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ABSTRACT
Although the gut microbiome has been linked to colorectal cancer (CRC) development, associations
of microbial taxa with CRC status are often inconsistent across studies. We have recently shown that
tumor genomics, a factor that is rarely incorporated in analyses of the CRC microbiome, has a strong
effect on the composition of the microbiota. Here, we discuss these results in the wider context of
studies characterizing interaction between host genetics and the microbiome, and describe the
implications of our findings for understanding the role of the microbiome in CRC.
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Introduction

The gut microbiota has been consistently shown to
be important for the development of colorectal can-
cer (CRC).1–6 However, recent meta-analyses of
CRC-associated stool, mucosal, and tissue micro-
biota in the gut have demonstrated that there is
a great deal of inter-study variability in the field,
leading to mixed interpretations of which microbial
taxa, if any, are consistently associated with CRC.7–11

Potential sources of cross-study differences can be
variation in sample collection, DNA extraction,
sequencing target region, sequencing technology
used, as well as a wide array of other technical
differences.12–16 Considering recent evidence that
host genetic variation is correlated with the composi-
tion of themicrobiome,17–19 another potential source
of variability is the heterogeneity of tumors, and
especially the genomic mutational profiles of the
tumors. In our recent study, we assessed the effect
of tumormutational profiles on themicrobiota in the
tumor microenvironment.20 Our analysis shows that
loss-of-function (LoF) mutations in cancer-related
genes and pathways in the tumor are correlated
with defined microbial communities, and that the
microbiome can be used to statistically predict
tumor mutational profiles. Here, we describe the
results of our study in the context of the current
knowledge in the field, discuss the implications, and
explore next steps and remaining open questions.

Human genetic control of the microbiome

Several studies have investigated the role of human
genetics in shaping host-associated microbial com-
munities. Initial studies focused on candidate genes
of interest, and found human genetic variants that
can control microbiome composition in specific dis-
ease contexts.21,22 More recent studies have used
a genome-wide approach to calculate the heritability
of microbial taxa and identify variants and genes in
the human genome that correlate with variation in
the microbiome across body sites.17,18,23–26 In addi-
tion, several studies have used similar analysis tech-
niques to assess host genetic effects on the
microbiome in the context of various human dis-
eases and conditions.26–29 Although results across
cohorts have not had a high degree of overlap, sev-
eral loci have been found to be associated across
multiple studies,19,30,31 indicating that in some
cases, host genes can affect microbiome composition
across different contexts. In our recent study we
aimed to assess the effect of host genetics on the
microbiome in the context of CRC.

Although the approach used in our study is in
some ways similar to GWAS studies of the micro-
biome, there are several important differences. First,
our study investigated somatic mutations in the host,
as opposed to host genetic variation from blood
samples representing germline variation. To identify
tumor somatic mutations, we compared whole
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exome sequencing data from each tumors to
matched normal tissue from the same patient
(Figure 1). Second, our study analyzed the micro-
biome in colonic tissue samples, as opposed to fecal
samples, which are more commonly used in studies
of the CRC microbiome. Investigating the microbes
in the microenvironment of tumors is informative,
due to the ability to detect microbial signatures that
may be lost in fecal samples. On the other hand, fecal
samples are abundant, non-invasive, and likely more
useful for development of microbial diagnostics.32

Third, our analysis of host genetic variants focused
on a small number of genetic variants, namely LoF
mutations in coding regions. While most studies of
host genetic correlations with the microbiome used
genome-wide techniques, we focused on coding
mutations with severe effects, as these mutations
are more likely to affect tumor physiology and act
as tumor driver mutations.33 In the following sec-
tions we discuss these analyses in the context of
previous studies of the microbiome in CRC.

Tumor genomic profiles can influence the
microbiome

Our recent study aimed to test the hypothesis that
different CRC tumor subtypes would harbor dif-
ferent microbial communities.20 This work builds

on our previous report that included an evaluation
of the differences between the microbiota found at
tumor sites and those surrounding normal gut
tissues from matched patients (Figure 1).34 The
findings were consistent with other reports in
that microbial communities at tumor sites were
more diverse than those of normal tissues.35,36

Additionally, Fusobacterium and Providencia were
two of the specific microbial taxa that exhibited
elevated abundance at tumor sites relative to
matched normal tissue sites. Predictive functional
analyses indicated that these two genera harbor
known virulence genes that may have a role in
driving tumor development.
In our most recent study, we incorporated data on the
mutational landscape of the tumors to information on
their microbiome (Figure 1).20 This inter-tumor com-
parison using groupings defined by the LoFmutations
in the tumor samples yielded promising results.
Prevalent LoF mutations in 5 tumor genes were
found to harbor distinct microbial communities,
including ANKRD36C, APC, CTBP2, KMT2C, and
ZNF717. In addition, when aggregating LoF muta-
tions at the pathway level, we found sets of microbial
taxa that discriminated between tumors with LoF
mutations in 21 KEGG pathways and 15 PID path-
ways, including MAPK, Phosphatidylinositol, TP53,
Wnt, andNotch signaling pathways.37–39 Correlations
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Figure 1. Illustration of the experimental design, comparing normal (left) and tumor (right) samples from the same individual. The
analysis is based on using the normal sample as the baseline for each patient, and compared the changes from the patient-matched
baseline in the microbiome and tumor genome.
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between cancer phenotypes and these pathways are
not surprising; however, these results suggest that the
mucosal and tissue microbial communities at the
tumor site themselves reflect genetic changes in these
pathways. Of note, the accuracy of the statistical pre-
diction was higher at the pathway level compared to
mutations at the gene level.We hypothesize that this is
due to the aforementioned potential for discretemuta-
tions to have similar effects at the pathway level.

Significance and implications

The correlations found in this work are significant
for several reasons. First, our results show that
genetic heterogeneity among tumors is reflected in
the mucosal and tissue microbial communities at
the tumor sites. A recent meta-analysis found that
studies of the CRC microbiome, taken as a whole,
show few consistent findings with respect to identi-
fication of specific microbial taxa that track with
cancer status.7 The interpretation of this finding is
that the signals found in individual studies are lost
due to the unique composition of the sets of con-
founding factors that track with each of the studies.
In addition to this variability at the level of study
design, experimental techniques, and analytical
approaches, variation in the microbiome can poten-
tially be caused by heterogeneity in CRC tumor
genomes. Thus, future studies of the microbiota in
CRC may benefit from incorporating tumor muta-
tional information in the analysis.

A second implication of this work is the finding
is that sets of microbial taxa, rather than individual
microbes, correlate with tumor mutational status.
While it is entirely possible that there are some
specific microbes that alone are discriminatory, it
is also likely, due to the ecological dynamics at
play in the communities of interest, that a variety
of microbes are acting in concert with one another
and with the tumor microenvironment. One way
to view this is to see individual taxa not just as
discrete genera and species, but as placeholders for
functional modules. As suggested in our previous
work,34 it is possible that unrelated taxa exert
similar functional effects. This suggests that in
addition to using taxonomic information, studies
that include functional information are likely to
yield more holistic biological insight.

Lastly, we have demonstrated that it is possible to
statistically predict tumor mutational status from
microbiome composition alone, in this first
instance, using mucosal/tissue-associated microbial
communities. Using taxa abundances, we were able
to accurately predict whether LoF mutations are
found within several cancer-related genes, including
APC. Moreover, a similar approach allowed us to
use microbiome data to statistically predict whether
cancer-related pathways, including MAPK and Wnt
signaling, harbor LoF mutations in their protein-
coding sequence. This ability to use the microbiome
as a predictor for tumor mutational profiles has
several implications. First, there is strong interest
in using the gut microbiome as a diagnostic for
CRC.40,41 Our results suggest that, in addition to
the prediction of CRC status using gut microbiome
profiles, these profiles may harbor information on
the individual genes and pathways that are mutated
in the tumor – information that can potentially be
used for diagnostic purposes. Second, these results
may be relevant for understanding why statistical
prediction of CRC status from microbiome data has
been challenging. Specifically, we find that different
microbial taxa were important for the prediction of
different tumor pathways. This may indicate that
prediction of a single endpoint (CRC present or
not) could be complicated by microbiome variation
that is correlated with tumor genomic profiles, sug-
gesting that incorporating this information in pre-
diction models may be advantageous. Finally, and
more generally, our results add to a growing body
of literature showing that host genetics can affect
microbiome composition, and suggest that knowl-
edge of the microbial taxa and host genes that
interact may be beneficial in the development of
microbiome-based diagnostics.

Next steps and open questions

There are still many questions that need to be
answered with respect to the effect of tumor geno-
mics on the microbiome. For instance, we currently
know little about the contribution of themicrobiome
to development of CRC and the interaction with
different driver mutations during this process
(Figure 2). Starting from the development of early
lesions (Figure 2(a)), through early expansion, for-
mation of adenoma (Figure 2(b)), and formation of
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the tumor (Figure 2(c)), there is a continuous cross-
talk between the microbiota and lesion. Our results
indicate that this cross-talk is likely affected by var-
iation in tumor mutational profiles. Nevertheless, we
still do not understand how the acquisition of new
mutations affects the temporal interaction with the
microbiota at the various tumor development stages.
Importantly, our work only described correlations
between tumor gene and pathway mutations and the
microbiome. There are several, non-exclusive
hypotheses that could explain potential mechanisms.
For instance, host tissues could accumulate genomic
mutations that drive changes in the local microen-
vironment, resulting in changes to the local commu-
nity of microorganisms. At the same time, this
community of microorganisms might contribute to
a microenvironment that is more permissive for
tumor growth and development, leading to accumu-
lation of mutations. Future studies, utilizing model
systems to study the directionality of host-
microbiome interactions, will be able to pinpoint
causal effects and characterize links between tumor
genes and microbial taxa. 42

Our study focused entirely on the mucosal and
tissue microbiome, namely, the bacteria that are in
direct physical contact with the tumor. We still do
not know to what extent tumor mutational profiles
correlate with the microbiome of fecal samples,
which are most commonly used for gut micro-
biome analyses. In addition, our study only high-
lighted one aspect of tumor genomics, specifically
loss-of-function mutations in the DNA of coding
genes. However, host-microbiome interactions of
interest likely involve genetic variation in non-
coding regions, as these may affect gene expres-
sion. Several recent studies have shown that the

microbiome can affect gene regulation in interact-
ing host cells,43–45 and in particular in colonic
tumors.46 In addition, the effects of immune ele-
ments, tumor heterogeneity, epigenetic factors,
and the developmental history of the tissue may
also be important for interaction with the
microbiome.47 It is also likely that the viral com-
munity present in the gut plays an important role,
interacting with both host and microbial cells.
Lastly, in every analysis of the microbiome it is
critical to incorporate information on host envir-
onmental (non genetic) factors, such as diet, med-
ication use, medical history, and other life history
traits. Given the complexity of the biological sys-
tem at hand, dissecting the mechanistic interplay
between the tumor and its microbiome will require
multi-level approaches to succeed.
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