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Abstract
Purpose 2-[18F]FDGPET/CT is of utmost importance for radiation treatment (RT) planning and response monitoring in lung 
cancer patients, in both non-small and small cell lung cancer (NSCLC and SCLC). This topic has been addressed in guidelines 
composed by experts within the field of radiation oncology. However, up to present, there is no procedural guideline on this 
subject, with involvement of the nuclear medicine societies.
Methods A literature review was performed, followed by a discussion between a multidisciplinary team of experts in the dif-
ferent fields involved in the RT planning of lung cancer, in order to guide clinical management. The project was led by experts 
of the two nuclear medicine societies (EANM and SNMMI) and radiation oncology (ESTRO).
Results and conclusion This guideline results from a joint and dynamic collaboration between the relevant disciplines for this 
topic. It provides a worldwide, state of the art, and multidisciplinary guide to 2-[18F]FDG PET/CT RT planning in NSCLC and 
SCLC. These practical recommendations describe applicable updates for existing clinical practices, highlight potential flaws, and 
provide solutions to overcome these as well. Finally, the recent developments considered for future application are also reviewed.
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Introduction

Radiotherapy in lung cancer

Lung cancer

Lung cancer is a major cause of cancer death in both men 
and women, with an incidence of 11.6% and mortality 
of 18.4% worldwide (World Health Organization cancer 
report 2020 [1]). Despite declining in incidence, it is esti-
mated to remain the leading cause of cancer deaths in the 
USA in 2040 [2]. The two main types of lung cancer are 
non-small cell lung cancer (NSCLC) and small cell lung 
cancer (SCLC).

NSCLC represents more than 80% of lung cancer cases 
and includes two subtypes: (a) non-squamous (including 
40% adenocarcinoma, 5–10% large-cell carcinoma, and 
other subtypes) and (b) 30% squamous cell (epidermoid) 
carcinoma [3]. Since 2017, NSCLC is staged according 
to the eighth edition of the IASLC (International Asso-
ciation for the Study of Lung Cancer) in tumour, nodes, 
and metastases (TNM) based on the American Joint Com-
mittee on Cancer (AJCC) staging system [4]. Patients are 
grouped in stages I, II, III, and IV. Approximately 55% of 
cases have distant metastases at diagnosis, while roughly 
30% present with locally advanced disease, including 
mediastinal lymph node involvement [5].

SCLC represents fewer than 20% of lung cancers. 
Despite the fact that TNM staging [6] also has been pro-
posed for SCLC, it is commonly classified in two clinical 
stages based on the possibilities of including the disease 
in radiotherapy (RT) fields: (a) limited stage that typically 
includes TNM stage I to III and (b) extensive stage that 
includes TNM stage IV (presence of metastases), but also 
cT3-4 tumour (multiple lung nodules) and/or tumour/nodal 
volume that is too extended to be encompassed in a toler-
able radiation plan. Around 66% of SCLC cases present 
with metastatic disease [7, 8].

Radiotherapy

External beam radiation therapy (EBRT) focuses radia-
tion, mainly high energetic photons, but sometimes elec-
trons, protons, and heavy ions, from outside the body onto 
the tumour. Newer EBRT techniques enable lowering the 
radiation dose to nearby healthy tissues. These include 
the following: (a) Intensity modulated radiation therapy 
(IMRT) and volumetric modulated arc therapy (VMAT) 
are an advanced form of three-dimensional conformal 
radiation therapy. Using inverse treatment planning, beams 
from different angles are shaped according to the target 

form and their intensity is adjusted throughout the treat-
ment to optimize dose to the target while limiting dose to 
surrounding normal tissues.

(b) Stereotactic body radiation therapy (SBRT), also 
known as stereotactic ablative RT (SABR), is most often 
used to treat the primary tumour only, particularly in early-
stage lung cancer and increasingly used to treat oligometa-
static disease. Instead of giving a small dose of radiation 
(typically 2 Gy) each day for several weeks (usually 4-5), 
SBRT uses focused beams of high-dose radiation (typically 
6–18 Gy) in fewer (usually 2–8) treatment sessions. Such 
plans achieve a high biological effectiveness, i.e., introduce 
a high level of tumour cell kill while sparing the surround-
ing tissues.

Common clinical indications for RT in lung cancer

The following recommendations for RT in lung cancer 
are based on the National Comprehensive Cancer Net-
work (NCCN), the European Society of Medical Oncol-
ogy (ESMO), and the Advisory Committee for Radiation 
Oncology Practice of the European Society for Radiotherapy 
and Oncology (ESTRO-ACROP) guidelines [5, 8–12]. In 
NSCLC, RT is recommended in the following situations:

Early-stage disease — SBRT as primary treatment in 
stage I and selected node-negative stage IIA disease when 
patients are medically inoperable or when patients refuse 
surgery. In case of positive pathological margins, postop-
erative RT is also advocated.
Locally advanced NSCLC — depending on the age and 
comorbidity of the patient, concurrent or sequential 
chemoradiotherapy (CRT), or RT alone, is the stand-
ard in inoperable (node-positive) stage II disease and in 
unresectable stage III disease. Yet, even in potentially 
resectable cases, decisions on the optimal local treat-
ment strategy — either surgery or RT — will be based 
on expected benefits and side effects. RT will be delivered 
with three-dimensional conformal radiotherapy or more 
commonly with IMRT.
Advanced/metastatic NSCLC — local palliation or pre-
vention of symptoms (such as pain, bleeding, or obstruc-
tion of vessels or bronchi) or definitive local therapy to 
unifocal or oligo-metastases (the latter most frequently 
being addressed with SBRT);

Furthermore, RT also has a role in the two stages of 
SCLC, as part of either definitive or palliative therapy, as 
follows:

Limited stage SCLC — concurrent CRT, ideally deliv-
ered with twice daily RT sessions, is the treatment of 
choice for stage IIB–III SCLC, although a sequential 
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approach may be preferred in case of an initial volume 
that is not amenable to RT or in a patient unfit to tolerate 
such an intensive treatment scheme. In rare cases, when 
resection revealed unexpected positive lymph nodes in 
patients with clinical stage I–IIA SCLC, postoperative 
loco-regional RT will be considered.
Extensive stage/metastatic SCLC — consolidation tho-
racic RT after partial or complete response to systemic 
therapy, especially if there is low burden of extrathoracic 
metastatic disease.

Both in limited stages responding to chemotherapy and 
in extensive disease stages without progression after chemo-
therapy, prophylactic cranial irradiation has been shown to 
be of benefit and should be offered to the patient.

Selective versus elective nodal irradiation

According to ESTRO-ACROP guidelines [8, 12], elective 
nodal irradiation is not recommended. Selective nodal irradia-
tion (e.g. lymph nodes with proven metastatic involvement or 
highly suspicious on imaging) instead of elective nodal irra-
diation (e.g. all lymph node territories included in the primary 
tumour drainage) gives the opportunity of increasing the dose 
to the involved lymph nodes, while reducing toxicity [13–15].

Studies have found a low incidence of isolated nodal recur-
rence after selective nodal irradiation, in both NSCLC [16–18] 
and SCLC [19, 20], even in the era of highly conformal treat-
ment techniques, demonstrating the usefulness and safety of 
this approach. In NSCLC, selective nodal irradiation on the 
basis of CT or 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) 
positron emission tomography (PET) resulted in isolated nodal 
failures in fewer than 5% of cases [16]. In SCLC, 2-[18F]FDG 
PET-based selective nodal irradiation achieved a lower rate of 
isolated nodal failures (3%) compared to CT (11%) [20].

The role of PET/CT in lung cancer diagnosis 
and treatment

PET/CT imaging

A PET/CT system is an integrated imaging device, capable 
of acquiring both PET and CT scans. Reconstructed PET 
and CT images are spatially co-registered with the caveat 
that the CT is acquired very rapidly, while the PET is usu-
ally acquired in multiple steps over several minutes. PET/
CT fusion is the simultaneous display of co-registered CT 
and PET images. The CT component of a PET/CT scan can 
be acquired with variable parameters (e.g., mAs, kVp, pitch, 
with or without contrast) to suit the clinical need or accord-
ing to local protocols and regulations, for instance using a 

low-dose, low-resolution CT scan only for attenuation cor-
rection and anatomical localization, or a higher-dose, higher-
resolution CT if greater anatomic detail is required.

2-[18F]FDG PET/CT is a standard imaging modality for 
staging, selection for curative RT, defining and delineating 
the target volume in the RT planning phase, and detection 
of residual or recurrent disease. 2-[18F]FDG PET/CT can 
also be used for treatment response assessment, and it is the 
strongest and independent predictor of overall survival after 
RT [21–25].

2‑[18F]FDG PET/CT for lung cancer staging

2-[18F]FDG PET/CT is widely used in lung cancer stag-
ing, because 2-[18F]FDG is avidly taken up by the primary 
tumour, lymph nodes, and distant metastases. In a prospective 
multicentre trial, 2-[18F]FDG PET/CT changed management 
strategies in approximately 72% of cases [26]. Since 2-[18F]
FDG PET/CT has higher staging accuracy than CT alone, 
it may reduce healthcare costs by avoiding unnecessary RT 
or surgery, enabling better selection of patients amenable to 
curative treatment intent and reducing toxicity [21, 27].

Regarding NSCLC, integrated 2-[18F]FDG PET/CT pro-
vides the best non-invasive means for staging and is more 
accurate and cost-effective than non-PET/CT approaches 
[21, 28]. The sensitivity and specificity to detect mediasti-
nal lymph node involvement on CT are reported as 50–70% 
and 65–85%, respectively, whereas the corresponding values 
on 2-[18F]FDG PET/CT are 75–85% and 85–90% [29, 30]. 
In a study of 167 patients with apparent stage I-III NSCLC 
by conventional imaging, PET detected metastases with 
increasing frequency from stage I (7.5%) through stage II 
(18%) to stage III (24%, p = 0.016) [31]. A prospective mul-
ticentre randomized trial verified that combining preopera-
tive 2-[18F]FDG PET/CT with a conventional workup pre-
vented unnecessary thoracic surgery in 20% of patients [30].

In SCLC, 2-[18F]FDG PET/CT also increases staging 
accuracy, and it is superior to CT alone [32–36]. A system-
atic review and meta-analysis published in 2019 (includ-
ing 6 studies and 277 patients) concluded that 2-[18F]FDG 
PET/CT was superior to conventional staging, with a pooled 
percentage of staging changes (either from limited-stage to 
extensive-stage disease, or vice versa) in 15% of patients 
[36]. In another study, 2-[18F]FDG PET/CT upstaged 19% 
of patients and downstaged 8% of patients [37].

The limitations of 2-[18F]FDG PET/CT include (a) sub-
optimal brain staging due to high 2-[18F]FDG uptake in 
normal cerebral tissue. Magnetic resonance imaging (MRI) 
continues to be the primary modality to detect brain metas-
tases; (b) uptake in reactive or granulomatous nodes and in 
infectious processes, which may usually be recognized by 
experienced readers based on the distribution of abnormal-
ity (pattern recognition) or CT images; (c) subcentimeter 
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nodules, mucinous adenocarcinomas with a relatively small 
amount of cells, and low-grade malignancies are insuffi-
ciently detected; (d) chest wall invasion assessment is sub-
optimal; and (e) respiratory blurring causing misregistration 
between the PET and CT components, particularly at the 
lung bases, which may be addressed by respiratory motion 
correction techniques (see “Respiratory motion correction”).

According to the ESMO guidelines about NSCLC 
[9], correct diagnostic work-up is necessary to detect 
regional lymph node metastases prior to multidisciplinary 
management.

When abnormal mediastinal and/or hilar lymph nodes 
are found on CT and/or PET, endoscopic (endobronchial) 
ultrasound [E(B)US] is recommended over surgical stag-
ing. EUS-guided fine needle aspiration complements 2-[18F]
FDG PET by improving the overall specificity and positive 
predictive value to 100%, with an overall accuracy of 97% 
[38]. Based on data from 5 meta-analyses, Peeters et al. 
[39] calculated that the addition of E(B)US can decrease 
the false negative rate of 2-[18F]FDG PET/CT (from 13 to 
3% in enlarged nodes, and from 6 to 1% in normal-sized 
nodes). However, for 2-[18F]FDG PET/CT-positive but E(B)
US-negative nodes, the false negative rate of E(B)US was 
as high as 14–16%. Therefore, these authors recommended 
to include such PET+/EBUS− nodes in the RT planning 
volume. Moreover, since a negative EBUS cannot rule out 
metastatic disease reliably, they suggested proceeding to 
surgical staging/mediastinoscopy if PET findings are highly 
suspicious for mediastinal invasion.

The joint guideline by the European Society of Gastro-
intestinal Endoscopy (ESGE), together with the European 
Respiratory Society (ERS) and the European Society of 
Thoracic Surgeons (ESTS) [40], for the diagnosis and stag-
ing of lung cancer, recommends that EBUS be performed 
in peripheral NSCLC without clear mediastinal involvement 
on CT or PET/CT if at least one of the following apply: (i) 
enlarged or 2-[18F]FDG-avid ipsilateral hilar nodes [since 
proven nodal involvement may change the target volume], 
(ii) primary tumour without 2-[18F]FDG uptake [since 2-[18F]
FDG is thus not reliable for staging], or (iii) tumour size ≥ 3 
cm (a priori higher risk for metastatic nodal disease).

The ESMO guidelines on SCLC [10] also recommend 
excluding mediastinal lymph node involvement if a surgical 
approach is an option for patients with limited stage.

2‑[18F]FDG PET/CT for lung cancer RT planning

Target volumes in RT 

In RT planning, it is important to define the target lesion and 
to delineate the following volumes [41]:

(a) Gross tumour volume (GTV) includes the lesion that 
can be imaged.

(b) Clinical target volume (CTV) contains the GTV plus a 
margin for subclinical disease spread, which cannot be imaged.

(c) Internal target volume (ITV) is the margin needed 
around the CTV to compensate for possible motion or defor-
mation of the CTV, considering respiratory motion.

(d) Planning target volume (PTV) ensures that the RT 
dose is delivered to the CTV, compensating for systematic 
and random uncertainties during treatment planning or 
delivery. (Fig. 1)

2‑[18F]FDG PET/CT for target volume definition and delinea‑
tion 

2-[18F]FDG PET/CT plays an important role in RT planning 
of lung cancer [42–44]. It improves tumour definition and 
has the advantage of reducing inter- and intra-observer vari-
ation when used to guide target volume delineation [45, 46]. 
Target volume definition entails the identification of all rec-
ognizable tumour locations, allowing the delineation of the 
GTV of the primary tumour and GTV of the lymph nodes 
separately, if anatomically distinguishable. During image 
interpretation, the challenge is to define those tumour and/
or nodal volumes that should be included in the GTV, thus 
aiding in their subsequently delineation and discrimination 
from organs at risk (OAR). Usually, metabolic information 
from PET is used to identify tissues that contain tumour, and 
the anatomic information from CT is used to delineate (the 
margins of) the primary tumour and lymph nodes provided 
that there is sufficient contrast to define these margins [44].

RT planning using 2-[18F]FDG PET/CT is particularly 
helpful in identifying tumour boundaries in case of extra-
thoracic or mediastinal tumour extension, when the tumour 
and normal tissue have similar visual appearance on CT, 
and when there is atelectasis caused by compression of the 
airways by tumour (enabling the discrimination between 
collapsed lung and tumour) [44, 47]. In lesions with high 

Figure. 1  GTV, CTV, PTV, and ITV schematic definitions (based on 
the International Commission on Radiation Units and Measurements, 
report 62 - ICRU-62)
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2-[18F]FDG uptake intensity, the spill over effect can arti-
ficially increase apparent GTV beyond that confirmed by 
anatomical boundaries. This situation can be solved using 
different contrast, level, and window settings on both PET 
and CT imaging [48, 49]. The pre-set lung window setting 
(approximate window — W = 1600 and level — L = -600) 
should be used to delineate tumour surrounded by lung tis-
sue, while the mediastinum pre-set window setting (approx-
imate W = 400 and L = 20) should be used to delineate 
lymph nodes and primary tumour invading the mediastinum 
or chest wall [12]. Although there are no validated quantita-
tive approaches for PET contouring, the procedure can be 
improved with visual calibration of the W/L settings, for 
example, standardizing signal intensity visually according 
to the normal background, or using linear grayscale for PET 
images alone. For PET/CT image fusion, it is recommended 
to use a linear scale with one or at most two colours [44].

The time between staging 2-[18F]FDG PET/CT and start 
of RT should not exceed 3 weeks, because disease may pro-
gress rapidly, invalidating prior target definition [8, 12, 44].

In patients having undergone neoadjuvant/induction chemo-
therapy prior to radiation treatment planning, 2-[18F]FDG PET/
CT scan prior to chemotherapy needs to be taken into account 
when identifying metastatic lymph nodes. Lymph nodes fulfill-
ing the above mentioned criteria for inclusion in the target vol-
ume (see “2-[18F]FDG PET/CT for lung cancer staging”), still 
need to be included irrespective of their 2-[18F]FDG uptake or 
appearance on CT after chemotherapy. For inclusion in the tar-
get volume, the initial 2-[18F]FDG PET/CT is to be registered 
in the subsequent 2-[18F]FDG PET/CT acquired in radiation 
treatment position. Caution must be taken regarding geometri-
cal alignment as well as CT dose calibration.

The recent multicentre, randomized, controlled PET-
PLAN Trial (ARO-2009-09, NCT00697333) confirmed the 
safety of using 2-[18F]FDG PET/CT to define the target for 
primary tumour and selective nodal treatment in patients 
with locally advanced NSCLC undergoing CRT [15]. The 
study showed that the mean total RT dose was significantly 
higher in the 2-[18F]FDG PET-based target group than in the 
conventional target group, allowing doses of 68 Gy or more 
to be achieved more frequently (47% vs. 33% of cases). The 
risk of loco-regional progression in the 2-[18F]FDG PET-
based target group was lower than in the conventional target 
group (14% vs. 29%), without increasing toxicity.

Considering the lack of information in the literature spe-
cifically about SCLC, the following paragraphs about pri-
mary tumour and lymph node definition and delineation will 
mainly focus on NSCLC.

Primary tumour 2-[18F]FDG PET/CT has the advantage 
of increasing inter- and intra-observer reproducibility. This 
enables the reduction of the primary tumour GTV in at least 

13–17% of patients compared with CT-measured tumour 
volume [50, 51].

The Phase II prospective trial by the Radiation Therapy 
Oncology Group, RTOG 0515 [52] demonstrated that 
2-[18F]FDG-derived tumour volumes were significantly 
smaller than those derived by CT alone (86.2 vs. 98.7 mL), 
resulting in RT planning modification.

A systematic review and meta-analysis [53] estimated that 
the use of 2-[18F]FDG PET/CT imaging for RT planning 
purposes led to changes in target definition in 36% of cases 
(43% in NSCLC and 26% in SCLC) and a change of treat-
ment intent from curative to palliative treatment in 20% of 
cases (22% in NSCLC and 9% in SCLC).

Lymph nodes Several reasons for false negatives and false 
positive lymph nodes on 2-[18F]FDG PET imaging are 
widely reported in literature [54]. For instance, tumours 
with low cellular density (such as carcinoid, mucinous, and 
lepidic adenocarcinoma histology) or subcentimeter in size 
may not show 2-[18F]FDG uptake higher than background. 
Conversely, areas of inflammation or infection, including 
granulomatosis (e.g. tuberculosis, sarcoidosis, and Langer-
hans cell histiocytosis), pneumoconiosis (e.g. asbestosis, 
anthracosis, and silicosis), and post-surgery and post-irra-
diation fibrosis may show 2-[18F]FDG uptake unrelated to 
tumour.

There is consensus that 2-[18F]FDG PET be used to 
define lymph nodes included in the GTV. Although patho-
logical confirmation was not systematically obtained in 
every study, several authors concluded nodal staging by 
2-[18F]FDG PET improved GTV definition and delineation, 
enabling dose intensification to involved nodes, while reduc-
ing irradiation and resultant toxicity to normal tissues. The 
RTOG 0515 trial [52] reported that 2-[18F]FDG changed 
nodal GTV contours in 51% of patients.

A few studies compared the target definition based on CT 
and/or 2-[18F]FDG to surgical information, which was con-
sidered the gold standard. Vanuytsel et al. [55] observed that 
the inclusion of 2-[18F]FDG PET/CT information changed 
nodal GTV in 62% of patients compared to CT information, 
and improved GTV coverage compared to pathological data 
from 75% with CT alone to 89% with 2-[18F]FDG PET/CT. 
Nevertheless, true nodal GTV may still be underestimated, 
in particular in higher TNM stages [56].

The delineation of regional nodal disease on PET has 
been conducted in similar ways as that for the primary 
tumour. Taking all available information into account, it is 
recommended that 2-[18F]FDG positive lymph nodes only 
be omitted from the RT plan in the setting of a representa-
tive negative nodal biopsy, for instance, showing granuloma-
tous disease [39, 57]. Nestle et al. [58] reported improved 
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inter-observer agreement for mediastinal involvement on 
2-[18F]FDG PET/CT after a standardized training process 
for PET readers.

2‑[18F]FDG PET/CT for  response evaluation and  residual 
or recurrent disease detection 

Local tumour recurrence after RT usually occurs within 2 
years after treatment and represents a diagnostic challenge. 
According to the NCCN, ESMO, and ESTRO-ACROP 
guidelines [5, 9, 11], follow-up imaging after lung cancer 
surgery or SABR should be done with chest CT. The selec-
tive use of 2-[18F]FDG PET is recommended when recur-
rence is suspected based on serial CT scans, to differentiate 
true malignancy from benign conditions, such as atelectasis, 
consolidations, and radiation-induced fibrosis.

2-[18F]FDG PET/CT may help to differentiate recurrent 
tumour from post-radiation fibrosis if sufficient time has 
elapsed since last treatment, to avoid false positive uptake due 
to inflammation [59, 60]. Considering the low positive predic-
tive value of 2-[18F]FDG PET, pattern recognition is impor-
tant for detecting recurrence. The areas treated with SBRT can 
have well-defined intense 2-[18F]FDG uptake up to 6 months 
after treatment, and low-level, ill-defined uptake can last up to 
2 years because of radiation pneumonitis in the surrounding 
lung parenchyma [61, 62]. Moreover, local recurrence tends 
to be more focal, whereas inflammation has a more diffuse 
appearance [63, 64]. 2-[18F]FDG uptake and structural lung 
parenchyma changes in geographic distribution concordant to 
the prior radiation treatment area may assist in differentiating 
between these entities. Software that allows fusion of radiation 
dose-volume contours as DICOM-object with PET images can 
be particularly helpful in this regard. Moreover, the 2-[18F] 
FDG uptake pattern suggesting post-radiation pneumonitis 
may precede symptoms [65, 66], while oesophageal toxicity 
causing clinical symptoms can be detected as increased linear 
2-[18F]FDG uptake along the oesophagus [65, 67].

The reduction in 2-[18F]FDG accumulation at the 
tumour site after treatment indicates tumour response and 
is associated with better prognosis [68–70]. A decrease in 
2-[18F]FDG uptake may be an earlier indicator of response 
to treatment, occurring before a decrease in tumour size. 
The greater the decline in uptake, the better the response. 
Considering that 2-[18F]FDG PET/CT has a high negative 
predictive value, a residual uptake equal to or below back-
ground is defined as a complete metabolic response [68, 70]. 
However, it is debatable whether background is better evalu-
ated in liver or blood pool. Metabolic response criteria, such 
as the PET Response Evaluation Criteria in Solid Tumours 
(PERCIST), that assess change in standardized uptake value 
(SUV) corrected for lean body mass (SUL) have also been 
used to quantify metabolic response to treatment in clini-
cal trials [71]. The Hopkins criteria consider focal 2-[18F]

FDG uptake greater than that of the liver (scores of 4 and 
5) to represent residual disease [72]. Considering possible 
false-positive findings on 2-[18F]FDG PET, patients suitable 
for salvage therapy should undergo a biopsy for confirma-
tion because it remains difficult to differentiate fibrosis from 
residual disease or local recurrence. Currently, there is not 
a validated method or reference cut-off SUVmax number 
to accurately differentiate responders from non-responders.

2‑[18F]FDG PET/CT for predicting outcome after RT 

Some studies have suggested that the presence of heteroge-
neous tumour uptake on baseline 2-[18F]FDG PET/CT can 
predict local failure and can therefore be used to define areas 
at risk of recurrence after treatment [73, 74].

Usmanij et al. [24] verified that changes in metabolic 
parameters could predict response to concomitant CRT as 
early as the end of the second week of treatment in patients 
with locally advanced NSCLC; i.e. a total lesion glycolysis 
(TLG) decrease ≥38% was associated with a significantly 
longer one-year progression free survival (80% vs. 36%). In 
a meta-analysis, Na et al. [23] reported that the SUVmax in 
the primary tumour both before and after RT was able to pre-
dict patient outcome with regard to local control and overall 
survival. Other studies have also shown that post-treatment 
response assessment with 2-[18F]FDG PET/CT can predict 
survival [24, 75, 76].

Goal

The aim of this guideline is to provide general information 
about 2-[18F]FDG PET/CT in lung cancer (both NSCLC and 
SCLC) and specific considerations for RT planning with an 
emphasis on the collaboration between nuclear medicine 
physicians and radiation oncologists. In this guideline, 
concepts about target definition, target delineation, and per-
treatment evaluation will be included.

This field is rapidly evolving, and this guideline may rather 
be appreciated as a dynamic document than a definitive docu-
ment, nor is it a summary of all existing protocols. Local vari-
ations should be taken into consideration when applying this 
guideline, preferably in a multidisciplinary setting.

Qualifications and responsibilities 
of personnel

Physicians

RT planning for lung cancer is at the intersection of radia-
tion oncology, nuclear medicine, and diagnostic radiology 
expertise. It has been shown that mutual training and close 
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collaboration of specialists from these fields optimize the RT 
target delineation process [77]. It is important to consistently 
check hybrid images co-registration before any target deline-
ation and a joint GTV delineation by a radiation oncologist 
together with a nuclear medicine physician and radiologist, 
produced encouragingly consistent results [78].

Treatment planning includes professionals trained in mul-
timodality imaging according to interdisciplinary training 
programs, who are also participating in the lung multidisci-
plinary tumour board. Specific training programs, including 
case-based training (e.g. ESTRO target volume determina-
tion courses, https:// www. estro. org/ Cours es), should be con-
sulted to facilitate exchanges between specialties.

The nuclear medicine physician or PET/CT specialist con-
firms that the radiopharmaceutical administration and image 
acquisition are according to the guidelines [42] and verifies 
that the acquired image is adequate for medical diagnosis. 
Informed consent might need to be obtained for 2-[18F]FDG 
PET/CT, according to national/institutional requirements.

The target volume definition and delineation for treat-
ment planning is performed by the radiation oncologist. 
Where radiation oncology departments own a PET/CT 
scanner and conduct their own simulation scans, it is rec-
ommended that staff performing the target delineation are 
properly trained in 2-[18F]FDG PET/CT image interpre-
tation. In any case, consultation of a radiologist and/or 
nuclear medicine physician should be easily accessible, for 
example when in doubt about possible physiologic uptake 
or abnormal findings during the delineation process.

Different approaches are proposed in the interpretation 
and GTV delineation (see “Interpretation and target vol-
ume delineation”). Therefore, it is recommended to develop 
departmental instructions for GTV delineation, which should 
include testing of the reproducibility of metabolic GTV delin-
eation within a nuclear medicine department. All delineation 
steps for GTV should be performed or supervised by radia-
tion oncologists according to local practice. An additional 
peer review by another radiation oncologist is highly recom-
mended because inter-observer variation in the delineation is 
one of the main uncertainties in RT planning of lung cancer.

Technologists

PET/CT scans should be performed by a qualified regis-
tered and/or certified nuclear medicine technologist [79]. 
If specific PET knowledge and training have been gained 
by nuclear medicine technologists, they should be able to 
perform PET quality control testing. It is advisable that tech-
nologists receive and maintain training in each other’s fields 
to create a group of professionals with complete competence 
to acquire PET/CT scans in the RT setting. In practice, coop-
eration between departments and personnel is fundamental 
to guarantee adequate execution of the protocol.

Imaging technologists are responsible for proper patient 
preparation to achieve optimal 2-[18F]FDG biodistribution, 
tracer administration according to radiation safety require-
ments, adequate handling of radioactive patients during the 
imaging procedure, appropriate PET/CT image acquisition 
and reconstruction, and acquisition of the planning CT scans 
(with or without intravenous contrast). The technologists 
trained in RT planning are also involved in the imaging pro-
cess. They are responsible for installing the RT equipment 
on the PET/CT (e.g. flat bed, treatment positioning devices) 
and for ensuring stable and reproducible positioning of the 
patient confirming that it is suitable for RT planning accord-
ing to the region of the body to be treated and guarantying 
patient’s comfort. This also includes respiratory gating, if 
available and validated at the site, and marking of the isocen-
tre reference points on the patient. The patient positioning 
is of utmost importance to avoid mistakes and pitfalls that 
interfere with the RT planning and treatment, some common 
human situations that should be bared in mind are the site of 
treatment, isocentre position, inserted references and meas-
urements, time of contrast and bolus administration, and 
any additional medication. A multidisciplinary approach of 
both nuclear medicine and RT technologists is needed when 
verifying image quality and applicability for RT planning.

Physicists and information technology personnel

A multidisciplinary and collaborative approach should also 
apply to physicists, information technology personnel, and 
technical support team. Quality control of the PET/CT should 
be done by a medical physicist with special expertise in nuclear 
medicine. PET/CT scanners must adhere to regional, national, 
and international quality standards, including international 
dosimetry and radiation precautions for patients and staff alike. 
A further task is to develop and implement more refined and 
reproducible methods of PET/CT segmentation (automatic 
algorithms and/or artificial intelligence-based) to improve the 
detection of lung lesions. A medical physicist should ensure 
adherence to good practice, perform radiation dose monitoring, 
and develop algorithms to minimize the radiation exposure 
[80, 81]. Quality control of the RT equipment should be done 
by a physicist with expertise in RT. The physical RT planning 
and the dose calculation should be reviewed by a dedicated 
physicist before the final treatment plan has been approved.

Procedure and specifications 
of the examination

As the availability of imaging modalities assisting RT plan-
ning is variable between institutions and continuously evolv-
ing, embedding 2-[18F]FDG PET/CT imaging in the RT plan 
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is considered in the ESTRO-ACROP current guidelines [8, 
11, 12], but should be tailored to local workflow. The work-
flow should be defined and managed in a multidisciplinary 
manner. Several specific aspects need to be considered in 
2-[18F]FDG PET/CT-based treatment planning of lung can-
cer. These will be described in the following paragraphs.

Request

The acquisition and interpretation of imaging studies are 
guided by the clinical questions that need to be answered. 
The request for a 2-[18F]FDG PET/CT in RT position should 
be written (preferably digitally) and contain all standard 
information for an oncological 2-[18F]FDG PET/CT, in par-
ticular, location of the (former) primary lung tumour and/
or known metastases, previous radiation therapy dates, dose 
and locations, and previous/simultaneous chemotherapy 
regimens prescribed. Information about other lung diseases 
(e.g. tuberculosis, sarcoidosis, and other granulomatous dis-
eases, pneumonia), prior talc pleurodesis, thoracic surgery, 
or recent biopsy should also be provided. It should explicitly 
include the request for performing the scan in the RT posi-
tion. In most cases, the administration of intra-venous con-
trast will be requested, and, in these cases, kidney function 
(or glomerular filtration rate) and history of contrast allergy 
should be noted.

Patient preparation and precautions

Patient preparation should be done according to the “2-[18F]
FDG PET/CT EANM procedural guidelines for tumour 
imaging version 2.0” and the American “Society of Nuclear 
Medicine and Molecular Imaging (SNMMI) procedure 
guideline for tumour imaging with 18F-FDG PET/CT 1.0” 
[42, 82]. This includes fasting for at least 4 h prior to imag-
ing, proper hydration, verification of a serum glucose level 
<11 mmol/L, and resting in a quiet and warm environment 
during the 2-[18F]FDG-uptake time that should ideally last 
60 ± 5 min.

The administration of intravenous contrast improves 
primary tumour delineation, regional lymph nodes identi-
fication, and OAR definition on CT. In such cases, kidney 
function and history of contrast allergy should be verified 
before intravenous contrast injection. The administration of 
contrast media and premedication should follow local chest 
CT radiological protocols.

If no diagnostic thoracic CT is available, it should be con-
sidered to include an additional low-dose, deep-inspiration 
thoracic CT to adequately evaluate the lung parenchyma. 
This is also important for comparison with previous or later 
thoracic CTs.

Patient setup should be performed with levelling lat-
eral and sagittal lasers, to ensure accurate alignment and 

positioning. Reference ink or tattoo marks of the isocentre 
should be used (one on the right side, left side, and ventral 
centre) to ensure reproducibility of setup at the time of treat-
ment [83].

Radiopharmaceuticals

The administration of 2-[18F]FDG should follow the EANM/
SNMMI guidelines about PET/CT imaging in the oncology 
context and should be in concordance with the “As Low As 
Reasonable Achievable (ALARA)” principle, which may 
enable the reduction of administered activity, mainly in the 
newest generation scanners [42, 82, 84].

Hardware

According to the International Atomic Energy Agency 
(IAEA) consensus report 2014, the PET/CT scanner should 
be equipped with a flat RT table top, patient positioning 
devices, and the CT component should be calibrated for its 
safe use in RT planning and dose calculation [44, 85]. The 
EORTC recommendations for RT planning in lung cancer 
state that a stable and reproducible patient positioning is 
essential [86]. If possible, patients should be in supine posi-
tion with both arms above the head. It is recommended to 
use support devices for arms and knees to improve the posi-
tion reproducibility and patient comfort. The equipment used 
for patient immobilization should be similar when perform-
ing PET/CT and RT. The PET/CT imaging should be veri-
fied before contouring to avoid co-registration misalignment, 
even in hybrid PET/CT systems.

Protocol/image acquisition

2-[18F]FDG PET/CT performed from the mid-thighs to skull 
base, after bladder voiding, is recommended, and the acqui-
sition details should follow the EANM/SNMMI procedural 
guidelines and also the specifications of the PET/CT scan-
ner used [42, 82]. When 2-[18F]FDG PET/CT is performed 
for staging with the possibility of doing RT planning in one 
setting, a flat RT table-top should be used. Patients should 
be informed about the need to place tattoo marks.

Respiratory motion correction

Respiratory motion may have impact on tumour localiza-
tion, delineation, SUV quantification, and, consequently, 
dose delivery in RT. Despite being highly dependent on 
the implementation of the PET manufacturer, based on the 
“Report of the American Association of Physicists in Medi-
cine Task Group 76” [87], respiratory motion correction may 
be organized in the following four categories:
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(1) Motion-encompassing methods include (a) slow CT 
scanning, (b) four-dimensional (4-D) CT/respiration-
correlated CT, and (c) forced shallow breathing with 
abdominal compression.

  In slow CT acquisition, multiple respiration phases 
are averaged per slice. The disadvantage is the 
increased dose compared with conventional CT scan-
ning and the loss of resolution due to motion blurring, 
and therefore, it is not recommended for lung tumours 
that are adjacent to either the mediastinum or the chest 
wall.

  A suitable solution for obtaining high-quality CT data 
in the presence of respiratory motion is 4-D CT or res-
piration-correlated CT. The 4-D CT could be combined 
with a 3-D or a 4-D PET scan. In 4-D acquisitions, 
the scans are retrospectively binned into a number of 
breathing cycle phases, using a respiratory tracking sys-
tem [44, 88]. The impact of additional 4-D PET infor-
mation to 3-D PET is promising but is still a matter of 
active investigation [89–92], with several translational 
research projects within prospective SBRT trials, such 
as the Freiburg mono centre phase II STRIPE trial or 
the EORTC 2113-0813 Lungtech trial [93, 94]. A limi-
tation of 4-D CT is that it may be affected by variations 
in respiratory patterns during acquisition and various 
techniques are currently being investigated to reduce 
these respiratory artefacts [95, 96].

  The forced shallow breathing with abdominal com-
pression technique employs a stereotactic body frame 
with an attached plate or an inflatable belt that is 
pressed against the abdomen. The applied pressure to 
the abdomen reduces diaphragmatic excursions, while 
allowing limited normal respiration. Implementation 
of these techniques is highly dependent on patient 
cooperation, and previous training can help increas-
ing image quality.

(2) Controlled breathing methods include (a) moderate 
or deep-inspiration breath-hold, (b) active-breathing 
control, (c) self-held breath-hold without respiratory 
monitoring, and (d) self-held breath-hold with respira-
tory monitoring [97, 98].

  Moderate or deep-inspiration breath-hold is advan-
tageous because it significantly reduces respiratory 
tumour motion and changes internal anatomy (the dia-
phragm pulls the heart posteriorly and inferiorly) in a 
way that often protects critical normal tissues.

  Breathing control is a method that enables reproduc-
ible breath-hold. After a nose clip is put on, the patient 
breathes through a mouthpiece connected via flexible 
tubing to a spirometer according to the technologist’s 
instructions. The patient breathes normally through a 
device consisting of a digital spirometer to measure the 

respiratory trace. In active breathing control, the patient 
is connected to a balloon valve.

  Self-held breath-hold with or without respiratory 
monitoring means that patients hold their breath at 
some point in the breathing cycle according to a res-
piratory monitor device or voluntarily, respectively.

(3) Respiratory gating includes gating based on (a) external 
respiration signal or (b) internal fiducial markers that 
are implanted in or close to the tumour using percuta-
neous or bronchoscopic techniques. It involves image 
acquisition in a defined part of the breathing cycle, and 
the gating characteristics are established according to 
the patient’s respiratory motion [99].

  The gating PET/CT imaging improves the assess-
ment of intra-tumour heterogeneity and may be ade-
quate for dose painting [100] (see “Imaging tumour 
metabolism and dose painting”).

(4) Data-driven gating techniques — instead of using hard-
ware-driven motion correction strategies (as described 
in previous sections), new methods are being explored 
using data-driven software analysis. Some examples 
include (a) motion characterization directly from a 
patient’s gated scan using the signal to create a single 
optimal bin, and leading to conformal adaptive imaging 
[101], and (b) motion information extraction from the 
reconstructed images [102]. The real-time data-driven 
motion correction, as opposed to post-processing meth-
ods, represents an important innovation in the speed of 
processing data for clinical practice [103].

  Currently, there is no robust evidence to choose one 
method over the other, so the decision is based on the 
availability in the department and its implementation 
should follow institutional and national regulations.

Interpretation and target volume delineation

2-[18F]FDG PET/CT images should be discussed between 
the nuclear medicine physician, the radiologist, and the 
radiation oncologist to define the best treatment planning. 
Several PET-based tumour volume delineation methods have 
been evaluated, and algorithms for semiautomatic 2-[18F]
FDG PET segmentation have evolved exponentially in the 
last decade [104, 105]. Since 2017, artificial intelligence-
based segmentation approaches seem to outperform previ-
ously state-of-the-art algorithms [105, 106]. Classifications 
of PET auto-segmentation methods can be based on image 
processing algorithms, pre- and post-processing steps, and 
automation level [105]. Some of the possible segmentation 
methods are summarized in Table 1, and may include the 
following four groups:

(1) Manual methods — visual interpretation and manual 
delineation of PET-based GTV using a computer 
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mouse slice-by-slice are common in daily practice and 
widely used [107]. One of the main disadvantages in 
manual delineation of PET images is its strong opera-
tor dependence that can, therefore, result in high intra-
observer variability and reduced reproducibility [108].

(2) Threshold-based segmentation methods — they are com-
monly used because of their simplicity. They rely on a 
fixed or adaptive threshold (e.g. SUV, background noise, 
contrast, signal-to-noise ratio, size), above which all vox-
els are considered to belong to the tumour volume. Fixed 
thresholding alone should be avoided since it strongly 
depends on tumour contrast, size, shape, and heteroge-
neity [105]. It may be used only as an initial guidance 
for a subsequent manual delineation. Adaptive thresh-
olding approaches accounting for both contrast and size 
are more appropriate although they require a scanner 
specific phantom based calibration procedure [105].

(3) Image processing methods — these auto-segmentation 
approaches allow delineation of uptake semi-automati-
cally without prior calibration and have been developed 
to either guide or generate the tumour volume [105, 109, 
110]. According to ESTRO-ACROP [12], tumour volume 
should be delineated on the CT image, with guidance of 
the PET. These methods may help to overcome the low 
signal-to-noise ratio and the poor spatial resolution of 
PET images. They may explore the image contrast and 
the spatial resolution of CT; may create combinations of 
coregistered PET, CT, or MR data sets; or may use deep 
learning to analyse a large number of imaging features. 
Some examples include the following six methods: gra-
dient based method, hybrid method, deformable contour 
models, model-based methods, statistical image meth-
ods, multimodality-based methods, and machine learning 
methods [111–120].

(4) Consensus methods — the combination of several seg-
mentation methods improves segmentation accuracy when 
compared to a single method. Additionally, it compensates 
the weaknesses of individual methods and, therefore, may 
be advantageous for RT planning [121]. Currently, three 
consensus algorithms are available: majority vote (MJV), 
simultaneous truth and performance level estimation (STA-
PLE), and automatic decision tree-based learning algorithm 
for advanced segmentation (ATLAAS) [122–125].

It has been shown that consensus methods improve 
accuracy and reproducibility in volume segmentation 
compared to all separate segmentation methods in dif-
ferent experimental circumstances [121, 126, 127].

The state-of-the-art 2-[18F]FDG PET auto-segmentation 
algorithms, relying on advanced image analysis paradigms, 
seem to be more accurate than approaches based on manual 
methods and 2-[18F]FDG activity thresholds [105, 106]. 
However, optimization to scanning conditions, tumour type, 
and tumour location is still necessary. Currently, there is no 
approved method and, therefore, all auto-segmentation contours 
should be critically verified by a physician [105]. An institu-
tionally well organized manual delineation may cover the needs 
in clinical routine, albeit potentially more time consuming.

Documentation/reporting

The interpretation and reporting of 2-[18F]FDG PET/
CT scans should be done by trained and certified nuclear 
medicine physician, or a radiologist trained in 2-[18F]FDG 
PET/CT, and with experience in lung malignancies. One 
combined report including both PET and CT information, 
or two separate reports for each imaging modality with a 
summary of the main findings and an integrated conclu-
sion, may be written, according to local circumstances and 
national reimbursement policies.

The following aspects should be included in a struc-
tured report: (1) patient and study identification; (2) clini-
cal information (including the question from the referring 
clinician, complementary information obtained from the 
medical history or data collected from the clinical pro-
cess); (3) procedure including the administered radiop-
harmaceutical activity, route of administration, uptake 
time, blood glucose level, PET scanner type, field of view, 
CT protocol (low dose or dedicated), additional imaging 
acquisition (e.g. respiratory-gating or delayed thoracic 
images), details on administered intravenous contrast, 
ancillary medications, reconstruction technique, and if 
the PET/CT was performed for RT planning; (4) com-
parison studies used for correlation; (5) main findings 
described by order of importance (may follow the TNM 

Table 1  2-[18F]FDG PET metrics and segmentation methods sum-
mary

Segmentation methods

Manual method • Manual delineation slice by slice
Threshold-based • SUVmax > 2.5

• >40% SUVmax within the lesion
Advanced image seg-

mentation approaches
• Gradient-based
• Hybrid
• Deformable contours
• Model-based
• Statistical
• Multimodality-based
• Machine learning/deep learning

Consensus algorithms • Majority vote (MJV)
• Simultaneous Truth and Performance 

Level Estimate (STAPLE)
• Automatic decision Tree-based Learning 

Algorithm for Advanced Segmentation 
(ATLAAS)
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staging classification, anatomic site, or hybrid formats); 
and (6) summary and final impression aiming to answer to 
the clinical question, to mention the TNM staging in the 
initial evaluation, to classify the study as complete meta-
bolic response, partial metabolic response, stable disease, 
pseudo-progression or progressive metabolic disease in 
restaging, and to provide guidance to the referring doctor.

When using PET/CT scans for delineation, the person 
performing the delineation should be trained in 2-[18F]FDG 
PET/CT image interpretation. Moreover, it is advisable to 
document the method of delineation (manual or automatic), 
including whenever appropriate the threshold used and/or 
other methodology related parameters (e.g. %SUVmax) to 
facilitate a second definition of the GTV if necessary (see 
“27”).

Equipment specifications, quality control, 
and radiation safety in imaging

The EANM/SNMMI procedural guidelines for tumour imag-
ing apply for quality control of PET [42, 82]. Also, it is rec-
ommended to adhere to the EANM Research Ltd (EARL© 
http:// earl. eanm. org/ cms/ websi te. php) accreditation pro-
gram, which is aimed at harmonizing quantification among 
different equipment in a wide range of tumour types and is 
available for 2-[18F]FDG PET/CT and PET/MRI [128, 129].

It is recommended that the PET/CT equipment used for 
RT is in accordance with the requirements for RT planning, 
including the flat table-top, positioning devices, laser sys-
tems, and increased gantry diameter [85]. According to the 
national and/or international guidelines, the quality control of 
the PET/CT hardware should also include the quality control 
of the CT, the PET, and the PET/CT alignment [85, 130, 
131]. In the RT context, it is required that the quality control 
follows the RT recommendations, including table positioning 
and movement, and laser geometry and accuracy [83, 132].

When put into perspective to the dose received from 
external beam RT, the radiation dose to patients from PET/
CT imaging is negligible. The majority (40–60%) of the 
radiation exposure of technologists is related to 2-[18F]FDG 
preparation, injection, and patient positioning [133, 134].

Measures to reduce the personnel exposure to radiation 
should be promoted, and some examples include patient 
instruction before 2-[18F]FDG injection, trained staff in 
positioning patients, and room preparation prior to patient 
arrival [84].

For tumour delineation purposes, it is recommended to 
review the acquired images, namely the alignment of the 
CT and PET components. Then, the images should be trans-
ferred to the RT planning system to enable the final display 
of the PET/CT images on the planning computer. It is impor-
tant that each part of the process has undergone appropriate 

quality assurance testing and that the complete process has 
been validated.

Safety, infection control, and patient 
education concerns

Imaging should follow local safety protocols, but some 
guidance may be obtained from the “American College 
of Radiology Position Statement on Quality Control and 
Improvement, Safety, Infection Control and Patient Educa-
tion” [135].

Recent developments considered for future 
application

Imaging tumour metabolism and dose painting

Dose painting is a sophisticated approach to selectively 
deliver dose to different parts of a tumour, including deliv-
ery of higher doses to treatment-resistant areas, rather than 
escalating the dose to the whole tumour [136]. Usually, areas 
of high pre-treatment 2-[18F]FDG uptake within the primary 
tumour are considered to be more aggressive. Therefore, 
these areas may be considered the target for dose-escalation 
[109, 137, 138].

Defining the biologic target volume, i.e. tumour subvol-
umes requiring a higher or lower dose based on the tumour 
microenvironment, is a crucial step in RT planning for dose 
painting and possibly partial dose-escalation, termed boost-
ing. Several methods for pre-treatment segmentation have 
been proposed, but none of them has been proven superior to 
another [104, 106, 139]. However, there are some promising 
results. For instance, the Netherlands randomized phase II 
PET-boost trial (NCT01024829) [140] showed the feasibility 
of dose-escalation using an integrated boost to the primary 
tumour or high 2-[18F]FDG uptake regions (>50% SUV-
max) whilst keeping the pre-defined dose constraints. In this 
trial, the dose could be escalated to at least 72 Gy in 75% of 
patients, without increasing the dose to the OAR.

Intermediate/mid‑treatment 2‑[18F]FDG PET/CT 
and adaptive RT

Image-based adaptive RT was initially introduced in an 
effort to overcome the challenge of tumour motion, but it 
also enabled an earlier assessment of treatment response 
[141–143]. It offers an opportunity to identify ineffective 
therapies and switch to an alternative treatment regimen, 
preventing futile radiation toxicity. Interim imaging can be 
performed anytime during the scheduled treatment dura-
tion. Several authors have demonstrated that 2-[18F]FDG 
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activity changes remarkably during the course of RT. They 
found that change in mid-treatment 2-[18F]FDG activity 
correlated with post-RT response, which was predictive of 
overall survival [75, 144–146]. Wang et al. [75] concluded 
that a 75% decrease of SUV predicted overall survival and 
2-year progression free survival (hazard ratio of 0.97 for 
both). The prospective study RTEP1 analysed 2-[18F]FDG 
PET/CT examinations performed during thoracic RT (the 
first PET was performed before the first RT fraction, and 
five additional PET scans were performed after each 14–16 
Gy of dose up to the total dose of 70 Gy), given either alone 
or with chemotherapy [147]. They observed an average 50% 
decrease in SUVmax at approximately 40–45 Gy (i.e., dur-
ing week 5 of RT). The subsequent multicenter RTEP2 study 
(NCT01261598) [148] demonstrated the prognostic value of 
2-[18F]FDG PET/CT during curative-intent RT with or with-
out concomitant chemotherapy in patients with NSCLC. The 
SUVmax of the PET2 scan, performed during the fifth week 
of treatment, was the single variable predictive of death or 
tumour progression at 1 year in multivariate analysis.

Additionally, the prospective phase 2 RTOG1106 trial 
(NCT01190527) [149] in patients with locally advanced 
NSCLC showed the feasibility of dose escalation to persis-
tent 2-[18F]FDG avid tumour seen on mid-treatment 2-[18F]
FDG PET/CT. The interim analysis led to an improved 
2-year loco-regional tumour control rate, reaching an 
infield and overall local regional tumour controls rate of 
82% and 62%, respectively. The final results of this trial are 
expected by the end of 2021. However, a phase 3 study will 
be required before this adaptive approach starts being used 
in standard clinical care.

Other clinical trials are ongoing, including the fol-
lowing: NCT02473133, NCT01507428, NCT01261598, 
NCT01261585, NCT01576796, and NCT02354274.

Other non‑2‑[18F]FDG radiopharmaceuticals

PET tracers other than 2-[18F]FDG have a potential role 
in imaging tumour biology and heterogeneity, through the 
evaluation of hypoxia, proliferation, and vascularization. 
The most commonly used hypoxia tracers are  [18F]FMISO, 
 [18F]HX4 and  [18F]FAZA.  [18F]FLT can be used to study 
proliferation. Since hypoxia is a marker of radioresist-
ance and high proliferation areas that are presumably more 
aggressive, such tumour areas may require dose escalation 
[150–156]. Although still under investigation, this comple-
mentary information could be used in RT dose-reduction 
or escalation through dose-painting (see “Imaging tumour 
metabolism and dose painting”.).

In patients with locally advanced stage III NSCLC, the 
probability of local control remains low (34% at 1 year with-
out immunotherapy) [157]. A prospective phase II multicen-
tre dose escalation study applying  [18F]FMISO in NSCLC 

in hypoxic sub-volumes (RTEP5, NCT 01576796), showed 
the feasibility of escalating dose up to 86 Gy. The response 
rate at 3 months was 57% (95% confidence interval [CI], 
43%–71%) using RECIST 1.1. Disease-free survival and 
overall survival at 1 year were 86% (95% CI, 77%–96%) 
and 63% (95% CI, 49–74%), without significant toxicity. 
After 3 years of follow-up, the authors found that in  [18F]
FMISO-positive patients, the RT boost increased median 
overall survival by 11.2 months [158, 159].

PET/MRI

There are few studies comparing 2-[18F]FDG PET/MRI and 
2-[18F]FDG PET/CT in lung cancer patients, but both seem 
to show similar high diagnostic performance [160–162]. 
Nevertheless, MRI of the chest or sub-regions of inter-
est could be added to the workup in cases with chest wall 
infiltration, superior sulcus tumours (including Pancoast 
tumours) or para-spinal tumours [163]. To allow a co-reg-
istered planning, MRI sequences should be acquired in the 
RT planning position.

Radiomics

Radiomics is an emerging field with significant potential for 
prognostic stratification, RT planning, and response assess-
ment in patients with lung cancer. Radiomics involves the 
extraction of a large number of quantitative features from 
medical images using advanced imaging processing and 
analysis tools, and it is actively explored in lung cancer 
[164–167]. The integration of artificial intelligence in this 
radiomic-driven pipeline may also allow mainstreaming their 
use in clinical practice [168, 169]. Some studies indicate that 
an analysis of pretreatment 2-[18F]FDG PET/CT images based 
on the use of radiomics may allow to predict local control for 
patients undergoing SBRT [166, 170]. A recent retrospective 
multicentre trial study [170] showed that both PET and CT 
features were predictive of local control, with a predictive 
model combining two PET features reaching a sensitivity and 
specificity of 100% and 81%, respectively. Another group 
found that specific PET features closely correlated to tumour 
volume definition, specifically, in larger tumours [171]. Due 
to the variability in acquisition and reconstruction protocols, 
a “Radiomics Quality Score” was created in order to harmo-
nize the radiomic feature calculation methods and protocols, 
enabling comparison between different studies [172–174].

Supplementary information

The Society of Nuclear Medicine and Molecular Imaging 
(SNMMI) is an international scientific and professional 
organization founded in 1954 to promote the science, 
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technology, and practical application of nuclear medicine. 
The European Association of Nuclear Medicine (EANM) 
is a professional non-profit medical association that facili-
tates communication worldwide between individuals pur-
suing clinical and research excellence in nuclear medicine. 
The EANM was founded in 1985. SNMMI and EANM 
members include physicians, radiologists, technologists, 
and scientists specializing in the research and practice of 
nuclear medicine.

The European Society for Radiotherapy & Oncology 
(ESTRO) was founded in 1980, and is a non-profit scien-
tific organisation that fosters the role of radiation oncol-
ogy in order to improve patients’ care in the multimodality 
treatment of cancer. With over 6,500 members inside and 
outside Europe, ESTRO supports all the radiation oncol-
ogy professionals in their daily practice. ESTRO mem-
bers include radiation oncologists, medical physicists, 
radiobiologists and radiation technologists and members 
of the wider oncology community. Its mission is to pro-
mote innovation, research, and dissemination of science 
through congresses, special meetings, educational courses 
and publications.

The SNMMI and EANM periodically define new guide-
lines for nuclear medicine practice to help advance the 
science of nuclear medicine and improve the quality of 
service to patients throughout the world. Existing prac-
tice guidelines are reviewed for revision or renewal, as 
appropriate, on their fifth anniversary or sooner, if indi-
cated. Each practice guideline, representing a joint pol-
icy statement by the SNMMI/EANM, has undergone a 
thorough consensus process in which existing evidence 
has been subjected to extensive review. The SNMMI and 
EANM recognize that the safe and effective use of diag-
nostic nuclear medicine imaging requires specific train-
ing, skills, and techniques, as described in each document. 
Reproduction or modification of the published practice 
guideline by those entities not providing these services is 
not authorized.

These guidelines represent an educational tool designed 
to assist practitioners in providing appropriate care for 
patients. They are not inflexible rules or requirements of 
practice and are not intended, nor should they be used, to 
establish a legal standard of care. For these reasons, and 
those set forth below, both the SNMMI and the EANM cau-
tion against the use of these guidelines in litigation in which 
the clinical decisions of a practitioner may be called into 
question.

The ultimate judgment regarding the propriety of any 
specific procedure or course of action must be made by the 
physician or medical physicist in light of all the circum-
stances presented. Thus, there is no implication that an 
approach differing from the guidelines, standing alone, is 
below the standard of care. To the contrary, a conscientious 

practitioner may responsibly adopt a course of action dif-
ferent from that set forth in the guidelines when, in the rea-
sonable judgment of the practitioner, such course of action 
is indicated by the condition of the patient, limitations of 
available resources, advances in knowledge or technology 
subsequent to publication of the guidelines, local regula-
tory requirement, or reimbursement frameworks. The prac-
tice of medicine includes both the art and the science of the 
prevention, diagnosis, alleviation, and treatment of disease. 
The variety and complexity of human conditions make it 
impossible to always reach the most appropriate diagnosis or 
to predict with certainty a particular response to treatment.

Therefore, it should be recognized that adherence to 
these guidelines will not ensure an accurate diagnosis or a 
successful outcome. All that should be expected is that the 
practitioner will follow a reasonable course of action based 
on current knowledge, available resources, and the needs of 
the patient to deliver effective and safe medical care. The 
sole purpose of these guidelines is to assist practitioners in 
achieving this objective.
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