters. These results revealed the representational
correspondence between the HCA and PCA results.

To further visualize the cortical distributions of the cognitive
space representations, voxel-wise PCs were projected to the
cortical sheet of each subject (Fig. 4a, Supplementary Figs. 4, 5
and Supplementary Note 5) using the same RGB color scheme as
shown in Fig. 3a. For example, the occipital areas were presented
mostly in green, showing that voxels in these areas signify movie-
related and image-related tasks (Fig. 3a). The frontal areas
showed intricate patterns, including language-related representa-
tions (blue) in the left lateral regions. This topographical
organization was consistent across subjects (Supplementary
Fig. 5), indicating that our analyses provided a broad representa-
tion of the cognitive space in the human cerebral cortex.

To examine how each cortical voxel differs in its representa-
tion of over 100 tasks (task selectivity), we visualized voxel-wise
task weights on the two-dimensional cognitive space depicted
in Fig. 3a. We found a representation of language-related tasks
in the middle temporal voxel (Fig. 4b), introspection-related
tasks in the left medial frontal voxel (Fig. 4c), and auditory-
related tasks in the right superior temporal voxel (Fig. 4d).

Using this visualization method, scrutiny of fine mapping of
task selectivity of any cortical voxel is possible. For example,
when we examined the left inferior parietal lobule (IPL), we
found a topographic change of task selectivity along with the
inferior to superior direction (Fig. 4e–h). Calculation and
logical inference tasks were represented in all three voxels
(Fig. 4f–h), whereas motor tasks were largely represented in the
inferior voxel (Fig. 4f), and visual tasks were largely represented
in the superior voxel (Fig. 4h). The middle voxel showed an
intermediate representation for both motor and visual tasks
(Fig. 4g). Such topographic changes of task selectivity are
indicated by the cortical map (Fig. 4a, e), which displays a color
change from red (inferior voxel) to black (middle voxel) to
green (superior voxel). These results suggest that voxel-wise
modeling can entangle the complex topography of multiple
cognitive dimensions in the association cortex.

Prediction of brain activity during novel tasks. Although the
task-type model revealed the distinctive relationships among the
tasks, it is too sparse to encompass the latent and continuous
features and is not generalizable to novel tasks. To address these
issues, we transformed over 100 tasks into the 715-dimensional
latent feature space and constructed a voxel-wise cognitive factor
model (Fig. 1d). The latent feature space was obtained based on
the 715 terms and their reverse-inference maps from the Neu-
rosynth database13. To produce the cognitive transform function
(CTF) for each subject, we calculated the correlation coefficients
between the weight map for each task in the task-type model and
the reverse-inference map. We then obtained the feature matrix
of the cognitive factor model by multiplying the CTF by the
feature matrix of the task-type model.

To examine the generalizability of this model under novel task
conditions (i.e., on a task that was not used to train the model),
we trained the cognitive factor model with 80% of the tasks
(approximately 82 or 83 tasks) and predicted the brain activity for
the remaining 20% (Fig. 1e). In doing so, the CTF was estimated
using data excluding those of the target subject, assuring the
generalizability to novel tasks for each subject. Our results
indicated that the model achieved significant prediction accuracy
throughout the entire cortex (Fig. 5 and Supplementary Figs. 6, 7;
mean ± SD, 0.322 ± 0.042; 86.2 ± 5.1% of voxels were significant;
p < 0.05, false discovery rate (FDR)-corrected).

To confirm that these results could not be merely explained by
simple sensorimotor effects, we performed an additional encoding
model analysis that regressed out the relevant visual, auditory, and
motor components (see Methods section). This additional analysis
revealed significant prediction accuracy across the cerebral cortex
(mean ± SD, 0.285 ± 0.035; 82.4 ± 4.9% of voxels were significant;
p < 0.05, FDR-corrected; Supplementary Fig. 8), indicating that the
generalizability of the cognitive factor model was due to higher-
order (i.e., not sensory) cognitive components.

Table 1 Top cognitive factors related to each task cluster.

Top cognitive factors in the neurosynth database

Visual cluster “visual”, “object”, “face”, “motion”, “viewing”, “perceptual”, “vision”, “visual stream”, “sighted”, “recognition”
Memory cluster “working memory”, “task”, “calculation”, “load”, “attentional”, “numerical”, “spatial”, “arithmetic”, “subtraction”, “executive”
Language cluster “reading”, “language”, “comprehension”, “sentence”, “semantic”, “word”, “linguistic,” “native,” “syntactic,” “lexical”
Motor cluster “finger,” “motor”, “hand”, “sensorimotor”, “somatosensory”, “movement”, “motor imagery”, “execution”, “tactile”, “tapping”
Introspection cluster “default mode”, “autobiographical”, “default network”, “self-referential”, “resting state”, “episodic”, “theory mind”, “retrieval”

“personal”, “mentalizing”
Auditory cluster “auditory”, “sound”, “pitch”, “listening”, “acoustic”, “speech”, “music”, “audiovisual”, “hearing”, “vocal”

Top 10 cognitive factors (excluding similar terms) in the Neurosynth database for each of the six task clusters, based on the correlation coefficients between the task weight map and the 715 registered
reverse-inference maps.
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Decoding novel tasks using the cognitive factor model. To
further assess the generalizability and task specificity of the
relevant cognitive factors, we performed task decoding analyses
using novel tasks. To this end, we trained a decoding model to

estimate the cognitive features at each time point using brain
activity with hemodynamic temporal delays (Fig. 6a) for 80% of
the tasks. We then quantified the task likelihood at each time
point in the remaining 20% of the tasks by taking the correlation
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between the estimated cognitive features and the template cog-
nitive features for all 103 tasks, which was estimated by excluding
the data from the target subject. We then tested whether the task
likelihood for the actual (target) task was higher than that for
each of the remaining 102 tasks. We obtained a significant
decoding accuracy for the novel tasks (mean ± SD, 96.0 ± 0.8%;
99.5 ± 0.5% of the tasks were significant; one-sided sign tests, p <
0.05, FDR-corrected; Fig. 6b, Supplementary Fig. 9), indicating
that brain activity patterns were task-specific and that the portion
of the human cognitive space our model covers was sufficient for
decoding novel tasks.

Discussion
Majority of previous studies using encoding or decoding model
approaches used passive viewing or listening tasks3,4,10,12. In
addition, standard neuroimaging studies using more active tasks
typically focused on just a few conditions while examining the
effects of pre-assumed cognitive factors by comparing induced
brain activity. While the latter strategy can be a powerful way to
test the plausibility of certain hypotheses, the outcomes from such
specialized studies have so far not been able to elucidate the
representational relationships among diverse tasks. In addition,
this method cannot be generalized to naturalistic tasks where
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cognitive factors are not inferred in advance. Therefore, in this
study, using over 100 naturalistic tasks that broadly sampled the
human cognitive space, the prediction accuracy we observed for
our model throughout the entire cortex is in clear contrast to the
results of previous studies. For example, while our previous
modeling attempt using a passive viewing paradigm4 provided
significant predictions for 22% of cortical voxels, which were
largely restricted to the occipital and temporal areas, the cognitive
factor model in the present study achieved significant predictions
for approximately 86% of all cortical voxels. The fact that our
model achieved unprecedentedly wide generalizability regarding
cortical coverage and multi-task decodability indicates that our
task battery represents a sufficient number of samples capable of
probing the major proportion of the human cognitive space and
provides a baseline for complete characterization of the
cognitive space.

By evaluating the similarity between each task cluster or PC
and the large reference metadata, we obtained a data-driven
interpretation of the task clusters and PCs. Task clusters, which
included visual processing tasks, were highly linked with asso-
ciated cognitive factors, such as “visual” or “perception.” In
addition, task clusters, including language-related tasks, were
linked with “semantic” or “comprehension.” These results indi-
cated that metadata-based inference can be useful for obtaining
an objective interpretation of task clusters or PCs. Moreover, this
method also allowed for the interpretation of task clusters that

may be difficult to label based on the included task types. For
example, the task cluster that included “introspection tasks” was
found to be related to the “default mode network”. Therefore, this
metadata-based inference technique demonstrated the applic-
ability of such a data-driven approach for elucidating the brain
organization of diverse cognitive functions, without introducing
pre-defined assumptions of the task-related cognitive factors.

In the majority of the subjects, task clusters and top PCs
contained auditory and visual clusters and components. Thus, it
may be argued that the cortical representations of over 100 tasks
can be solely explained by the difference of stimulus modality
(i.e., sensory input). However, we found that there were task
clusters in more abstract cognitive domains, such as memory and
language. We also showed that the tasks in the same stimulus
domain could be distinguished by decoding analysis. Further-
more, additional analyses with sensorimotor regressors showed
significant prediction accuracy covering the whole cerebral cortex.
These findings confirmed that these sensory regressors covered
the relevant low-level features. Although stimulus modality is an
important element in our cognitive space, detailed task repre-
sentations also included abstract cognitive factors.

Previous studies have identified several clusters and compo-
nents found in the present study using multiple tasks15–21.
Compared with these previous works, the current study provides
a framework for elucidating more general and quantitative
aspects of human cognition in the following points. Using our
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broad task sampling paradigm, we revealed a gradual shift in the
cognitive space and corresponding cortical organization, from the
perceptual to more complex cognitive tasks. HCA and PCA
further provided a cortical representational basis for the modeling
analyses by demonstrating that the over 100 tasks cover the
activity of the whole cerebral cortex and that they were differently
organized in each cortical voxel. This is particularly effective in
association cortices, such as the IPL, which has been associated
with various cognitive domains22. By building the relevant
encoding and decoding models using data from single subjects,
we were able to successfully quantify the generalizability of our
model for arbitrary novel task conditions. Such subject-wise
modeling may also form the quantitative basis for elucidating the
personal traits associated with cognitive functions23.

Although the tasks used here do not cover the entire domain of
human perception and cognition (e.g., they did not cover odor
perception, speech, social interaction), our method is applicable
to any arbitrary task that can be performed in a scanner. Taken
together, our framework provides a powerful step toward the
complete modeling of the representations underlying human
cognition.

Methods
Subjects. Six healthy subjects (aged 22–33 years, two females; referred to as
ID01–ID06) with normal vision and hearing participated in the current experi-
ment. Subjects were all right-handed (laterality quotient= 70–100), as assessed
using the Edinburgh inventory24. Written informed consent was obtained from all
subjects prior to their participation in the study. This experiment was approved by
the ethics and safety committee of the National Institute of Information and
Communications Technology in Osaka, Japan.

Stimuli and procedure. We prepared 103 naturalistic tasks that could be per-
formed without any preexperimental training (see Supplementary Methods for the
detailed description of each task; see Supplementary Fig. 10 and Supplementary
Note 6 for the behavioral results). Tasks were selected to include as many cognitive
domains as possible. Each task had 12 instances; 8 instances were used in the
training runs, whereas 4 were used in the test runs. The stimuli were presented on a
projector screen inside the scanner (21.0 × 15.8° of visual angle at 30 Hz). The root-
mean square of the auditory stimuli was normalized. During scanning, subjects
wore MR-compatible ear tips. The experiment was performed for 3 days, with six
runs performed each day. Presentation software (Neurobehavioral Systems,
Albany, CA, USA) was used to control the stimulus presentation and the collection
of behavioral data. To measure button responses, optic response pads with two
buttons in each of the left and right hands were used (HHSC-2 × 2, Current
Designs, Philadelphia, PA, USA).

The experiment consisted of 18 runs, with 12 training runs and 6 test runs. Each
run contained 77–83 trials with duration of 6–12 s per trial. To keep subjects
attentive and engaged, and to ensure all runs had the same length, a 2-s feedback
for the preceding task (correct or incorrect) was presented 9–13 times per run. In
addition to the task, 6 s of imaging without a task was inserted at the beginning and
at the end of each run; the former was discarded in the analysis. The duration of a
single run was 556 s. In the training runs, task order was pseudorandomized, as
some tasks depended on each other and were therefore presented close to each
other in time (e.g., the tasks “MemoryDigit” and “MatchDigit”). In the test runs,
103 tasks were presented four times in the same order across all six runs (but with
different instances for each repetition). There was no overlap between the instances
in the training runs and the test runs. No explanation of the tasks was given to the
subjects prior to the experiment. During the fMRI experiment, subjects were
instructed on how to perform each task by the instruction text that was shown as a
part of the stimuli (see Fig. 1a). Subjects only underwent a short training session on
how to use the buttons used to respond.

MRI data acquisition. The experiment was conducted using a 3.0 T scanner (TIM
Trio; Siemens, Erlangen, Germany) with a 32-channel head coil. We scanned 72
interleaved axial slices that were 2.0-mm thick without a gap, parallel to the
anterior and posterior commissure line, using a T2*-weighted gradient-echo
multiband echo-planar imaging (MB-EPI) sequence25 [repetition time (TR)=
2000 ms, echo time (TE)= 30 ms, flip angle (FA)= 62°, field of view (FOV)=
192 × 192 mm2, resolution= 2 × 2mm2, MB factor= 3]. We obtained 275 volumes
for each run, with each following three dummy images. For anatomical reference,
high-resolution T1-weighted images of the whole brain were also acquired from all
subjects with a magnetization-prepared rapid acquisition gradient echo sequence
(MPRAGE, TR= 2530 ms, TE= 3.26 ms, FA= 9°, FOV= 256 × 256 mm2, voxel
size= 1 × 1 × 1mm3).

fMRI data preprocessing. Motion correction in each run was performed using the
statistical parametric mapping toolbox (SPM8; Wellcome Trust Center for Neu-
roimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm/). All volumes were
aligned to the first EPI image for each subject. Low-frequency drift was removed
using a median filter with a 240-s window. The response for each voxel was then
normalized by subtracting the mean response and scaling it to the unit variance.
We used FreeSurfer26,27 to identify the cortical surfaces from the anatomical data
and to register them to the voxels of the functional data. For each subject, the
voxels identified in the cerebral cortex were used in the analysis (53,345–66,695
voxels per subject).

Task-type model. The task-type model was composed of one-hot vectors, which
were assigned 1 or 0 for each time bin, indicating whether one of the 103 tasks was
performed in that period. The total number of task-type model features was
thus 103.

Encoding model fitting. In the encoding model, cortical activity in each voxel was
fitted with a finite impulse response model that captured the slow hemodynamic
response and its coupling with neural activity3,28. The feature matrix FE [T × 3N]
was modeled by concatenating sets of [T ×N] feature matrices with three temporal
delays of 2, 4, and 6 s (T= # of samples; N= # of features). The cortical response
RE [T × V] was then modeled by multiplying the feature matrix FE with the weight
matrix WE [3N × V] (V= # of voxels):

R̂E ¼ FEWE

We used an L2-regularized linear regression using the training dataset to obtain the
weight matrix WE. The training dataset consisted of 3336 samples (6672s). The
optimal regularization parameter was assessed using 10-fold cross-validation, with
the 18 different regularization parameters ranging from 100 to 100 × 217.

The test dataset consisted of 412 samples (824 s, repeated four times). To
reshape the data spanning over six test runs into the four times-repeated dataset,
we discarded 6 s of the no-task period at the end of each run, as well as the 2-s
feedback periods at the end of the third and sixth test runs. Four repetitions of the
test dataset were averaged to increase the signal-to-noise ratio. Prediction accuracy
was calculated using Pearson’s correlation coefficient between the predicted signal
and the measured signal in the test dataset. Statistical significance (one-sided) was
computed by comparing estimated correlations to the null distribution of
correlations between two independent Gaussian random vectors with the same
length as the test dataset3,10. The statistical threshold was set at p < 0.05 and
corrected for multiple comparisons using the FDR procedure29.

Evaluation of optimal regularization parameters. To keep the scale of the weight
values consistent across subjects, we performed a resampling procedure to assess
the optimal regularization parameter used for group HCA and PCA10. To this end,
for each subject, we randomly divided the training dataset into training samples
(80%) and validation samples (20%) and performed model fitting using an L2-
regularized linear regression. This procedure was repeated 50 times, with the 18
different regularization parameters ranging from 100 to 100 × 217. The resultant
prediction accuracies were averaged across the six subjects for each parameter. We
selected the optimal regularization parameter that provided the highest mean
prediction accuracy across subjects. This regularization parameter was used for
model fitting for group HCA and PCA.

Hierarchical cluster analysis. To examine hierarchical relations across tasks, we
conducted an HCA. First, we concatenated the weight matrix of predictive voxels of
the task-type model across six subjects. Concatenation of the estimated weights was
performed to obtain a group-level representation that provides a common basis
that is comparable across subjects4,10. To choose predictive voxels, for each subject,
we selected the voxels that exhibited a significant prediction accuracy, with p < 0.05
(with FDR correction, 39,485–56,634 voxels per subject), and averaged three time
delays for each task. We then obtained the RSM by calculating the Pearson’s
correlation coefficients between the averaged weights of all task pairs. A dendro-
gram of 103 tasks was then described using the task dissimilarity (1—correlation
coefficient) as a distance metric, using the minimum distance as a linkage criterion.
Each cluster was labeled based on the included cognitive tasks.

To investigate task clusters in a model-independent way, we also conducted
HCA using the brain activity of the whole cerebral cortex (Supplementary Fig. 1
and Supplementary Note 1) and visualized the 103 tasks on the two-dimensional
space using non-metric multi-dimensional scaling (Supplementary Fig. 3 and
Supplementary Note 3).

Interpretation of cognitive factors related to task clusters. To interpret the
plausible cognitive factors related to the target subclusters obtained in the HCA, we
used Neurosynth (http://neurosynth.org; accessed 26 January 2018) as a metadata
reference of the past neuroimaging literature13. From the approximately 3000
terms in the database, we manually selected 715 terms that covered the compre-
hensive cognitive factors while also avoiding redundancy. In particular, we
removed several plural terms that also had their singular counterpart (e.g.,
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“concept” and “concepts”) and past tense verbs that also had their present coun-
terpart (e.g., “judge” and “judged”) from the dataset. We also excluded those terms
that indicated anatomical regions (e.g., “parietal”). We used the reverse-inference
map of the Neurosynth database for each of the 715 selected terms. The reverse-
inference map indicated the likelihood of a given term being used in a study if the
activity was observed at a particular voxel. Each reverse-inference map in the
MNI152 space was then registered to the subjects’ reference EPI data using
FreeSurfer26,27. For each of the cortical maps of the task cluster weight matrix
(Supplementary Fig. 2 and Supplementary Note 2), we calculated Pearson’s cor-
relation coefficients with the 715 registered reverse-inference maps, which resulted
in a cognitive factor vector with 715 elements. Terms with higher correlation
coefficient values were regarded as contributing more to the target cluster.

Principal component analysis of task-type weights. For each subject, we per-
formed PCA on the weight matrix of the task-type model concatenated across six
subjects. We selected the voxels that showed significant prediction accuracy with p
< 0.05 (with FDR correction, 39,485–56,634 voxels per subject) and averaged three
time delays for each task. To show the structure of the cognitive space, 103 tasks
were mapped onto the two-dimensional space using the loadings of PC1 (1st PC)
and PC2 as the x-axis and y-axis, respectively. The tasks were further colored in
red, green, and blue, based on the relative PCA loadings in PC1, PC2, and PC3,
respectively. To obtain an objective interpretation of the PCs, we also performed
metadata-based inference of the cognitive factors related to each PC (Supple-
mentary Table 3 and Supplementary Note 4).

To represent the cortical organization of the cognitive space for each subject, we
extracted and normalized the PCA scores from each subject’s voxels. The resultant
cortical map indicated the relative contribution of each cortical voxel to the target
PC (denoted as ‘PCA score map’, Supplementary Fig. 4 and Supplementary
Note 5). By combining the PCA score maps from the top three PCs for each
subject, we were able to visualize how each cortical voxel is represented by the
associated cognitive clusters. Each cortical voxel was colored based on the relative
PCA scores of PC1, PC2, and PC3, corresponding to the color of the tasks in the
two-dimensional space.

Hierarchical model. To further quantify the importance of the estimated hier-
archy, we constructed a hierarchical model based on the result of HCA. We first
conducted HCA using data from five subjects (excluding the target subject’s data).
This dendrogram (cluster tree) includes 102 non-terminal nodes (the terminal
nodes correspond to the 103 tasks). The feature matrix of the hierarchical model
consisted of 102-element binary vectors, which were assigned either 1 or 0 for each
time bin, indicating whether any tasks subordinated by the target non-terminal
node were performed in that period.

Cognitive factor model. To obtain task representations using continuous features
in the human cognitive space, we transformed sparse task-type features into the
latent cognitive factor feature space (Fig. 1d). We used the reverse-inference map of
the Neurosynth database13 for each of the 715 terms selected. Each reverse-
inference map in the Neurosynth database in MNI152 space was registered to the
subjects’ reference EPI data using FreeSurfer26,27.

We then calculated the correlation coefficients between the weight map for each
task in the task-type model and the registered reverse-inference maps. This resulted
in the [103 × 715] coefficient matrix. We next obtained the CTF for each subject by
averaging the coefficient matrices of the other five subjects. The CTF served to
transform the feature values of the 103 tasks into the 715-dimensional latent
feature space. The feature matrix of the cognitive factor model was then obtained
by multiplying the CTF with the feature matrix of the task-type model. Note that
the CTF (and the resultant feature matrix) of each target subject was independent
of their own data. The total number of cognitive factor model features was 715.

Encoding model fitting with sensorimotor regressors. To evaluate the possible
effect of low-level sensorimotor features on model predictions, we performed an
additional encoding model fitting while regressing out the sensorimotor compo-
nents. To this end, we concatenated motion energy (ME) model features (visual),
modulation transfer function (MTF) model features (auditory), and button
response (BR) model features (motor) with the original feature matrix during
model training (see the following subsections for details). ME model features were
obtained by applying three-dimensional spatiotemporal Gabor wavelet filters to the
visual stimuli3. MTF model features were obtained by applying spectro-temporal
modulation-selective filters to the cochleogram of the auditory stimuli30. BR model
features were obtained based on the number of button responses made by each
subject. Model testing excluded the sensorimotor regressors from the concatenated
feature matrix and the corresponding weight matrix. This analysis revealed that the
model prediction accuracy was independent of low-level sensorimotor features.

Motion energy model. We used the ME model that has been used in previous
studies3,31,32 and provided in a public repository (https://github.com/gallantlab/
motion_energy_matlab). First, movie frames and pictures were spatially down-
sampled to 96 × 96 pixels. The RGB pixel values were then converted into the
Commission International de l’Eclairage (CIE) LAB color space, and the color

information was subsequently discarded. The luminance (L*) pattern was passed
through a bank of three-dimensional spatiotemporal Gabor wavelet filters. The
outputs of the two filters with orthogonal phases (quadrature pairs) were squared
and summed to yield local ME. ME was compressed with a log-transformation and
temporally downsampled to 0.5 Hz. Filters were tuned to six spatial frequencies (0,
1.5, 3.0, 6.0, 12.0, 24.0 cycles per image) and three temporal frequencies (0, 4.0, 8.0
Hz), without directional parameters. Filters were positioned on a square grid that
covered the screen. The adjacent filters were separated by 3.5 standard deviations of
their spatial Gaussian envelopes. The total number of ME model features was 1395.

Modulation transfer function model. A sound cochleogram was generated using
a bank of 128 overlapping bandpass filters ranging from 20 to 10,000 Hz33. The
window size was set to 25 ms and the hop size to 10 ms. The filter output was
averaged across 2 s (TR). We further extracted the features from the MTF model30

which we provided in a public repository (https://osf.io/ea2jc/). For each
cochleogram, a convolution with modulation-selective filters was then calculated.
The outputs of the two filters with orthogonal phases (quadrature pairs) were
squared and summed to yield the local modulation energy3. Modulation energy
was then log-transformed, averaged across 2 s, and further averaged within each of
the 10 nonoverlapping frequency ranges logarithmically spaced along the fre-
quency axis. The filter outputs of the upward and downward sweep directions were
used. Modulation-selective filters were tuned to five spectral modulation scales
(0.50, 1.0, 2.0, 4.0, 8.0 cycles per octave) and five temporal modulation rates (4.0,
8.0, 16.0, 32.0, 64.0 Hz). The total number of MTF model features was 1000.

Button response model. The BR model was constructed based on the number of
button responses within 1 s for each of the four buttons, with the right two buttons
pressed by the right thumb and the left two buttons pressed by the left thumb. The
total number of BR model features was four.

Decoding model fitting. In the decoding model, the cortical response matrix RD

[T × 3V] was modeled using concatenating sets of [T ×V] matrices with temporal
delays of 2, 4, and 6 s. The feature matrix FD [T ×N] was modeled by multiplying
the cortical response matrix RD with the weight matrix WD [3V ×N]:

F̂D ¼ RDWD

The weight matrix WD was estimated using an L2-regularized linear regression
with the training dataset, following the same procedure for the encoding model
fitting.

To test decoding performance in a model-independent way, we also decoded
over 100 tasks directly from brain activity using a support vector machine
(Supplementary Fig. 11 and Supplementary Note 7).

Encoding and decoding with novel tasks. In order to examine the generalizability
of our models, we performed encoding and decoding analyses with novel tasks not
used during model training (Fig. 1e). We randomly divided the 103 tasks into five
task groups. A single task group contained 20–21 tasks. We performed five inde-
pendent model fittings, each with a different task group as the target. From the
training dataset, we excluded the time points during which the target tasks were
performed and those within 6 s after the presentation of the target tasks. In the test
dataset, we used only the time points during which the target tasks were performed
and those within 6 s after the presentation of the target tasks. This setting allowed
us to assume that the activity induced by the target task group and that induced by
the other four task groups (training task groups) did not overlap, thus enabling us
to investigate prediction and decoding accuracies for novel tasks. We performed
encoding and decoding model fitting with the training task group, which was
composed of 82–83 tasks. For model testing, we concatenated the predicted
responses or decoded features of the five task groups. Responses or features for the
time points that were duplicated were then averaged across the five task groups.
Note that encoding and decoding with the novel tasks were only possible with the
cognitive factor model, because the original tasks needed to be transformed into the
latent feature space.

In a further analysis, we used a random shuffling procedure to obtain a null
distribution of mean prediction accuracy (Supplementary Fig. 12). Specifically, all
elements of the [715 × 412] feature matrix of the cognitive factor encoding model
in the test dataset were randomly shuffled in an element-wise manner, and
predicted responses were calculated by multiplying the shuffled feature matrix with
the original weight matrix. The mean prediction accuracy across all voxels was
calculated. This procedure was repeated 1000 times.

For the decoding analysis with novel tasks, we measured the similarity between
the CTF of each task and each decoded cognitive factor vector using Pearson’s
correlation coefficients for each time point. We refer to the correlation coefficient
as the ‘task likelihood’. We then calculated the time-averaged task likelihoods for
each task using the one-vs.-one method. For each target task, a series of binary
classifications was performed between the target task and each of the remaining
102 tasks. The decoding accuracy was then calculated as a percentage that the
target task had higher task likelihood in this procedure. The statistical significance
of the decoding accuracy was tested for each task using the one-sided sign test (p <
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0.05, with FDR correction). See Supplementary Note 8 for the comparison between
prediction and decoding results.

Additionally, we used a random shuffling procedure to obtain a null
distribution of mean decoding accuracy (Supplementary Fig. 13). Specifically, all
elements of the [103 × 715] CTF matrix were randomly shuffled in an element-wise
manner, and the task likelihood was measured using Pearson’s correlation
coefficient between the shuffled CTF of each task and each decoded cognitive factor
vector. The mean decoding accuracy across all tasks was calculated. This procedure
was repeated 1000 times.

All model fitting and analyses were conducted using custom software written on
MATLAB. For data visualization on the cortical maps, pycortex was used34.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying all Figures, Supplementary Figures, and Tables except Fig. 1
are provided as a Source Data file at the Open Science Framework (OSF, https://osf.io/
ea2jc/). The raw MRI data are available at the OpenNeuro.org (https://openneuro.org/
datasets/ds002306).

Code availability
The MATLAB code used in the current study and the datasets generated and/or analyzed
during the current study are available at the OSF repository (https://osf.io/ea2jc/).
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