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Abstract
The human oral cavity contains a complex microbial community that, until recently, has not been
well characterized. Studies using molecular tools have begun to enumerate and quantify the species
residing in various niches of the oral cavity; yet, virtually every study has revealed additional new
species, and little is known about the structural dynamics of the oral microbial community or how
it changes with disease. Current estimates of bacterial diversity in the oral cavity range up to 700
species, although in any single individual this number is much lower. Oral microbes are responsible
for common chronic diseases and are suggested to be sentinels of systemic human diseases.
Microarrays are now being used to study oral microbiota in a systematic and robust manner.
Although this technology is still relatively young, improvements have been made in all aspects of
the technology, including advances that provide better discrimination between perfect-match
hybridizations from non-specific (and closely-related) hybridizations. This review addresses a core
technology using gel-based microarrays and the initial integration of this technology into a single
device needed for system-wide studies of complex microbial community structure and for the
development of oral diagnostic devices.

Introduction
Microbes comprise a major fraction of every human's bio-
logical system. They are normal residents of skin, gut, and
oral/pharyngeal systems. Most often we pay little consid-
eration to the multitudes of microbial species that inhabit
our bodies. It is only when this relationship falters, result-

ing in adverse physiological responses such as inflamma-
tion or other disease states, that we become fully aware of
their presence. Oral diseases, dental caries, and periodon-
titis are among the most common preventable chronic
human diseases and are the result of complex microbial
interactions with their environment, other microorgan-
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isms, and the host [1]. Beyond microbial pathogenesis,
increasing evidence suggests that the microbial oral flora
may act as sentinels of human systemic diseases such as
diabetes, heart disease, low-term birth weight, and pneu-
monia [2-15]. A fundamental premise of the research and
technology development program by our research team is
that a description of the human body as a system is
incomplete without an understanding of the relationship
to endogenous microbiota.

Although some species are associated with oral disease
(e.g. Streptococcus mutans is a significant contributor to car-
ies and Porphyromonas gingivalis to periodontal disease),
we have a remarkably incomplete understanding of dis-
eases that may have a more complex microbial etiology.
Estimates based on molecular census-taking studies sug-
gest that the human oral cavity is home to several hundred
unique microbial species [16-23]. These populations are
distributed among teeth, tissue surfaces, and saliva.
Remarkably, most of these microbes have yet to be
brought into pure culture [16,17,24-28] – the essential
prelude for characterizing their physiology and possible
virulence factors. While molecular surveys have revealed
much about the species that exist in the oral cavity, very
little is known about the microbial community dynamics
in any one individual (through time or with changing die-
tary and health conditions) or how the oral microbiota
vary within individuals who have a specific disease or pre-
disposition to a disease. Thus, it is essential that we
develop a more comprehensive understanding of the
community structure in the oral cavity, thus providing an
essential foundation for the characterization of interac-
tions among the microbial populations and their human
host.

This brief review addresses the development of DNA
microarray technology for rapid and reliable characteriza-
tion of the oral cavity microbiota. The underlying premise
is that this information will have great utility in dissecting
the complex microbial etiology associated with progres-
sive diseases (such as carries and periodontitis). The first
and primary objective of the diagnostic device we are
developing is to provide rapid identification and approxi-
mate quantification of key microbial populations in a
small saliva specimen. Thus, the main focus of this report
is to provide the conceptual and technical background for
the development of a salivary diagnostics device designed
to rapidly measure the microbial composition of saliva.

The promise and practice of microarray 
technology
Microarrays have demonstrated utility for highly multi-
plexed analyses such as genome-wide expression studies,
and are also increasingly applied to the study of complex
microbial communities. Hundreds to thousands of target

sequences (for example, corresponding to different micro-
bial populations) can be quickly surveyed by hybridiza-
tion of a small sample with a single array. There are several
probe design strategies for microbial community profil-
ing; we prefer designing probes to detect the ribosomal
RNA (rRNA) with specificities to detect the common
regions of sequence shared at each phylogenetic rank, and
thus approximate taxonomic rank (e.g. species, genus,
phylum, and domain). These phylogenetic microarrays
have been employed to identify bacterial species in
numerous environmental settings, including saliva [29-
34]. The most widely-used microarrays for rRNA micro-
bial identification are planar arrays printed on glass slides
[29-32,34,35], although there are alternative surfaces to
glass [36,37].

Our phylogenetic arrays utilize gel-pad technology, where
an ordered array of small 100 µm × 100 µm × 20 µm poly-
acrylamide pads are photopolymerized in place before
being loaded with oligonucleotide probes [38,39]. Pad
dimensions can vary in size, depending on the pattern
etched into a lithographic mask. The fundamental differ-
ence between gel pad arrays and other microarray surfaces
is that the individual polymeric gel elements create a high
density array of three-dimensional "test tubes." Probes are
covalently cross-linked to the polymer backbone instead
of a solid substrate, with immobilized probe concentra-
tions capable of reaching 10 mM within individual gel ele-
ments [39]. The solution-phase nature of a gel pad
microarray has a number of theoretical and practical ben-
efits; within the context of developing an oral diagnostic,
we see several major advantages to the gel-pad array plat-
form: 1) they are reusable, thus reducing array-to-array
variability and cost for the user; 2) they can directly detect
the naturally amplified rRNA, alleviating bias that hap-
pens during enzymatic amplification [28,40] and thereby
provide a more direct measure of target abundance; 3)
they have higher probe immobilization capacity, which
facilitates the detection of low abundance targets (espe-
cially in the absence of an amplification step).

The challenge of all microarray experiments, including
our own, is confirming the identity of species within a
sample with a high level of confidence. In order to detect
non-specific hybridization, researchers typically employ
the use of a mismatch probe that differs in sequence by
one nucleotide relative to each perfect-match probe.
Another tactic is to use multiple probes for each organism
[31]. Our approach exploits the solution-phase nature of
the gel elements and employs dissociation nonequilib-
rium analysis to resolve perfect and imperfect duplexes on
the array. A reader (microscope and camera) in combina-
tion with a thermal platform is used to characterize the
dissociation of the target from each probe by measuring
residual signal as the temperature is incrementally
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increased. The resulting melting profile (signal versus
temperature) is used as a measure of duplex composition
(see Figure 2). This dissociation approach has been shown
to help discriminate targets from closely related non-tar-
get sequences, since targets containing one or more mis-
matches disassociate earlier than perfect-match targets
[33,39,41-45]. Discriminating perfect-match from mis-
match hybridizations – a key step toward determining the
presence or absence of a particular target (e.g. species) – is
also influenced by such factors as the diffusivity of the gel
array, the quality of the target material, and image analysis
methods.

Improving the diffusivity of gel arrays
As described above, gel-pad technology has many positive
attributes. However, polyacrylamide gels and the method
of gel pad manufacture do impose certain limits on the
otherwise solution-phase behavior of probe-target inter-
actions. As seen in Figure 1, panel A, pads tend to generate
a more intense signal on the periphery and edges of the
three-dimensional gel element rather than a uniform sig-
nal throughout the gel element. The causes of this obser-
vation are multi-fold. Certainly, gel elements have a
defined pore size that limits access to the gel interior; in
our experience, target molecules ranging from 20–150

Mean melting profiles of perfect-match and mismatch probes using Alexa 594-labeled rRNA from Streptococcus mutans of six replicates in three experimentsFigure 2
Mean melting profiles of perfect-match and mismatch probes using Alexa 594-labeled rRNA from Streptococcus mutans of six 
replicates in three experiments. Perfect-match (PM) probe and mismatch (MM) probe have Td (50% of signal remaining during 
analysis) values of 41.7°C and 34.0°C, respectively. The 95% confidence intervals are shown as dashed lines and MAXDCSD is 
0.36 and occurs at 40°C. All values were calculated using fANOVA, see text for details (Bugli, submitted).
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nucleotides are preferred and lead to the most intense and
uniform signal intensity within individual pads. Sec-
ondly, the very high immobilized probe concentration
has an unexpected effect on hybridization kinetics and
equilibrium, eloquently described and detailed by Livs-
hits et al. as the theory of retarded diffusion [46,47]. To
illustrate, when the target first finds a probe, the target will
associate with it on the most accessible part of the pad--
the surface. Then by a process of repeated dissociation and
reassociation with different probe molecules, the target
"needles" itself into the interior of the pad. When the con-
centration of probe is high, this process is slower because
there are more probes for the target to interact with. This
process of retarded diffusion determines the time to estab-
lish equilibrium in a gel pad, where the maximum quan-
tity of target is uniformly bound. What becomes
important for microbial community profiling and unam-
biguously identifying perfect from imperfect duplexes on
the array is that the time needed to achieve final equilib-
rium can be longer than the experimental hybridization
conditions because of retarded diffusion. The reverse situ-
ation also applies when performing a "melt" experiment.
Theory collides with practice quite quickly, since very few
users of phylogenetic arrays have the luxury to wait to
establish equilibrium association and dissociation condi-
tions in order to identify perfect and imperfect duplexes.
As such, we have examined the use of non-equilibrium
dissociation to discriminate between perfect-match and
mismatch hybridizations, and are now developing micro-
fluidic technologies to accelerate reaction kinetics.

It is well known that active mixing or flow significantly
improves microarray performance, leading to increased
absolute signal intensities and lower background or non-
specific binding [48-50]. Continuous washing (or flow)
promotes the dissociation of all targets, but its effect is
more pronounced for mismatch targets than for perfect-
match targets because the dissociation rate constant of
mismatch targets is higher than that of a perfect-match.
Therefore, the discrimination between perfect-match and
mismatch hybridizations is enhanced using a continuous
flow system. To achieve this on our microarray platform,
we are employing microfluidic devices, which are
uniquely well suited to introducing a washing protocol.
The preliminary microfluidic system requires a large
buffer volume (200~400 µL) due to the fluidic lines
attached to a mechanical pump. However, as technology
advances, we envision embedding or integrating a small
module containing a mechanical pump system to reduce
the volume.

Modifications in gel element manufacturing processes
may make the gel interior more accessible and "solution-
like," mitigating the retarded diffusion described above.
Rubina et al. [51], for example, describe a co-polymeriza-

Fluorescent image of gel-pad, gel-drop, and waffle arraysFigure 1
Fluorescent image of gel-pad, gel-drop, and waffle arrays. 
Panel A and B: fluorescent and white-light image of Alexa 
594-labeled oligonucleotides hybridized to probes on a sub-
section of the A) gel-pad array or B) gel-drop array. Panel C: 
stacked confocal image of Cy3-labeled control probe on a 
single waffle gel element. Scale bar in Panel A and B is 100 µm 
and Panel C is 10 µm.
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tion technique for gel element array manufacture that
eliminates the photolithographic mask and associated
"edges" on the gel element. Capture probes are pre-mixed
with the polymer in a source plate, arrayed with conven-
tional robotics, and photopolymerized in place, produc-
ing a "gel-drop." Since capture probes are evenly
distributed throughout the gel before polymerization,
they are likewise evenly distributed throughout the gel
volume after polymerization [51,52] (Figure 1, panel B).
In another advancement, a gel element is dissected into
hundreds of micro-pillars (Selamat et al., unpublished)
that improves probe distribution within the gel element
(Figure 1, panel C). This "waffle-like" gel element, as com-
pared to a normal gel element, has a three-fold increase in
the effective surface area available for probe immobiliza-
tion. Equal distribution of immobilized probe, however,
does not eliminate retarded diffusion. Gel porosity, poly-
mer materials, and immobilized probe concentration also
have a profound effect on repeated association/dissocia-
tion throughout a three-dimensional gel element [53]. In
order to counter some of these effects, several new tunable
polymers are under development and testing, some of
which create pores up to 300 nm, or 1/3 the size of an
average bacterium. Hybridization kinetics are at least
twice as rapid for 50-mer targets as the original polyacry-
lamide formulations used for gel pads. Several of these
polymers have increased thermal stability, a property of
great interest for rapid thermal melt experiments and
achieving an equilibrium binding condition (during
hybridization and washing) much more quickly than pre-
viously practiced. The micro-pillar modification,
described above, also enhances the diffusivity of long tar-
get molecules into the gel element. This modification can
increase hybridization rates and signal intensities up to
five-fold compared to normal gel-elements. These
improvements in hybridization kinetics can potentially
enhance the accuracy of signal detection (e.g., false nega-
tive and false positive signals) during studies of microbial
detection (Hong et al., unpublished). Combined with
active flow from a microfluidic device, then, new develop-
ments in gel element arrays are poised to deliver on the
promise of rapid analysis of microbial community com-
position in the oral cavity.

Increasing signal from specimen material
Several steps in specimen preparation and processing can
affect microarray results. For example, different efficien-
cies in the lysis of bacterial species in environmental sam-
ples can bias microarray results [34]. Toward this end, we
have optimized our protocol for microbial capture and
lysis from saliva samples. In addition, the length of target
molecules influences the diffusivity of the material. Due
to the size and the highly structured nature of 16S rRNA
(nearly 1,500 bases), we fragment rRNA to ensure efficient
penetration into the gel elements of the microarray. Opti-

mization of fragmentation protocols at this step ensures
quality hybridization and reproducible results [54,55].

The final step in specimen preparation is the labeling of
target material with a fluorophore. Industry standards,
such as Cy3, are often readily available, but as recently
reported are not necessarily the best choice for experi-
ments requiring high temperatures [56]. For example, Cy3
and Rhodamine Red lose up to 80% and 60% of fluores-
cence intensity, respectively, between 20°C and 80°C.
Thus, for dissociation experiments using these and similar
fluorophores, the decrease in signal intensity is a combi-
nation of disassociation of target and loss of fluorescence.
Without quality controls, for example by adding a control
probe labeled with the same fluorophore as the target in
the gel array, it is difficult to deconvolute these two proc-
esses. Thus, non-temperature-dependent fluorescent dyes
are preferred for signal detection at the higher tempera-
tures used for dissociation analyses. An additional feature
to consider when labeling target material is whether to use
end-labeling or internal labeling strategies. Signal inten-
sity may vary on the location of the fluorophore, particu-
larly when it is attached at or near the ends of the target
molecule [57]. Strategies that randomly label internal
bases help reduce these variations in signal intensity. In
addition, they have the capacity to label target molecules
multiple times, which may further boost signal intensity.

Improving image analysis
Given our need to image an array over the course of an
experiment, we require software that can apply the same
grid to an entire set (or stack) of images. Several artifacts
such as a misaligned grid, particulate matter on the array,
spot overshine, or bubble formation during an experi-
ment can adversely affect data quality and the resulting
melting profiles [58-60]. The standard image analysis tool
used by our group does not retain images, given the com-
putational and storage constraints when it was developed,
and additional reanalysis is not possible [43]. In the past
year, several new software programs (LabArray, AMIA,
and Istackx) have been developed that allow users to
extract signal intensities from images with significant
quality-control measures. LabArray, which is an image
acquisition and analysis tool, allows for the real-time
monitoring of the probe-duplex dissociation and can
instantly quantify the intensities of all spots within each
image taken at a specific temperature [61]. Each image is
saved and can be reanalyzed later by LabArray or other
image analysis software. LabArray, developed using Lab-
View (National Instruments, Austin TX), can simultane-
ously control other instrumentation components.
Automated Microarray Image Analysis (AMIA) Toolbox
for MatLab and Istackx are analysis tools that allow users
to analyze a series of images collected by other image
acquisition programs [58] (Krick et al., unpublished).
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AMIA provides many statistical and visual tools that ena-
ble users to quantitatively assess image analysis, including
a "threading" capacity for images that are out of register
(from the use of a motion controller). The Istackx pro-
gram has a movie feature that displays each image in suc-
cession with the proposed grid placement to ensure the
accuracy of the grid.

Microarray interpretation
Discrimination of perfect-match from mismatch 
hybridizations
Once the images are analyzed and the signal intensities
processed (including background subtraction and nor-
malization), the data are interpreted to assess whether
they are derived from perfect-match or mismatch targets.
Evaluation of single points along dissociation curves (e.g.,
initial signal intensity and Td (the temperature at which
50% of the initial signal intensity remains)) is a useful
data reduction step that simplifies data processing. The
comparison of Td values of perfect-match probes are often
greater than the Td of mismatch probes with the same tar-
get as expected given the greater stability of perfect-
matches [43,56,62], but not all studies report effective dis-
crimination using Td [42]. This result is not surprising as
Td is influenced by many variables such as length and con-
centration of target, position and type of mismatch, and
diffusion rates. Because the sequence and the concentra-
tion of target are unknown in oral mucosa samples, reli-
ance on Td alone is problematic. Other points along the
dissociation curve have been shown to have better dis-
criminatory power than Td. Wick et al. describe a new met-
ric, called Td-w, the temperature at which the measured kd
(association constant) reaches the maxima on the dissoci-
ation rate curve [63]. Although it remains to be seen what
parameters influence Td-w, it does out-perform Td in dis-
criminating perfect-match from mismatch probes. Thus,
this new parameter may be a useful tool in perfect-match/
mismatch analyses. In addition, a discrimination index
and neural network were used by Urakawa et al. to char-
acterize regions of optimal discrimination between
curves; however, these metrics did not provide a statistical
comparison of the curves [42]. Bugli et al. developed a
functional ANOVA calculator that applies statistical tools
to compare differences along the entire dissociation curve
and calculates a new metric, MAXDCSD. MAXDCSD is the
maximum difference in normalized signal intensities
between the lower limit of the 95% confidence interval of
one dissociation curve and the upper limit of the 95%
confidence interval of another curve (Bugli et al., submit-
ted) (see Figure 2). In an application of the functional
ANOVA calculator with nucleic acids from environmental
samples, MAXDCSD distinguished between two curves
when Td did not (Eyers et al., submitted), and, as with Td-

w, the temperature at which MAXDCSD occurs may also be
a useful parameter to monitor.

Species Identification
Integration of the various measured parameters requires
sophisticated computational procedures. For example,
neural networks can process many different parameters
that can define each probe-target melting profile. In a pre-
liminary microarray study of 15,584 probe-target hybrid-
izations with known target sequences from
microorganisms found in the human oral cavity, 85% of
the predicted perfect-match probe-target duplexes were
identified with a neural network; however, the analysis
also produced several false positive readings [59]. To
highlight the utility of neural networks, the data used to
test the neural network was all inclusive, demonstrating
that it was able to perform reasonably well under subop-
timal conditions. Another computational approach to
species identification has been taken by Urisman et al.
[64]. Their computational approach compares the
observed signal intensities at a single temperature to the
predicted energy profiles to derive a similarity score [64].
To interpret the similarity score for their data set, they
developed parameters to calculate the probability of the
detected species given a similarity score. Because their sys-
tem has low complexity (no more than two viral species
per sample), adaptation of this method to other systems,
particularly those from complex communities, will
require additional optimization and normalization and
perhaps multiple iterations for identification. Even so,
this method can be applied to all microarrays, planar and
multidimensional, and it would be interesting to apply
this method to hybridization results from samples taken
from the oral cavity. Application of the analytical and
technological advancements described here is expected to
further enhance our ability to discriminate perfect-match
from mismatch hybridization events. Together with the
resolving power of neural networks and other computa-
tional approaches, rapid, sample-to-answer diagnostics of
oral microbial communities are becoming a reality.

Conclusion
Beyond the horizon of today's technologic sophistication
lies the promises of real time monitoring of microbes in
their environment and cost effective diagnostics that will
allow early detection and preventive medical interven-
tion. Previously, microarrays assisted with the rapid iden-
tification of the causative agent of SARS soon after its
emergence in 2002, and microarrays are being introduced
as human disease diagnostics [65,66]. Technology inte-
gration is the key to this advancement, and the economy
of scale and unique physiochemical properties made pos-
sible through microfluidic technology are critical to
increasing specificity and sensitivity of microarray output.
Indeed, the integrated microfluidic-microarray devices we
are building allow for monitoring kinetics of hybridiza-
tion and dissociation within an experimental apparatus.
Further, integration of specimen preparation on the same
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microfluidic card as the microfluidic-microarray device
will release the research and clinical communities from
cumbersome and laborious methodologies. As we move
toward a fully integrated device, external and internal on-
card quality control standards are being developed to
make this device suitable for point-of-care diagnostics.
There have been studies that associate the microbial
response to various physiological parameters and disease
development [67-69]. Ultimately, however, linking
microfluidic-microarray devices with sophisticated bioin-
formatics will allow for longitudinal and cross-sectional
studies of the microbiota and human health that until
now were inconceivable. In addition to developing a
more complete understanding of the relationship
between endogenous microbiota and the human body;
these studies will help us identify diagnostic markers for
human disease (both oral and systemic) that can be used
to devise effective intervention strategies.
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