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Korean Red Ginseng (KRG) is a heat-processed ginseng developed by the repeated steaming and air-
drying of fresh ginseng. Compared with fresh ginseng, KRG has been shown to possess greater phar-
macological activities and stability because of changes that occur in its chemical constituents during the
steaming process. In addition to anticancer, anti-inflammatory, and immune-modulatory activities, KRG
and its purified components have also been shown to possess protective effects against microbial in-
fections. Here, we summarize the current knowledge on the properties of KRG and its components on
infections with human pathogenic viruses such as respiratory syncytial virus, rhinovirus, influenza virus,
human immunodeficiency virus, human herpes virus, hepatitis virus, norovirus, rotavirus, enterovirus,
and coxsackievirus. Additionally, the therapeutic potential of KRG as an antiviral and vaccine adjuvant is
discussed.
Copyright � 2015, The Korean Society of Ginseng, Published by Elsevier. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Viruses are infective obligate parasites that can replicate only in
the living cells of animals, plants, fungi, or bacteria. Although
extremely small in size and simple in structure, viruses cause
numerous diseases such as cancer, autoimmune disease, and im-
munodeficiency as well as organ-specific infectious diseases
including the commoncold, influenza, diarrhea, hepatitis, etc. [1e4].

Recent progress in the formulation of antiviral therapies and
vaccines has helped to prevent, shorten the duration, or decrease
the severity of viral infection [5e7]. Most antiviral agents are
designed to target viral components, but mutations in the viral
genome often result in drug resistance and immune evasion,
creating a major hurdle for antiviral therapies and vaccine devel-
opment [8]. In addition, the continuous emergence of new infec-
tious agents such as the Ebola virus and Middle East respiratory
syndrome coronavirus (MERS-CoV) necessitate the advancement of
novel therapeutic approaches. Accordingly, great attention has
recently been drawn to the development of antivirals with broad-
spectrum efficacy and immunomodulators which improve host
resilience by increasing host resistance to the viral infection [9].
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Korean ginseng (the root of Panax ginseng Meyer) is one of the
most popular medicinal plants used in traditional medicine in East
Asian countries including Korea [10]. Ginseng contains various
pharmacologically active substances such as ginsenosides, poly-
saccharides, polyacetylenes, phytosterols, and essential oils, and
among those, ginsenosides are considered the major bioactive com-
pounds [11]. Korean Red Ginseng (KRG) is a heat-processed ginseng
which is preparedby the repeated process of steaming and air-drying
fresh ginseng [12]. KRG has been shown to possess enhanced phar-
macological activities and stability compared with fresh ginseng
because of changes in its chemical constituents such as ginsenosides
Rg2, Rg3Rh1, andRh2,which occur during the steamingprocess [13].

Currently, numerous studies have reported the beneficial effects
of KRG on diverse diseases such as cancer, immune system disorder,
neuronal disease, and cardiovascular disease [14e17]. In addition,
KRG and its purified components have also been shown to possess
protective activities against microbial infections [18]. In this review,
we summarize the current knowledge on the effects of KRG and its
components on infections with human pathogenic viruses and
discuss the therapeutic potential of KRG as an antiviral and vaccine
adjuvant.
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2. Respiratory syncytial virus

Respiratory syncytial virus (RSV) is the leading cause of lower
respiratory tract infection. This viral infection shows mild and
indistinguishable symptoms from common colds in adults and
healthy children but can also cause severe lower respiratory tract
diseases such as pneumonia and bronchiolitis in premature babies
and infants with underlying health conditions and immunocom-
promised patients. No effective antiviral therapy or preventive
vaccine in early life is currently available, but maternal vaccination
is considered a possible strategy to provide RSV antibody protec-
tion to young infants [1].

The Kang Laboratory (Georgia State University, GA) has pub-
lished several studies on the immunomodulatory and antiviral ef-
fects of KRG extract (RGE) on RSV [19e21]. Although a formalin-
inactivated RSV (FI-RSV) vaccine was developed in the 1960s, im-
munization with FI-RSV was halted because vaccinated children
experienced severe respiratory disease during the natural RSV
infection. The severe form of the disease caused by the FI-RSV has
been attributed to the strong T-helper type 2 (Th2) immune
response, and RGE has been shown to mitigate such Th2 responses
by enhancing the T-helper type 1 (Th1) response in F1-RSV
immunized mice which have Th2-dominant immune response
intrinsically [19]. Thus, RGE-treated mice that were immunized
with FI-RSV showed improved clinical outcomes via an increase in
the immunoglobulin G2a (IgG2a) antibodies level and interferon
(IFN)-g production accompanied by a decrease in IL-4 production
and weight loss after RSV infection [19]. The data indicate that RGE
possesses an immunomodulatory effect by balancing Th1 and Th2
immune responses, and protects the host from severe pulmonary
inflammation upon FI-RSV immunization and RSV infection.

In addition, RGE protected human epithelial cells from RSV-
induced cell death and viral replication and inhibited the produc-
tion of proinflammatory cytokines in vitro upon RSV infection
[20,21]. Moreover, RGE treatment improved clinical outcomes by
preventing weight loss and increasing viral clearance and IFN-g
production in bronchoalveolar lavage cells in mice [20,21]. RGE also
increased the numbers of CD11cþ dendritic cells, IFN-g-secreting
CD8þ T cells, and CD4þ T cells in bronchoalveolar lavage fluids
[20,21]. Taken together, these studies demonstrate that ginseng has
immunomodulatory and antiviral effects against RSV infection
through multiple mechanisms, and further studies are required to
elucidate the underlying immunoregulatory and antiviral mecha-
nisms at the molecular level.

3. Rhinovirus

Rhinovirus is the major cause of the common cold. Rhinovirus is
transmitted from person-to-person via contact or aerosol and
causes upper respiratory illness [22]. Although generally mild and
self-limiting, rhinovirus infection may cause asthma or chronic
obstructive pulmonary disease in chronic infection and lead to
severe complications for asthmatics, elderly people, and immuno-
compromised patients [23,24]. Currently there is no cure or pre-
vention for rhinovirus infection, and treatment mainly relies on
symptom alleviation using nonsteroidal anti-inflammatory drugs
(NSAIDs), nasal decongestants, and antihistamines. Nonetheless,
consistent effort has been made to identify effective preventions
and antiviral medication for rhinovirus [25].

In an attempt to investigate the effects of ginsenosides on
rhinovirus infection, Song et al [26] examined the antiviral activ-
ities of protopanaxatriol (PT)-type ginsenosides (Re, Rf, and Rg2),
and protopanaxadiol (PD)-type ginsenosides (Rb1, Rb2, Rc, and Rd).
The results showed that PT-type ginsenosides protected HeLa cells
from human rhinovirus 3 (HRV3)-induced cell death as determined
by sulforhodamine B staining of viable cells and morphological
assessment [26]. However, PD-type ginsenosides did not show any
protective effects and even stimulated the HRV3-induced cell death
significantly, implying a structure-dependent effect of ginsenosides
on HRV3. The selective antiviral activities of panaxatriol-type gin-
senosides were also found in the case of coxsackievirus, as
described below. Future studies are needed to elucidate the rela-
tionship between the antiviral activities and structural differences
among panaxadiol- and panaxatriol-type ginsenosides.

4. Influenza virus

Influenza virus is the most common human respiratory path-
ogen that causes annual endemic and periodic pandemic infection.
There are three types of influenza viruses: A, B, and C. Human
influenza A and B viruses cause seasonal disease nearly every
winter, whereas the influenza C virus causes mild respiratory dis-
ease. Influenza A viruses are the most virulent human pathogens,
and their serotypes are further classified and termed based on the
viral surface proteins hemagglutinin (H) and neuraminidase (N).
Novel mutant strains continuously emerge causing influenza
pandemic outbreaks, and there were some historically renowned
lethal strains such as “Spanish influenza (H1N1)”, “Asian influenza
(H2N2)”, “Russian influenza (H1N1)”, “Hong Kong influenza
(H5N1)”, and swine-origin H1N1 influenza recently found in
Mexico [27,28].

Ample studies have been conducted to demonstrate the anti-
viral activities of RGE and purified compounds present in ginseng
on influenza virus A infection in vitro and in vivo. RGE treatment
improved the viability of human alveolar epithelial A549 cells upon
H1N1 infection accompanied by a decrease in virus-induced cyto-
kine secretion and reactive oxygen species (ROS) formation [29].
Protopanaxatriol-type ginsenoside Re has been shown to protect
human umbilical vein endothelial cells (HUVECs) from avian H9N2/
G1 influenza-induced apoptosis by inhibiting virus-induced inter-
feron-inducible protein-10 (IP-10) production [30]. The inhibitory
effects of RGE on viral replication were also tested in MadineDarby
canine kidney (MDCK) cells using the 2009 pandemic H1N1 virus
[31]. In in vivo studies, RGE, ginseng polysaccharide (GP), or ginseng
saponin was orally administered to mice or ferrets prior to viral
infection, and their protective effects were evaluated by measuring
body weight, survival rate, lung viral titers, cytokine production,
histopathology, etc. The antiviral effects on the H1N1 strain have
been most widely tested, and those on H3N2, H9N2/G1 (avian
influenza), and H5N1 were also examined. In detail, RGE has been
reported to have antiviral effects on H1N1, H3N2, and H5N1 [31,32];
GP has effects on H1N1 and H3N2 [33]; and saponin has an effect on
H1N1 [34]. The antiviral activities of RGE, GP, and ginseng saponin
fraction have also been compared using the H1N1 strain. Yin et al
[34] showed that GP was the most effective in improving the
symptoms of influenza virus infection, followed by RGE and
saponin in that order.

In addition to antiviral activity, RGE also plays a role as a
mucosal adjuvant against influenza virus A/PR8 during viral
infection [35]. When administered with inactivated virus and RGE
intranasally, immunized mice produced increased levels of influ-
enza virus-specific antibodies with improved neutralizing activities
in blood and mucosal secretions, notably the IgA antibody in the
lung. RGE plus virus immunization also resulted in the enhanced
secretion of Th1 and Th2-type cytokines in splenocytes upon
challenge infection, although a Th2 type response was more
remarkable. This adjuvant effect of RGE was comparable to that of
conventional adjuvants such as aluminum hydroxide and cholera
toxin. Additionally, immunization of mice with inactivated H3N2
influenza antigen and ginsenoside Re resulted in increased immune



K. Im et al / Antiviral effects of Korean Red Ginseng 311
responses by elevating both Th1 and Th2 cell activities [2]. The
secretion of serum-specific IgG1 and IgG2a and hemagglutination
inhibition titers were all increased, and in vitro stimulation of
splenocytes produced higher levels of Th1 and Th2 cytokines in
ginsenoside Re-administered mice. Furthermore, dietary intake of
RGE and Korean Red Ginseng saponin (KRGS) has also been shown
to improve H1N1 vaccine efficacy by increasing anti-influenza virus
A-specific IgG titers and survival rates [36]. In addition, GP induced
cross-protective vaccine efficacy. When mice were vaccinated with
influenza virus-like particles (VLPs) originating from H1N1
together with GP, the immunized mice developed heterosubtypic
protection and survived a lethal challenge with the H3N2 virus.
Taken together, the data suggest the use of RGE, KRGS, ginsenoside
Re, and GP as adjuvant or dietary supplements to enhance the
vaccine-induced immune response and improve protection against
influenza virus infection.

5. Human immunodeficiency virus

Human immunodeficiency virus (HIV) belongs to the genus
Lentivirus in the family Retroviridae, and two types of HIV have
been characterized: HIV-1 and HIV-2 [37]. HIV-1 is the major type
of HIV accounting for 95% of infections worldwide and is more
virulent and infectious than HIV-2 [38]. HIV-2 is mainly seen in
West Africa and has lower infectivity [39,40]. There are well-
defined stages of HIV disease progression from acute infection,
clinical latency, and acquired immunodeficiency syndrome AIDS,
and an HIV-positive patient is diagnosed with AIDS when his/her
CD4þ cell count falls < 200 cells/mm3. HIV treatment or highly
active antiretroviral therapy (HAART) involves the combination of
multiple drugs with different mechanisms of action. HAART can
effectively suspend or prevent disease progression from one stage
to the next and prolong the lives of HIV-positive patients dramat-
ically by lowering the viral load, maintaining immune system
function, and preventing opportunistic infections [7,41]

When combined with zidovudine monotherapy or HAART, RGE
has been shown to exert antiviral effects by maintaining CD4þ T
cell counts [42e45] and delaying the occurrence of resistance
mutation [42,43,46] in HIV-1 patients. RGE treatment alone even
showed significant antiHIV effects [44,47e49], implying that RGE
intake may become an alternative form of treatment for HIV-1
patients. Negative factor (Nef) is a virulence factor required for
achieving high virus load and the progression to AIDS [50]. The 50

long terminal repeat (LTR) acts as a promoter of the entire viral
genome and stimulates viral genome replication, whereas group-
specific antigen (gag) promotes the formation of fully infectious
HIV-1 virions. Interestingly, RGE intake increases the frequency of
gross deletions in Nef genes [51e54] and the 50 LTR/gag gene
[53,55,56], leading to a delay in disease progression and increase of
survival rate in HIV-1 patients.

Although most studies evaluating the effects of ginseng on HIV-
1 have been carried out in HIV-1 patients, several in vitro studies
have also been performed. For example, a homodimeric protein,
quinqueginsin, isolated from the roots of American ginseng Panax
quinquefolium, and xylanase, isolated from the roots of Panax
notoginseng, have been shown to inhibit reverse transcriptase in a
cell-free system [57,58]. Additionally, ginsenoside Rh1, ginsenoside
Rb1, and compound K have been reported to inhibit cytoprotective
effects which may contribute to the long-term survival and
persistent HIV-1 production in cells constitutively expressing
transactivator (Tat) proteins [59e61].

In addition to antiviral effects, ginseng interacts with antiHIV
drugs and changes their pharmacokinetic properties. Shi et al [62]
have reported that ginsenoside Rh2 increased the accumulation
and decreased the efflux of ritonavir through P-glycoprotein (P-gp)
in Caco-2 cells and MDCK-MDR1 cells. An in vivo study using rats
confirmed that intravenous administration of ginsenoside Rh2
inhibited ritonavir efflux and increased the plasma level of rito-
navir. However, American ginseng, Panax quinquefolium, did not
affect the pharmacokinetics of an antiHIV drug cotreated in
humans, although it induced phase 2 enzyme quinone reductase
[63]. Kaempferol isolated from ginseng has also been reported to
inhibit P-gp-mediated efflux of ritonavir and cytochrome P-450
3A4 (CYP3A4) activities in vitro [64], but it has not been confirmed
whether kaempferol would indeed induce the level of ritonavir
in vivo.

6. Human herpesvirus

The herpesviruses are a group of large DNA viruses causing lytic,
persistent, and latent/recurrent infections [65]. The human her-
pesviruses (HHV) are further divided into three subfamilies,
alphaherpesvirinae [including herpes simplex virus-1 (HSV-1),
herpes simplex virus-2 (HSV-2), and varicella-zoster virus (VZV)],
betaherpesvirinae, and gammaherpesvirinae based on the differ-
ences in factors such as tissue tropism, pathogenesis, and site of
latent infection [66]. HSV-1 is typically transmitted during child-
hood by contact with infected skin and is associated with orofacial
infections and encephalitis [67,68], although HSV-2 is transmitted
by sexual activity and causes genital herpes mostly [68].

Notoginsenoside ST-4 is a dammarane-type saponin of Panax
notoginseng and has been reported to show antiHSV activity by
inhibiting the penetration of HSV-1 into Vero cells [69]. Another
in vitro study has shown that ginsenoside Rb1 promotes cell pro-
liferation and inhibits the apoptosis of human glioma cells upon
HSV infection, suggesting the potential application of ginsenoside
Rb1 to prevent neuronal cell death in viral encephalitis [70]. The
antiHSV-1 activity of RGE has also been reported in vivo. When
Balb/c mice were administered 200 mg/kg or 400 mg/kg of RGE
orally for 10 days and infected with HSV-1, the RGE-treated mice
became more resistant to vaginal and systemic infection as shown
by a decrease in clinical severity and increase in survival rate and
viral clearance. RGE also stimulated IFN-g secretion in vaginal
lavage fluid and increased the expression of IFN-g, granzyme B, and
Fas-Ligand mRNA in lymph nodes and vaginal tissue, suggesting
that RGE protects the host from HSV-1 infection by stimulating
natural killer (NK) cell activities [71]. Given the diverse antiviral
activities of RGE through the inhibition of viral penetration and cell
death and NK cell activation, prophylactic use of RGE would be
beneficial for preventing or alleviating primary and recurrent HSV
infection in combination with conventional antiviral drugs [72].

7. Hepatitis A virus

Hepatitis A virus (HAV) is a positive-sense, single-stranded RNA
virus, belonging to the family Picornaviridae. Unlike hepatitis B
virus (HBV), which is transmitted through exposure to blood and
various body fluids of infected people, HAV is largely transmitted by
the fecaleoral route and causes acute hepatitis. Although hepatitis
A infection does not lead to chronic liver disease and has very low
mortality, it may cause enervating symptoms and fulminant hep-
atitis (acute liver failure) [4]. Currently, no specific antiviral agent is
available for HAV, and thus, prevention via vaccination and
improvement of hygiene and sanitation is the most effective
approach against the HAV infection.

Lee et al [73] examined the antiviral effects of RGE and purified
ginsenosides Rb1 and Rg1 against HAV infection. They demon-
strated that pretreatment or cotreatment with RGE and ginseno-
sides Rb1 and Rg1 on FRhK-4 cells derived from the monkey kidney
decreased the HAV titer upon HAV infection in vitro. Although the
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antiviral effect of RGE and ginsenosides remained limited to the
in vitro model, the report suggested that regular intake of KRG as a
dietary supplement may help prevent HAV infection.

8. Hepatitis B virus

Hepatitis B virus (HBV) is a double-stranded DNAvirus classified
as being in the family Hepadnaviridae [74]. HBV can cause acute
hepatitis, but it can also develop into a long-term, chronic infection.
As chronic hepatitis B can lead to life-threatening cirrhosis or
hepatocarcinoma, HBV infection is one of the most serious health
problems worldwide [75]. During viral replication, large amounts
of HBV surface antigen (HBsAg), HBV envelope antigen (HBeAg),
and virions are released in the blood, and accordingly, diagnostic
tests for HBV infection involve the detection of those viral antigens,
virions, and antibodies to the viral antigens.

The antiHBV effect of ginsenoside Rg3 has been well-described
[76]. Ginsenoside Rg3 remarkably inhibited the secretion of
HBsAg, HBeAg, and viral particles in HBV-infected HepG2.2.15 cells.
Another mechanistic study revealed that ginsenoside Rg3 down-
regulated TNF receptor-associated factor 6 (TRAF6)/transforming
growth factor b activated kinase-1 (TAK1) and inhibited the
mitogen-activated protein kinase (MAPK) signaling pathway by
impeding c-Jun phosphorylation and reducing AP-1 expression.
Consequently, the expression of proinflammatory cytokines such as
IL-8 and TNF-a was reduced. Although the anti-inflammatory ac-
tivity of ginsenoside Rg3 is explicitly described, it is unclear how
the anti-inflammatory effect of ginsenoside Rg3 affects HBV repli-
cation. Future studies should strive to better understand the link
between antiHBV and anti-inflammatory activities of ginsenoside
Rg3.

9. Norovirus

Norovirus is a positive-sense, single-stranded RNA virus causing
nausea, vomiting, abdominal pain, and diarrhea in humans [77].
The virus is spread through the fecaleoral route by ingestion of
contaminated water or food, especially fish and shellfish [78]. As
human norovirus is not culturable, norovirus surrogates such as
feline calicivirus (FCV), murine norovirus (MNV), and Tulane virus
(TV) are used to test the antiviral activity of natural or chemical
compounds against norovirus [79]. FCV and MNV have a similar
genome organization, physical properties, and replication cycle to
those of human norovirus and can be cultivated in CrandelleReese
feline kidney (CRFK) cells and murine Raw264.7 cells, respectively
[80].

Lee et al [81] have shown that pretreatment of CRFK or
RAW264.7 cells with RGE and ginsenosides Rb1 or Rg1 significantly
reduced FCV and MNV titers in vitro, whereas cotreatment or
posttreatment had no antiviral effects. In a subsequent study, the
same research group demonstrated that RGE and ginsenosides
pretreatment induced antiviral proteins in FCV-infected CRFK cells.
The expressions of IFN-a, IFN-b, IFN-u, zinc finger antiviral protein
shorter isoform (ZAPS), and Mx protein, an IFN-inducible protein
with antiviral activity, were all increased which contributed to the
decrease of viral titers in CRFK cells. Future studies are needed to
establish a culture system for human norovirus and subsequently
evaluate the antiviral effects of RGE and ginsenosides against hu-
man norovirus.

10. Rotavirus

Rotavirus is the leading cause of acute gastroenteritis in young
children age� 5 years [82]. Two live oral rotavirus vaccines (Rotarix
by GlaxoSmithKline, Unitied Kingdom, and RotaTeq by Merck,
United States) are available, and the implementation of rotavirus
vaccines in childhood immunization programs has significantly
reduced the morbidity and mortality associated with Rotavirus
infection [6]. Nevertheless, there is no antiviral drug to treat rota-
virus infection, and mostly, therapeutics involve the prevention of
dehydration [83,84].

In traditional medicine, ginseng has been known to improve
gastrointestinal function and prevent gastrointestinal problems
such as diarrhea [3]. A recent study researched the active constit-
uent in ginseng and reported that two pectic polysaccharides iso-
lated from hot water extract of ginseng prevented cell death from
viral infection [3]. The polysaccharides, named GP50-dHR and
GP50-her, did not have virucidal effects but inhibited viral attach-
ment to the host cells thereby protecting them from virus-induced
cell death. Given these results and an additional report that other
pectin-type polysaccharides in ginseng inhibited the adherence of
Helicobacter pylori to gastric epithelial cells and the ability of Por-
phyromonas gingivalis to agglutinate erythrocytes [85], further
evaluation of the antimicrobial effects of acidic polysaccharides
with the structure of pectin is merited.

11. Enterovirus

Human enterovirus 71 (EV71) and coxsackievirus A16 (CVA16)
are the two major causes of hand-foot-and-mouth disease (HFMD)
in young children [86]. Although HFMD is a mild and self-limited
disease characterized by fever, rash, bumps, blisters, or ulcers in
the mouth, feet, hands, and buttocks, some affected children may
develop neurological, cardiovascular, and respiratory complications
in rare cases [87,88]. Presently, there are no specific treatments or
vaccines for HFMD.

In order to identify ginsenosides with antiviral activity against
EV71, Song et al [26] tested panaxadiol-type ginsenosides (Rb1,
Rb2, Rc, and Rd) and panaxatriol-type ginsenosides (Re, Rf, and
Rg2). They found that only ginsenoside Rg2 had antiviral activity
against EV71 infection in Vero cells, but it has not been determined
whether the anticytopathic effect of Rg2 is due to the virucidal
activity or the inhibition of viral attachment.

12. Coxsackievirus

Coxsackievirus is a positive-sense, single-stranded RNA virus,
belonging to Picornaviridae. Coxsackieviruses are divided into the
group A virus with 23 serotypes and the group B virus with six
serotypes [89,90]. Among those, the most common pathogens are
coxsackievirus A16 (CVA16) causing HFMD as described above and
coxsackievirus B3 (CVB3) causing myocarditis, aseptic meningitis,
and pancreatitis [91,92]. At present, there is no effective therapeutic
agent against CVB3, and only ribavirin is available for CVB3 infec-
tion despite its weak antiviral activity [93].

20(S)-Protopanaxtriol is one of the major triterpenes isolated
from Panax notoginseng [94]. It has been shown that 20(S)-proto-
panaxtriol has potent antiCVB3 activities in vitro and in vivo. The
IC50 of 20(S)-protopanaxtriol for inhibition of CVB3 replication in
HeLa cells was even lower than that of ribavirin, indicating a
stronger antiviral effect than ribavirin. In vivo experiments showed
that treatment of CVB3-infected mice with 20(S)-protopanaxtriol
significantly improved CVB3-induced myocarditis represented by a
decrease in the activities of lactase dehydrogenase and creatine
kinase, markers for myocardial injury.

In addition, panaxatriol-type ginsenosides such as ginsenosides
Re, Rf, and Rg2 also showed significant antiCVB3 activity repre-
sented by a decrease in the CVB3-induced cytopathic effect and an
increase in the cell viability of infected Vero cells [26]. The antiCVB3
activity of ginsenosides Re and Rf was comparable to that of
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ribavirin. However, panaxadiol-type ginsenosides such as Rb1, Rb2,
Rc, and Rd did not exhibit antiCVB3 activity.

13. Conclusion

The swift emergence of new infectious viruses and drug-
resistant variants has limited the availability of effective antiviral
agents and vaccines. Thus, the development of broad-spectrum
antivirals and immunomodulating agents that stimulate host im-
munity and improve host resilience is essential. Although ginseng
itself can exert direct antiviral effects by inhibiting viral attach-
ment, membrane penetration, and replication, the foremost anti-
viral activities of ginseng are attributed to the enhancement of host
immunity. Future studies should include the identification of
essential components responsible for the enhanced immunity
against any viral attack.
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